- 无标题文档
查看论文信息

论文中文题名:

 氧化煤尘及甲烷-氧化煤尘共混的爆炸特性研究    

姓名:

 王晨熹    

学号:

 18220089018    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 气体与粉尘燃爆控制    

第一导师姓名:

 陈晓坤    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-21    

论文答辩日期:

 2021-06-03    

论文外文题名:

 Study on Explosive Characteristics of Oxidized Coal Dust and Blend of Methane and Oxidized Coal Dust    

论文中文关键词:

 煤尘爆炸 ; 氧化煤 ; 爆炸特性 ; 甲烷    

论文外文关键词:

 Oxidation of coal dust ; Coal dust explosion ; Oxidation temperature ; Methane    

论文中文摘要:

       氧化煤是经历过升温又降温过程的煤,在矿井火区启封、分层开采、遗煤复采等一直广泛存在,这些区域煤炭开发利用产生的煤尘为氧化煤尘。由于煤发生了不同程度的氧化,内部结构受到影响,所产生氧化煤尘的爆炸特性发生改变。
       本文以不同终止温度作为样品煤的预氧化程度,采用程序升温法对大佛寺不粘煤样制备了温度为 、 、 和 的氧化煤样,并以原煤样为辅助对照组,对氧化煤尘爆炸在不同变量(点火延迟、氧化煤尘浓度、氧化煤尘粒径)条件下的变化规律进行研究分析,以及氧化煤尘与甲烷共混体系在不同氧化煤尘、甲烷含量下的爆炸特性变化特征,探究了煤预氧化程度对煤尘及其与甲烷共混爆炸特性的影响规律,为相关矿井预防爆炸事故提供理论依据。所得结论如下:
       氧化煤尘爆炸过程可分为初始负压、高压喷尘、爆炸升压和压力衰减四个阶段。氧化煤尘爆炸特性随点火延迟时间增加,先增强后减弱,且在60ms时,爆炸特性达到极值。氧化煤尘浓度对纯氧化煤尘爆炸特性影响,随浓度增加,而呈二次函数规律,而爆炸特性的影响随氧化煤尘颗粒增大而单调减弱。
       煤的预氧化作用并未改变氧化煤尘爆炸最危浓度。氧化煤尘爆炸特性与氧化温度T之间,随氧化温度T升高,先增强后减弱,且遵循T115>T75>T155>T25>T195的变化规律,当煤经低温氧化后,煤尘具有更强爆炸威力,而较高温度氧化下的煤,其爆炸特性较弱。
       氧化煤尘甲烷共混爆炸过程包含压力骤升、压力极值和压力衰减阶段。氧化煤尘甲烷共混爆炸特性在氧化煤尘浓度单一影响下,因浓度增加而发生先增大后减小变化。在氧化煤尘体系中,甲烷的混入,会造成氧化煤尘爆炸特性增强,当甲烷含量大于7%时,其共混爆炸特性随甲烷增加,呈单调递减变化规律。
       共混爆炸体系中,煤的预氧化作用并未改变氧化煤尘最危浓度,与纯氧化煤尘爆炸特性规律一致。氧化温度T在升高的同时,氧化煤尘-甲烷共混爆炸特性并未与温度变化同步,而是遵循氧化温度T115>T75>T155>T25>T195的顺序,先增大后减弱。经低温氧化后的煤尘在甲烷环境下较原煤尘与甲烷混合产生更强的爆炸威力。但随着氧化程度加深,与纯氧化煤尘变化规律相似,共混爆炸威力朝弱化方向变化。
 

论文外文摘要:

         Oxidation of coal undergoes a heating and cooling process, which has been prevailingly used in the unsealing of fire district, layered exploitation and re-mining of leftover coal in mines. The dust manufactured from these regions during production, has been called Oxidation of coal dust. Due to the different degrees of oxidation of coal has taken place, the internal structure is affected, resulting in the exploitation of the properties of oxidized coal dust explosion produces differently.
         In this paper, different termination temperatures are used as the pre-oxidation degree of the sample coal, and the temperature-programmed method was used to prepare oxidized coal samples with termination temperatures of 75℃, 115℃, 155℃ and 195℃ on non-stick coal samples from Dafo Temple, with raw coal as auxiliary Control group. Oxidation of coal dust blow-up in the different variables (ignition delay oxide dust strenth, dust oxide particle diameter) under the conditions of changes of research and analysis, and the explosive characteristics of the oxidized coal dust and methane blend system under different oxidized coal dust and methane content. The influence of the degree of pre-oxidation on the explosive property of coal dust and its blending with   is discussed, which can make a guidance for related mines on the precaution of explosion distress as a theoretical justification. Conclusions are as follows.
            The blow-up process of oxidized smut dust can be compartmentalized into four sections: initial vacuum, high-pressure dust spray, pressure boosting and attenuation phase. Explosive properties with the ignition postponement time increases, decreased after the first enhancement, and at the time of 60ms, it is in the mount. Consistence of pure oxide dust coal dust blowout property of the oxide, with increasing consistency, whereas a quadratic function rule, explosive characteristics of the impact of dust and oxide with increasing monotonically decreased.
            Pre-oxidation did not change the optimal denseness of oxidized coal dust blow-up. Explosion quadratic function trait trend between the oxidation temperature T, with T increases, the first reinforcing weakened, and follows T115>T75>T155>T25>T195, when the low temperature oxidation of coal, dust owns stronger explosive power, while the explosive consistency of coal under higher temperature oxidation are weaker.
          Blending process involves the explosion pressure swells, extremes and decay phase. Blending trait at a single Oxidation dust consistency is increased to reduce the variation due to the increasing consistency occurs. Because of methane, blended explosive feature is enhancing. When the content is more than 7% of methane, which is blended with the explosive characteristics of methane increases monotonically decreasing variation.
           The pre-oxidation of coal does not change the optimal concentration of oxidized coal dust in the mixed setup, which is consistent with the explosion features of pure oxidized dust. Oxidation of coal and methane blend explosive characteristics gap than a single significant oxidation of the coal dust blow-up, the methane denseness of 7%, the maximum gap, and with the methane content increases, this gap is shrike. Oxidation temperature while the elevated oxide dust-methane blend explosive properties are not synchronized with the change in temperature, but follow the sequence of the temperature T115>T75>T155>T25>T195, and enhances first and then downed. After being oxidized at low temperature, the coal dust produces stronger explosive power in the methane situation than raw coal dust mixed with methane in a methane environment. Whereas, with the deepening degree of oxidation, the explosive power of the admixture from the relative high temperature oxidation changes in the opposite direction, which is consistent with the change law of pure oxidized coal dust.
 

参考文献:

[1]白亚娥. 不同预氧化程度煤二次氧化特性研究[D]. 西安: 西安科技大学,2017.

[2]黄继广, 马汉鹏, 范春姣, 等. 我国煤矿安全事故统计分析及预测[J]. 陕西煤炭, 2020, 39(03): 34-39+6.

[3]朱云飞, 王德明, 李德利, 等. 2000—2016年我国煤矿重特大事故统计分析[J]. 能源与环保, 2018, 40(09): 40-43.

[4]Zhao T, Lu Y, Liu C. Comprehensive optimization and engineering applications of thick residual coal re-mining methodology[J]. Journal of intelligent & fuzzy systems: Applications in Engineering and Technology, 2017; 32: 2111-2222.

[5]韩德馨, 孙俊民. 中国煤的燃烧变质作用与煤层自燃特征[J]. 中国煤田地质, 1998(04): 15-16+56.

[6]张辛亥, 万旭, 许延辉, 等. 厚煤层分层开采采空区自燃“三带”规律及防治研究[J]. 煤炭科学技术, 2016, 44(10): 24-28.

[7]陈晓坤, 杨庆威, 屈利伟, 等. 白皎矿2024复采工作面综合防灭火技术实践[J]. 煤矿安全, 2012, 43(12): 133-135.

[8]蒋上荣. 煤初次氧化程度对复燃特性参数的影响[D]. 西安: 西安科技大学, 2019.

[9]Dong Ma, Botao Qin, Yuan Gao, et al. Study on the explosion characteristics of methane–air with coal dust originating from low-temperature oxidation of coal[J]. Fuel, 2020, 260.

[10]Deng J, Zhao J Y, Huang A C, et al. Thermal behavior and microcharacterization analysis of second-oxidized coal[J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(01): 439-448.

[11]赵媛媛. 井下煤尘爆炸特性及降尘抑爆技术研究[D]. 太原: 中北大学, 2017.

[12]Faradell, Lyell C. Report to the home secretary on the explosion at the HASWELL Colliery on Sept 28, 1844[R]. Phil. Magi, 1845.

[13]Liberman M A, Ivanov M F, Kiverin A D. Effects of thermal radiation heat transfer on flame acceleration and transition to detonation in particle-cloud hydrogen flames[J]. Journal of Loss Prevention in the Process Industries. 2015,38: 176-186.

[14]Bourayou R, Vaillon R, Sacadura J F. FTIR low resolution emission spectrometry of a laboratory-scale diffusion flame: experimental set-up[J]. Experimental Thermal and Fluid Science, 2002, 26(2-4): 181.

[15]Semenov. Basic aspect of OH(A), CH(A), and C2(d) Chemiluminescence in the reaction zone of laminar methane-air premixed flames[J]. Combustion and Flame, 2005, 1: 34-45.

[16]Okafor, Ekenechukwu C. Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames[J]. Combustion and Flame, 2018, 1(187): 185-198.

[17]Cloney, Chris T. Laminar combustion regimes for hybrid mixtures of coal dust with methane gas below the gas lower flammability limit[J]. Combustion and Flame, 2018, 12(198): 14-23.

[18]Gao W, Mogi T, Rong J H, et al. Motion behaviors of the unburned particles ahead of flame front in hexadecanol dust explosion[J]. Powder Technology. 2015, 271: 125-133.

[19]李庆钊, 翟成, 吴海进, 等. 基于20L球形爆炸装置的煤尘爆炸特性研究[J]. 煤炭学报, 2011, 36(S1): 119-124.

[20]Liberman M A, Ivanov M F, Kiverin A D. Radiation heat transfer in particle-laden gaseous flame: Flame acceleration and triggering detonation[J]. Acta Astronautica. 2015,115: 82-93.

[21]马祯, 刘佳. 基于煤质分析的煤尘爆炸特性分析及抑爆措施研究[J]. 山东工业技术, 2018(17): 93-94.

[22]Bartknecht W. Dust explosions: course, prevention, protection[M]. Springer Science & Business Media, 2012.

[23]徐丰, 浦以康, 赵烈, 等. 球型封闭容器内一个简单的煤粉燃烧爆炸模型[J], 爆炸与冲击, 1998, 18(2): 111-117.

[24]赵江平, 王振成. 热爆炸理论在粉尘爆炸机理研究中的应用[J]. 中国安全科学学报, 2004(05): 84-87+2.

[25]钱继发, 刘贞堂, 洪森, 等. 煤尘爆炸固态产物的矿物质特性研究[J]. 煤炭学报, 2018, 43(11): 3145-3153.

[26]Medina C H, MacCoitir B, Sattar H, et al. Comparison of the explosion characteristics and flame speeds of pulverised coals and biomass in the ISO standard 1m3 dust explosion equipment[J]. Fuel, 2015, 151(01): 91-101.

[27]杨龙龙. 煤尘瓦斯爆炸反应动力学特征及致灾机理研究[D]. 北京: 中国矿业大学(北京), 2018.

[28]Weiguo Cao, Wei Cao, Yuhuai Peng, et al. Experimental study on the combustion sensitivity parameters and pre-combusted changes in functional groups of lignite coal dust[J]. Powder Technology, 2015, 283: 512-518.

[29]Bidabadi M, Mohebbi M, Poorfar A K, et al. Modeling quenching distance and flame propagation speed through an iron dust cloud with spatially random distribution of particles[J]. Journal of Loss Prevention in the Process Industries, 2016, 43(9): 138-146.

[30]程磊. 受限空间煤尘爆炸冲击波传播衰减规律研究[D]. 焦作: 河南理工大学, 2011.

[31]喻健良, 侯玉洁, 闫兴清, 等. 密闭空间内聚乙烯粉尘爆炸火焰传播特性的实验研究[J]. 化工学报, 2019, 70(03): 1227-1235.

[32]Nagy J, Volakis C. Development and Control of Dust Explosions[M], New York: Marcel Dekker, Iec. 1985.

[33]司荣军. 矿井瓦斯煤尘爆炸传播规律研究[D]. 青岛: 山东科技大学, 2007.

[34]Clara H M, Brian M C. Comparison of the explosion characteristics and flame speeds of pulverised coals and biomass in the ISO standard 1m3 dust explosion equipment[J]. Fuel, 2015, 151: 91-101.

[35]El-Sayed S A, Mostafa E S. Estimation of thermal and kinetic parameters of sugarcane bagasse and cotton stalks dust layers from hot surface ignition tests[J]. Combustion Science & Technology, 2016, 188(10): 1655-1673.

[36]Proust C, Accorsi A, Dupont L. Measuring the violence of dust explosions with the"20L sphere"and with the standard"ISO 1m3 vessel" Systematic comparison and analysis of the discrepancies[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4-6): 599-606.

[37]Mishra D P, Sikandar A. Full Length Article: Experimental investigation on effects of particle size, dust concentration and dust-dispersion-air pressure on minimum ignition temperature and combustion process of coal dust clouds in a G-G furnace[J]. Fuel, 2018, 9(227): 424-433.

[38]Perera I E, Harris M L, Sapko M J, et al. Large-Scale Explosion Propagation Testing of Treated and Non-treated Rock Dust When Overlain by a Thin Layer of Coal Dust[J]. Mining Metallurgy & Exploration, 2021, 38(2): 1009-1017.

[39]Manju M. Limiting oxygen concentration for coal dusts for explosion hazard analysis and safety[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(06): 1106-1112.

[40]Moiseeva. Numerical Simulation of Spark Ignition of a Coal Dust-Air Mixture[J]. Combustion, Explosion, & Shock Waves. 2018, 4(2): 179-188.

[41]Frederik Norman, Jan Berghmans, Filip Verplaetsen. The Dust Explosion Characteristics of Coal Dust in an Oxygen Enriched Atmosphere[J]. Procedia Engineering, 2012, 45: 399-402.

[42]Jiri S, Ales B, Petr L, et al. The influence of air flow on maximum explosion characteristics of dust–air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(01): 209-214.

[43]Moradi H, Sereshki F, Ataei M, et al. Evaluation of the effect of the moisture content of coal dust on the prediction of the coal dust explosion index[J]. The Mining-Geology-Petroleum Engineering Bulletin. 2020, 35(01): 37-47.

[44]Weiguo Cao, Qingfeng Qin, Wei Cao, et al. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel[J]. Powder Technology, 2017, 310: 17-23.

[45]Shunyao Wang, Zhicheng Shi, Xu Peng, et al. Effect of the ignition delay time on explosion severity parameters of coal dust/air mixtures[J]. 2019, 342: 509-516.

[46]Tan B, Shao Z, Xu B, et al. Analysis of explosion pressure and residual gas characteristics of micro-nano coal dust in confined space[J]. Journal of Loss Prevention in the Process Industries, 2020, 64(1): 056-069.

[47]刘天奇, 李雨成, 罗红波. 不同变质程度煤尘爆炸压力特性变化规律实验研究[J]. 爆炸与冲击, 2019, 39(09): 158-165.

[48]刘天奇. 不同煤质煤尘云与煤尘层最低着火温度实验研究[J]. 燃烧科学与技术, 2019, 25(05): 445-450.

[49]崔瑞, 程五一. 点火能量对煤粉爆炸行为的影响[J]. 煤矿安全, 2017, 48(04): 16-19.

[50]Song Lin, Zhentang Liu, Jifa Qian, et al. Comparison on the explosivity of coal dust and of its explosion solid residues to assess the severity of re-explosion[J]. Fuel, 2019, 251.

[51]柳晓凯, 张金锋, 解启航, 等. 不同惰性介质对7-ACA粉体及丙酮混合物燃爆抑制研究[J]. 工业安全与环保, 2018, 4(11): 17-20.

[52]白建平, 范健强, 王越, 等. 粉尘密度对20L球罐内粉尘分散规律影响[J]. 中国安全生产科学技术, 2017, 13(10): 37-42.

[53]赵一姝, 范健强, 白建平, 等. 粉尘浓度对20L球罐内硫磺粉尘分散过程流场特性的影响[J]. 中国安全生产科学技术, 2018, 14(07): 48-53.

[54]刘天奇, 蔡之馨, 曲芳, 等. 角联空间煤尘爆炸传播特性数值模拟[J]. 消防科学与技术, 2020, 39(12): 1697-1700.

[55]Ajrash M J, Zanganeh J, Moghtaderi B. The effects of coal dust concentrations and particle sizes on the minimum auto-ignition temperature of a coal dust cloud[J]. Fire & Materials, 2017, 41(7): 908-915.

[56]Ajrash M J, Mohammed J. Effect of ignition energy on fire and explosion characteristics of dilute hybrid fuel in ventilation air methane[J]. Journal of Loss Prevention in the Process Industries, 2016, 4(40): 207-216.

[57]Krainov, Alexey. Mathematical modelling of sparkplug ignition of a coal-dust monodisperse suspension in a methane-air mixture[C]. MATEC Web of Conference, 2017, 7(115): 1-4.

[58]Pinaev A V, Pinaev P A. Combustion and Detonation Waves in Gas Mixtures of CH4/Air, CH4/O2, and O2/Coal Dust[J]. Combustion Explosion and Shock Waves, 2020, 56(6): 670-681.

[59]Ranganathan S, Petrow D, Rockwell S R, et al. Turbulent burning velocity of methane–air–dust premixed flames[J]. Combustion and Flame, 2018, 188: 367-375.

[60]Addai E K, Aljaroudi A, Abbas Z, et al. Investigation of the explosion severity of multiphase hybrid mixtures[J]. Process Safety Progress. 2020, 39(03): 139-151.

[61]Qi Y, Gan X, Li Z, et al. Variation and Prediction Methods of the Explosion Characteristic Parameters of Coal Dust/Gas Mixtures[J]. Energies, 2021, 14(2): 264-277.

[62]Wang Y, Qi Y, Gan X, et al. Influences of coal dust components on the explosibility of hybrid mixtures of methane and coal dust[J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 222-228.

[63]Tan X, Schmidt M, Zhao Peng, et al. Minimum ignition temperature of carbonaceous dust clouds in air with CH4 /H2 /CO below the gas lower explosion limit[J]. Fuel, 2020, 264.

[64]Guo C, Shao H, Jiang S, et al. Effect of low-concentration coal dust on gas explosion propagation law[J]. Powder Technology, 2020, 367: 243-252.

[65]李海涛, 陈晓坤, 邓军, 等. 湍流状态下竖直管道内甲烷-煤尘预混特征及爆炸过程数值模拟[J]. 煤炭学报, 2018, 43(06): 1769-1779.

[66]陈晓坤, 王二飞, 王秋红. 管道内瓦斯煤尘共混爆炸温度特性[J]. 中国安全生产科学技术, 2019, 15(11): 5-10.

[67]李润之. 瓦斯爆炸诱导沉积煤尘爆炸的数值模拟[J]. 爆炸与冲击, 2010, 30(05): 529-534.

[68]Niu Y, Zhang L, Shi B. Experimental study on the explosion-propagation law of coal dust with different moisture contents induced by methane explosion[J]. Powder Technology, 2020, 361: 507-511.

[69]左前明. 煤尘爆炸特性及抑爆技术实验研究[D]. 青岛: 山东科技大学, 2010.

[70]岑可法. 燃烧理论与污染控制[M]. 北京: 机械工业出版社, 2004.

[71]路春美, 王永征. 煤燃烧理论与技术[M]. 北京: 地震出版社, 2001.

[72]傅维镳. 煤燃烧理论及其宏观通用规律[M]. 北京: 清华大学出版社, 2003.

[73]徐通模. 燃烧学[M]. 北京: 机械工业出版社, 2011.

[74]谢兴华. 燃烧理论[M]. 徐州: 中国矿业大学出版社, 2002.

[75]苏岱峰. 煤尘对瓦斯爆炸压力及压力上升速率的影响研究[D]. 重庆: 重庆大学, 2018.

[76]王博. 煤矿瓦斯煤尘爆炸冲击波传播的影响因素研究[D]. 太原: 中北大学, 2019.

[77]张英华, 黄志安. 燃烧与爆炸学[M]. 北京: 冶金工业出版社, 2010.

[78]邓军, 李青蔚, 肖旸等.原煤和氧化煤的低温氧化特性[J]. 西安科技大学学报, 2018, 38(01): 1-7.

中图分类号:

 TD714.5    

开放日期:

 2023-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式