- 无标题文档
查看论文信息

论文中文题名:

 西安市城市热环境变化及其影响因素研究    

姓名:

 姚明昊    

学号:

 21210226081    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 大气环境遥感    

第一导师姓名:

 杨梅焕    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Study on the change of urban thermal environment and its influencing factors in Xi 'an    

论文中文关键词:

 局地气候区 ; 多源遥感数据 ; 土地利用变化 ; 地表温度 ; 可持续发展    

论文外文关键词:

 Local Climate Zones ; Multi-Source Remote Sensing Data ; Land Use Change ; Land Surface Temperature ; Sustainable Development    

论文中文摘要:

改革开放以来,我国进入快速城市化阶段,城市人口不断增加,城市建设用地大面积扩张,由此产生的城市生态环境问题如城市热岛效应(Urban Heat Island,UHI)已成为国内外学者关注的热点议题。本研究以西安市为研究区,基于2003-2022年1 km分辨率的MYD11A2地表温度数据、2019-2022年70 m分辨率的ECOSTRESS数据集、2020年5-10月Landsat5/7/8数据、2020年西安市建筑轮廓数据等,采用相关性分析、趋势分析以及地理加权回归模型等方法,从西安市域和主城区分别分析了热环境变化特征及影响因素,并对主城区城市热环境开展控制分区,以期为城市规划与管理提供科学决策依据。研究结论如下:

(1)2003-2022年西安市市域地表温度均值在20.23 ℃-23.57 ℃之间,并呈显著上升趋势,增加速率为0.08 ℃/a,其中2016-2022年增加速率最快,达0.35 ℃/a。西安市市域城市热岛效应区域面积显著增加,占比由2003年的4.72%增至2022年的29.77%。不透水面面积的显著增加是导致地表温度升高的主因。此外,西安市市域地表温度与归一化植被指数(Normalized Vegetation Index,NDVI)、降水以负相关关系为主。

(2)西安市主城区范围内,紧凑型建筑类型(LCZ1-3)在主城区总面积占比为14.27%,开敞型建筑类型(LCZ4-6)在主城区总面积占比为12.29%,大型低层硬地面(LCZ7)在主城区总面积占比为41.72%,植被(LCZA)和水体(LCZB)分别在主城区总面积占比为30.82%和0.91%。各局地气候区内,紧凑型低层(LCZ3)局地气候区昼夜循环过程中地表温度变化最大,温差达28.12 ℃。日间,紧凑型低层(LCZ3)局地气候区地表温度最高,水体(LCZA)地表温度最低;夜间,水体(LCZA)地表温度最高,植被(LCZB)地表温度最低。紧凑型建筑类型(LCZ1-3)地表温度高于开敞型建筑类型(LCZ4-6),且日间地表温度表现为紧凑型高层(LCZ1)<紧凑型中层(LCZ2)<紧凑型低层(LCZ3),夜间反之。

(3)基于ECOTRESS数据分析结果显示,西安市主城区所有局地气候区内地表温度与NDVI呈显著负相关,与人口分布和夜间灯光覆盖范围呈显著正相关。在地表温度与建筑形态关系方面,地表温度与建筑高度呈负相关,建筑高度每升高1 m,地表温度降低0.031 ℃,且建筑高度超过90 m后,地表温度下降速率更快,为0.084 ℃/m;地表温度与建筑密度呈正相关,建筑密度每增加10%,地表温度升高0.61 ℃;地表温度与天空开阔度呈负相关,天空开阔度每增加0.1,地表温度降低0.34 ℃。此外,将西安市主城区内城市一环内的建筑类型(LCZ1-7)和主城区内紧凑型(LCZ1-3)局地气候区划分为重点控制区,将开敞型(LCZ4-7)局地气候区划分为一般控制区,植被(LCZA)和水体(LCZB)划分为冷源重点保护区。

研究认为通过优化土地利用布局并限制不透水面的增加,加强城市绿化建设以及在城市规划中合理安排建筑高度与密度、优化城市三维结构,建设城市通风廊道的等措施,可以有效缓解城市热环境,促进城市可持续发展。

论文外文摘要:

Since the reform and opening up, China has entered a stage of rapid urbanization, with a continuously increasing urban population and a large-scale expansion of urban construction land. As a result, urban ecological and environmental issues such as the urban heat island effect (Urban Heat Island, UHI) have become a hot topic of concern for scholars both at home and abroad. This study takes Xi'an as the research area, and utilizes various datasets including MYD11A2 surface temperature data with a resolution of 1 km from 2003 to 2022, ECOSTRESS dataset with a resolution of 70 m from 2019 to 2022, Landsat 5/7/8 data from May to October 2020, and building outline data of Xi'an in 2020. By employing methods such as correlation analysis, trend analysis, and geographically weighted regression models, this study analyzes the characteristics and influencing factors of thermal environmental changes in Xi'an's urban area and main urban district separately. Furthermore, it conducts a control zoning for the urban thermal environment in the main urban district, aiming to provide scientific decision-making support for urban planning and management. The research conclusions are as follows:

(1)From 2003 to 2022, Xi'an's average. surface temperature ranged 20.23-23.57℃, showing a significant upward trend with an increase rate of 0.08 ℃/a. Notably, the increase rate was the fastest from 2016 to 2022, reaching 0.35 ℃/a. The area affected by the urban heat island effect in Xi'an increased significantly, with the proportion rising from 4.72% in 2003 to 29.77% in 2022. The significant increase in impervious surface area is the primary factor driving the rise in surface temperature. Additionally, the surface temperature in Xi'an's urban area primarily exhibits a negative correlation with the Normalized Vegetation Index and precipitation.

(2)Within the main urban district of Xi'an, compact building types (LCZ1-3) account for 14.27% of the total area, while open building types (LCZ4-6) account for 12.29%. Large low-rise hard surfaces (LCZ7) occupy 41.72% of the total area, while vegetation (LCZA) and water bodies (LCZB) account for 30.82% and 0.91% respectively. Among the various local climate zones, the compact low-rise (LCZ3) zone experiences the largest diurnal variation in surface temperature, with a temperature difference of up to 28.12 ℃. During the daytime, the surface temperature in the compact low-rise (LCZ3) zone is the highest, while it is the lowest in the water body (LCZA) zone. Conversely, at night, the surface temperature in the water body (LCZA) zone is the highest, while it is the lowest in the vegetation (LCZB) zone. The surface temperature of compact building types (LCZ1-3) is higher than that of open building types (LCZ4-6). Specifically, during the daytime, the surface temperature follows the pattern of compact high-rise (LCZ1) < compact mid-rise (LCZ2) < compact low-rise (LCZ3), while the order is reversed at night.

(3) Based on the analysis of ECOSTRESS data, the results indicate that within all local climate zones in the main urban district of Xi'an, surface temperature exhibits a significant negative correlation with NDVI and a significant positive correlation with population distribution and the coverage of nighttime lighting. Regarding the relationship between surface temperature and building morphology, surface temperature is negatively correlated with building height. For every 1-meter increase in building height, the surface temperature decreases by 0.031 ℃. Notably, when the building height exceeds 90 meters, the rate of decrease in surface temperature is faster, reaching 0.084 ℃/m. On the other hand, surface temperature is positively correlated with building density, with a 0.61℃ increase in surface temperature for every 10% increase in building density. Furthermore, surface temperature is negatively correlated with sky view factor, with a decrease of 0.34 ℃ in surface temperature for every 0.1 increase in sky view factor. Additionally, the building types (LCZ1-7) within the first ring road of Xi'an's main urban district and the compact (LCZ1-3) local climate zones are designated as key control areas. Open (LCZ4-7) local climate zones are classified as general control areas, while vegetation (LCZA) and water bodies (LCZB) are designated as key protected areas for cooling sources.

The study suggests that optimizing land use layout, limiting the expansion of impervious surfaces, enhancing urban greening, rationally arranging building heights and densities in urban planning, optimizing the three-dimensional structure of cities, and constructing urban ventilation corridors can effectively mitigate the urban heat environment and promote sustainable urban development.

参考文献:

[1] 国家统计局. 全国第七次人口普查分析报告[M]. 北京:中国统计出版社, 2021.

[2] Morris K I, Chan A, Morris K J K, et al. Impact of urbanization level on the interactions of urban area, the urban climate, and human thermal comfort[J]. Applied geography, 2017, 79(2): 50-72.

[3] Peng S, Piao S, Ciais P, et al. Surface urban heat island across 419 global big cities[J]. Environmental science & technology, 2012, 46(2): 696-703.

[4] 刘施含, 曹银贵, 贾颜卉, 等. 城市热岛效应研究进展[J]. 安徽农学通报, 2019, 25(23): 117-121.

[5] IPCC. Climate Change 2021: The Physical Science Basis[R]. 2021.

[6] Ward K, Lauf S, Kleinschmit B, et al. Heat waves and urban heat islands in Europe: A review of relevant drivers[J]. Science of the Total Environment, 2016, 569(11): 527-539.

[7] Shimpo A, Takemura K, Wakamatsu S, et al. Primary factors behind the heavy rain event of July 2018 and the subsequent heat wave in Japan[J]. SOLA, 2019, 15: 13-18.

[8] Zhao Q, Guo Y, Ye T, et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study[J]. The Lancet Planetary Health, 2021, 5(7): 415-425.

[9] Chapman S, Watson J E, Salazar A, et al. The impact of urbanization and climate change on urban temperatures: a systematic review[J]. Landscape Ecology, 2017, 32(8): 1921-1935.

[10] Green R, Basu R, Malig B, et al. The effect of temperature on hospital admissions in nine California counties[J]. International Journal of Public Health, 2010, 55: 113-121.

[11] Knowlton K, Rotkin-Ellman M, King G, et al. The 2006 California heat wave: im-pacts on hospitalizations and emergency department visits[J]. Environ Health Per-spect, 2009, 117(1): 61-67.

[12] 黄焕春, 杨海林, 邓鑫, 等. 城市热岛对居民健康影响的空间演化过程[J]. 遥感信息, 2021, 36(4): 38-46.

[13] Hung CH, Man SW. Urban environmental influences on the temperature–mortality relationship associated mental disorders and cardiorespiratory diseases during normalsummer days in a subtropical city[J]. Environmental Science and Pollution Research, 2019, 26(23): 24272-24285.

[14] 王敏珍, 郑山, 王式功, 等.高温热浪对人类健康影响的研究进展[J]. 环境与健康杂志, 2012, 29(7): 662-664.

[15] 冯雷,李旭东. 高温热浪对人类健康影响的研究进展[J]. 环境与健康杂志, 2016, 33(2): 182-188.

[16] Weng Q, Lu D, Schubring J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies[J]. Remote sensing of Environ-ment, 2004, 89(4): 467-483.

[17] Yao R, Wang L, Huang X, et al. Interannual variations in surface urban heat island intensity and associated drivers in China[J]. Journal of Environmental Management, 2018, 222: 86-94.

[18] Howard L. The climate of London: deduced from meteorological observations[M]. Cambridge University Press, 2012.

[19] Oke T R. City size and the urban heat island[J]. Atmospheric Environment, 1973, 7(8): 769-779.

[20] Demuzere M, Orru K, Heidrich O, et al. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure[J]. Journal of environmental management, 2014, 146: 107-115.

[21] Kim S W, Brown R D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review[J]. Science of The Total Environment, 2021, 779: 146389-146406.

[22] Deilami K, Kamruzzaman M, Liu Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures[J]. International journal of applied earth observation and geoinformation, 2018, 67: 30-42.

[23] Yue W, Liu X, Zhou Y, et al. Impacts of urban configuration on urban heat island: An empirical study in China mega-cities[J]. Science of the Total Environment, 2019, 671: 1036-1046.

[24] Xie J, Zhou S, Chung L C H, et al. Evaluating land-surface warming and cooling environments across urban–rural local climate zone gradients in subtropical megacities[J]. Building and Environment, 2024, 251: 111232-111245.

[25] 梁秀娟, 王旭红, 牛林芝, 等. 大西安都市圈城市热岛效应时空分布特征及 AOD 对热岛强度的影响研究[J]. 生态环境学报, 2020, 29(8): 1566-1580.

[26] 赵晨晓, 刘春卉, 魏家星. 缓解城市热岛效应的南京市绿色基础设施网络构建方法[J]. 浙江农林大学学报, 2021, 38(6): 1127-1135.

[27] Shang K, Xu L, Liu X, et al. Study of urban heat island effect in Hangzhou metropolitan area based on SW-TES algorithm and image dichotomous model[J]. SAGE Open, 2023, 13(4): 2158-2440.

[28] Wang Y, Zhang Y, Ding N, et al. Simulating the impact of urban surface evapotranspiration on the urban heat island effect using the modified RS-PM model: A case study of Xuzhou, China[J]. Remote Sensing, 2020, 12(3): 578-600.

[29] Shi H, Xian G, Auch R, et al. Urban Heat Island and its regional impacts using remotely sensed thermal data—A review of recent developments and methodology[J]. Land, 2021, 10(8): 867-897.

[30] Lu L, Weng Q, Xiao D, et al. Spatiotemporal variation of surface urban heat islands in relation to land cover composition and configuration: A multi-scale case study of Xi’an, China[J]. Remote Sensing, 2020, 12(17): 2713-2732.

[31] Chen G, Zhao L, Mochida A. Urban heat island simulations in Guangzhou, China, using the coupled WRF/UCM model with a land use map extracted from remote sensing data[J]. Sustainability, 2016, 8(7): 628-642.

[32] 单宝艳, 张巧, 任启新, 等. 基于局地气候分区的济南市热环境空间分异及其影响因素[J]. 地球信息科学学报, 2022, 24(4): 711-722.

[33] Chen Y, Zheng B, Hu Y. Mapping local climate zones using ArcGIS-based method and exploring land surface temperature characteristics in Chenzhou, China[J]. Sustainability, 2020, 12(7): 2974-2992.

[34] 胡楠林, 任志彬, 董禹麟, 等. 中国城市群热岛效应时空演变及其影响因素分析[J]. 地理科学, 2022, 42(9): 1534-1545.

[35] Hook S J, Cawse-Nicholson K, Barsi J, et al. In-flight validation of the ECOSTRESS, Landsats 7 and 8 thermal infrared spectral channels using the Lake Tahoe CA/NV and Salton Sea CA automated validation sites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(2): 1294-1302.

[36] Knauer K, Gessner U, Fensholt R, et al. An ESTARFM fusion framework for the generation of large-scale time series in cloud-prone and heterogeneous landscapes[J]. Remote Sensing, 2016, 8(5): 425-446.

[37] 董家集, 任华忠, 郑逸童, 等. 基于多源遥感数据的城市环境宜居性研究——以北京市为例[J]. 国土资源遥感, 2020, 32(3): 165-172.

[38] 陈春辉, 马苗苗. 基于多源遥感数据的城市热岛特征与机理研究[J]. 地理空间信息, 2023, 21(1): 119-122+139.

[39] 王煜, 唐力, 朱海涛, 等. 基于多源遥感数据的城市热环境响应与归因分析——以深圳市为例[J]. 生态学报, 2021, 41(22): 8771-8782.

[40] Middel A, Häb K, Brazel A J, et al. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones[J]. Landscape and urban planning, 2014, 122: 16-28.

[41] Wu Z, Chen L. Optimizing the spatial arrangement of trees in residential neighborhoods for better cooling effects: Integrating modeling with in-situ measurements[J]. Landscape and Urban Planning, 2017, 167: 463-472.

[42] 刘勇洪, 徐永明, 张方敏, 等. 北京城市空间形态对热岛分布影响研究[J]. 地理学报, 2021, 76(7): 1662-1679.

[43] Cai H, Xu X. Impacts of built-up area expansion in 2D and 3D on regional surface temperature[J]. Sustainability, 2017, 9(10): 1862-1878.

[44] Alavipanah S, Schreyer J, Haase D, et al. The effect of multi-dimensional indicators on urban thermal conditions[J]. Journal of cleaner production, 2018, 177: 115-123.

[45] Stewart I D. A systematic review and scientific critique of methodology in modern urban heat island literature[J]. International Journal of Climatology, 2011, 31(2): 200-217.

[46] 程雨婷, 刘昭华, 鹿琳琳, 等. 一带一路沿海超大城市热岛时空特征遥感分析[J]. 遥感技术与应用, 2020, 35(5): 1197-1205.

[47] Stewart I D, Oke T R. Local climate zones for urban temperature studies[J]. Bulletin of the American Meteorological Society, 2012, 93(12): 1879-1900.

[48] Kotharkar R, Bagade A. Evaluating urban heat island in the critical local climate zones of an Indian city[J]. Landscape and Urban Planning, 2018, 169: 92-104.

[49] Yang J, Ren J, Sun D, et al. Understanding land surface temperature impact factors based on local climate zones[J]. Sustainable Cities and Society, 2021, 69: 102818-102834.

[50] Shi Z, Yang J, Zhang Y, et al. Urban ventilation corridors and spatiotemporal divergence patterns of urban heat island intensity: a local climate zone perspective[J]. Environmental Science and Pollution Research, 2022, 29(49): 74394-74406.

[51] 金珊合, 张育庆, 杨俊. 城市局部气候分区对地表温度的影响——以大连市区为例[J]. 测绘通报, 2019, (4): 87-90.

[52] 何晓凤, 蒋维楣, 陈燕, 等. 人为热源对城市边界层结构影响的数值模拟研究[J]. 地球物理学报, 2007, 50(1): 74-82.

[53] Zhang P, Imhoff M L, Wolfe R E, et al. Characterizing urban heat islands of global settlements using MODIS and nighttime lights products[J]. Canadian Journal of Remote Sensing, 2010, 36(3): 185-196.

[54] Giorgio G A, Ragosta M, Telesca V. Climate variability and industrial-suburban heat environment in a Mediterranean area[J]. Sustainability, 2017, 9(5): 775-785.

[55] Wai C Y, Muttil N, Tariq M a U R, et al. Investigating the relationship between human activity and the urban heat island effect in Melbourne and four other international cities impacted by COVID-19[J]. Sustainability, 2021, 14(1): 378-401.

[56] Liu Z, Lai J, Zhan W, et al. Urban heat islands significantly reduced by COVID‐19 lockdown[J]. Geophysical Research Letters, 2022, 49(2): 096842-096852.

[57] Zhou B, Rybski D, Kropp J P. The role of city size and urban form in the surface urban heat island[J]. Scientific reports, 2017, 7(1): 4791-4809.

[58] Wang H, Zhang Y, Tsou J Y, et al. Surface urban heat island analysis of Shanghai (China) based on the change of land use and land cover[J]. Sustainability, 2017, 9(9): 1538-1553.

[59] Chithra S, Nair M H, Amarnath A, et al. Impacts of impervious surfaces on the environment[J]. International Journal of Engineering Science Invention, 2015, 4(5): 2731-2745.

[60] 李宇, 周德成, 闫章美. 中国84个主要城市大气热岛效应的时空变化特征及影响因子[J]. 环境科学 ,2021, 42(10): 5037-5045.

[61] Bechtel B, Demuzere M, Mills G, et al. SUHI analysis using Local Climate Zones—A comparison of 50 cities[J]. Urban Climate, 2019, 28: 100451-100467.

[62] Wang X, Jiang R, Xie J, et al. Multiscale variability of precipitation and their teleconnection with large-scale climate anomalies: a case study of Xi'an City, China[J]. Journal of Coastal Research, 2019, 93(SI): 417-426.

[63] 陕西省统计局. 陕西省2020年人口普查年鉴[M]. 北京:中国统计出版社, 2022.

[64] 西安市统计局. 西安市2022年国民经济和社会发展统计公报[M]. 西安:省政府办公厅, 2023.

[65] 王自尧. 城市产业结构调整与城市空间结构演化——以西安市为例[J]. 区域治理, 2020, (3): 195-197.

[66] Zhang X, Liu L, Wu C, et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform [J]. Earth System Science Data, 2020, 12(3): 1625–1648.

[67] Peng S, Ding Y, Liu W, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4): 1931-1946.

[68] Chang Y, Xiao J, Li X, et al. Combining GOES-R and ECOSTRESS land surface temperature data to investigate diurnal variations of surface urban heat island[J]. Science of The Total Environment, 2022, 823: 153652-153667.

[69] 马术, 蒲智. 基于Landsat8数据的地表温度反演算法研究——以乌鲁木齐市为例[J]. 计算机与数字工程, 2020, 48(10): 2316-2320.

[70] 杨朝斌. 城市空间结构对城市热环境时空异质性分布影响研究[J]. 测绘学报, 2022, 51(5): 788-788.

[71] Hulley G, Shivers S, Wetherley E, et al. New ECOSTRESS and MODIS Land Surface Temperature Data Reveal Fine-Scale Heat Vulnerability in Cities: A Case Study for Los Angeles County, California[J]. Remote Sensing, 2019, 11(18): 2136-2150.

[72] Chang Y, Xiao J, Li X, et al. Exploring diurnal thermal variations in urban local climate zones with ECOSTRESS land surface temperature data[J]. Remote Sensing of Environment, 2021, 263: 112544-112559.

[73] 赵欣, 凯旭, 晓军. 基于ECOSTRESS地表温度和手机信令数据的城市人口热环境暴露风险评价——以西安市为例[J]. 地理科学进展, 2022, 41(11): 2061-2072.

[74] Meerdink S K, Hook S J, Roberts D A, et al. The ECOSTRESS spectral library version 1.0[J]. Remote Sensing of Environment, 2019, 230: 111196-111204.

[75] Freitas S C, Trigo I F, Macedo J, et al. Land surface temperature from multiple geostationary satellites[J]. International Journal of Remote Sensing, 2013, 34(9): 3051-3068.

[76] 陈彦光. 地理数学方法:基础和应用[M]. 科学出版社, 2011.

[77] 谢艳玲, 夏正清, 王涛, 等. 黄河流域植被 NPP 时空变化及其对水热条件和退耕还林还草工程实施的响应[J]. 测绘通报, 2023(2): 15-20.

[78] 王鑫, 王明田, 冯勇, 等. 2001—2020年川西北高原归一化植被指数演变特征及其对极端气候的响应[J]. 应用生态学报, 2022, 33(7): 1957-1965.

[79] Collaud Coen M, Andrews E, Bigi A, et al. Effects of the prewhitening method, the time granularity, and the time segmentation on the Mann–Kendall trend detection and the associated Sen's slope[J]. Atmospheric measurement techniques, 2020, 13(12): 6945-6964.

[80] Blain G C. Removing the influence of the serial correlation on the Mann-Kendall test[J]. Revista Brasileira de Meteorologia, 2014, 29: 161-170.

[81] 刘俊杰, 潘自武, 秦奋, 等. 基于MODIS的秦巴山地气温估算与山体效应分析[J], 2020, 39(3): 735-748.

[82] 王少剑, 高爽, 陈静. 基于GWR模型的中国城市雾霾污染影响因素的空间异质性研究[J]. 地理研究, 2020, 39(3): 651-668.

[83] 李媛媛. “城市-街区”不同尺度下建筑布局对城市热环境影响关系研究[D]. 北京:北京建筑大学, 2023.

[84] 马永欢, 鹿琳琳, 肖达. 基于局地气候分区的城市热环境分析——以北京市为例[J]. 北京师范大学学报(自然科学版), 2022, 15(3): 1-9.

[85] 秦艳丽, 时鹏, 何文虹, 等. 西安市城市化对景观格局及生态系统服务价值的影响[J]. 生态学报, 2020, 40(22): 8239-8250.

[86] 王耀斌, 赵永华, 韩磊, 等. 西安市景观格局与城市热岛效应的耦合关系[J]. 应用生态学报, 2017, 28(8): 2621-2628.

[87] 张选厚, 张宗仁, 杜行德, 等. 西安农业供给侧结构性改革的对策研究[J]. 农学学报, 2017, 7(12): 108-116.

[88] Oliveira S, Andrade H, Vaz T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon[J]. Building and environment, 2011, 46(11): 2186-2194.

[89] 杨朝斌.城市空间结构对城市热环境时空异质性分布影响研究[D]. 长春:中国科学院大学(中国科学院东北地理与农业生态研究所), 2018.

[90] 杨梅焕, 姚明昊, 王涛, 等. 基于局地气候区的西安市城市热环境变化及其影响因素分析[J]. 生态环境学报, 2023, 32(9): 1644-1653.

[91] Gago E J, Roldan J, Pacheco-Torres R, et al. The city and urban heat islands: A review of strategies to mitigate adverse effects[J]. Renewable and sustainable energy reviews, 2013, 25: 749-758.

[92] 许华华. 城市空间布局对城市微气候时空分布的影响研究[D]. 武汉:华中科技大学, 2023.

[93] Liu H, Zhan Q, Yang C, et al. The multi-timescale temporal patterns and dynamics of land surface temperature using Ensemble Empirical Mode Decomposition[J]. Science of the total environment, 2019, 652: 243-255.

[94] 朱婧. 西安老工业区更新策略研究[D]. 西安:西安建筑科技大学, 2019.

[95] 骆天庆, 刘亦凡, 龚修齐. 基于局地气候区的上海产业街区屋顶绿化近地降温效果[J]. 中国城市林业, 2023, 21(2): 58-66.

[96] Middel A, Turner V K, Schneider F A, et al. Solar reflective pavements—A policy panacea to heat mitigation?[J]. Environmental Research Letters, 2020, 15(6): 064016-064025.

[97] 王伟武, 黎菲楠, 王頔, 等. 基于通风潜力及风特征量化分析的城市风道构建[J]. 浙江大学学报(工学版), 2019, 53(3): 470-481.

[98] 惠倩楠,王东,祁松.绿谷、溪涧——西安市幸福林带区域城市更新设计研究[J]. 城市设计, 2023, (4): 58-69.

[99] 刘慧民, 马筝悦, 李淼, 等. 基于卫星遥感的城市热岛效应体检评估——以武汉市为例[J]. 西部人居环境学刊, 2023, 38(6):38-45.

中图分类号:

 X16    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式