- 无标题文档
查看论文信息

论文中文题名:

 基于三胺与二醛缩合的共价有机框架(COFs)电致变色材料制备及其性能研究    

姓名:

 张昱琨    

学号:

 19213211045    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085216    

学科名称:

 工学 - 工程 - 化学工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学工程    

研究方向:

 光电功能材料    

第一导师姓名:

 熊善新    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Preparation and Properties of Covalent Organic Frameworks (COFs) Electrochromic Materials Based on Triamines and Dialdehydes Condensation    

论文中文关键词:

 电致变色材料 ; 二维共价有机框架 ; 胺醛缩合 ; 还原氧化石墨烯    

论文外文关键词:

 Electrochromic materials ; Two dimensional covalent organic framework ; Amine aldehyde condensation ; Redeced graphene oxide    

论文中文摘要:

电致变色是指电活性材料在交变电压下发生可逆光学特征转换的现象。由于电致变色材料对紫外-可见光与近红外光的调制能力出色,通常将其应用于智能窗与军事伪装领域。有机类电致变色材料凭借其较高的对比度、在近红外波段对光的调制能力强以及多色彩变换等优点被广为研究。共价有机框架(Covalent Organic Frameworks, COFs)材料是一种由碳、氢、氧、氮、硼等轻质元素通过共价键形成的一类多孔、质量轻、结构单元选择性强的新型功能材料。二维COFs已被应用于储能材料,作为一种电活性材料,其同时可应用于电致变色领域。
本文采用溶剂热合成法选用三(4-氨基苯基)胺(Tris (4-aminophenyl) amine, TAPA)作为三胺结构单元,并分别选用不同分子长度的对苯二甲醛(P-benzaldehyde, BDA),4,4-联苯二甲醛(4,4-benzaldehyde, BPDA)与1,4-二(4-醛基苯基)苯(1,4-bis (4-aldehyde phenyl) benzene, TPDA)作为二醛结构单元,在表面处理后的ITO玻璃基底上成功制备了TABD-COF、TABP-COF以及TATP-COF三种纯COF薄膜。由于TAPA具有可逆的氧化还原性质,将其作为COF的结构单元可以为COF提供电致变色性能。我们选择了不同长度的二醛单元作为构筑单体,可探究不同结构单元大小对COF薄膜电致变色性能的影响。同时,为了弥补COF材料导电性差的不足,我们选用还原氧化石墨烯(rGO)作为复合单元,通过一锅法制备了TABP-COF/rGO复合薄膜,并探究rGO与COF的协同效应,rGO良好的导电性与电荷转移效率为复合材料带来了更好的电致变色性能与稳定性。研究内容如下:
(1)对TABP-COF的反应条件进行研究,确定了邻二氯苯与乙醇的混合溶剂体系与90℃的反应温度。采用匀速滴加法分别合成了不同反应时间下的TABP-COF,SEM观察展示了TABP-COF纳米棒自组装成球形的生长过程,通过FTIR、Raman、XRD和热重测试表明,当反应时间为72 h时,TABP-COF的反应更加彻底,热稳定性更好;CV、EIS、UV-vis和动力学测试表明TABP-COF具有由黄色向深棕色变换的可逆电致变色过程,其中TABP-COF-3具有更高的对比度(0.45)以及更短的着褪色时间(7.3 s/13.6 s)。
(2)分别采用匀速滴加法和封管法制备了TABD-COF与TATP-COF薄膜,TABD-COF表现出橙色向深棕色的可逆转变、TATP-COF表现出黄色向深棕色的可逆转变。两者均为球形形貌且具有良好的热稳定性,两种薄膜的对比度分别为0.32与0.34。TABD-COF的着褪色时间为7.1 s/12.4 s;TATP-COF的着褪色时间为13.7 s/11.7 s。
(3)采用一锅法将rGO与TABP-COF复合,制备TABP-COF/rGO薄膜,该薄膜可在黄色与深棕色之间可逆转换。通过SEM观察到在石墨烯片层上发生原位聚合得到球形COF材料,FTIR、Raman、XRD均证明了TABP-COF与rGO的成功复合,热稳定性相较于TABP-COF稍有减弱;通过CV与EIS测试说明复合薄膜的电化学性能明显增强;通过UV-vis、动力学测试和稳定性测试看出复合薄膜具有更大的对比度0.56以及更短的着褪色时间为5.2 s/8.2 s。在循环5000 s后仍具有80.1%的初始对比度,相较于TABP-COF明显增强。

 

论文外文摘要:

Electrochromism refers to the reversible color conversion of electroactive materials under alternating voltage. Electrochromic materials are usually used in smart windows and military fields because of their excellent modulation ability of UV-vis and near-infrared light. Organic electrochromic materials have been widely studied because of their high contrast, strong light modulation ability in near-infrared band and multi-color conversion. Covalent organic frameworks (COFs) are a kind of new functional materials with porous, light weight and strong structural unit selectivity, which are formed by light elements such as carbon, hydrogen, oxygen, nitrogen and boron through covalent bonds. Two-dimensional COFs are mostly used in the energy storage field. As a kind of electroactive material, COFs can be applied in electrochromic field. 
In this paper, we chose tris (4-aminophenyl) amine (TAPA) as the triamine structural unit, p-benzaldehyde (BDA), 4,4-benzaldehyde (BPDA) and 1,4-bis (4-aldehyde phenyl) benzene (TPDA) as the dialdehyde structural unit, and successfully synthesized three kinds of pure COF films which were TABD-COF, TABP-COF and TATP-COF on the ITO glass substrate by solvothermal synthesis method. TAPA was used as a structural unit of COFs can provide electrochromic properties to COFs due to the reversible redox properties of TAPA. We chose dialdehyde units with different lengths as the dialdehyde monomers, in order to explore the color change of COF films with different structural unit sizes. Moreover, in order to make up for the poor conductivity of COF materials, we selected the reduced graphene oxide as the composite unit, prepared TABP-COF/rGO composite films by one pot method, and explored the synergistic effect of GO and COF. The good conductivity and charge transfer efficiency of rGO could bring better electrochromic properties and stability to the composites. Details as follows:
(1) The mixed solvent system of o-dichlorobenzene and ethanol and the reaction temperature of 90℃ were determined by preliminary experiment. TABP-COFs with different reaction time were synthesized by uniform drop addition method. SEM test showed that growth process of TABP-COF was nanorod array self-assembly into sphere. FTIR, Raman, XRD and TGA test showed that the reaction of TABP-COF was more complete and better thermal stability when the reaction time was 72 h; CV, EIS, UV-vis and kinetic tests show that TABP-COF has a reversible electrochromic process from yellow to dark brown, and TABP-COF-3 has a greater contrast of 0.45 and a shorter responsing time of 7.3 s/13.6 s.
(2) TABD-COF and TATP-COF films were prepared by uniform drop addition method and circulating freezing method respectively. TABD-COF showed a reversible transition from orange to dark brown and TATP-COF showed a reversible transition from yellow to dark brown. They all showed spherical morphology and good thermal stability, and the contrast of the two films were 0.32 and 0.34, respectively. The responsing time of TABD-COF and TATP-COF are 7.1 s/12.4 s adn 13.7 s/11.7 s. 
(3) rGO and TABP-COF were compounded by one pot method to preparing TABP-COF/rGO composite film, which showed reversible conversion between yellow and dark brown. It was observed by SEM that the monomer was polymerized in-situ on rGO sheet to obtaining spherical COF material. FTIR, Raman and XRD all proved the successful composite of TABP-COF and rGO, and thermal stability of TABP-COF/rGO was little weaker than TABP-COF; CV and EIS tests showed that the electrochemical properties of the composite films were significantly enhanced. UV-vis, kinetic test and stability test show that the composite film has higher contrast of 0.56 and faster responsing time of 5.2 s / 8.2 s. After 5000 s of cycling, it still has an initial contrast of 80.1%, which is significantly enhanced compared with TABP-COF.

 

参考文献:

[1] 李雪. 碳量子点复合材料的制备及其电致变色性能研究 [D]; 西安科技大学, 2020.

[2] Wang P , Liu Z , Zhang L . Sustainability of compact cities: A review of Inter-Building Effect on building energy and solar energy use [J]. Sustainable Cities and Society, 2021, 72:103035.

[3] Jarosz T , Gebka K , Stolarczyk A , et al. Transparent to Black Electrochromism—The "Holy Grail" of Organic Optoelectronics [J]. Polymers, 2019, 11(2), 273.

[4] Wang Z , Wang X , Cong S , et al. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development [J]. Materials Science & Engineering, 2020, 140(Apr.):100524.1-26.

[5] Shao J Y , Yao C J , Cui B B , et al. Electropolymerized films of redox-active ruthenium complexes for multistate near-infrared electrochromism,ion sensing,and information storage [J]. Chinese Chemical Letters, 2016:S1001841716301395.

[6] Furukawa H , Yaghi O M . Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications [J]. Journal of the American Chemical Society, 2009, 131(25):8875-8883.

[7] Cui B , Fu G . Process of metal–organic framework (MOF)/covalent–organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage [J]. Nanoscale, 2022, 14, 1679-1699.

[8] Feng J F , Liu T F , Cao R . An Electrochromic Hydrogen-Bonded Organic Framework Film[J]. Angewandte Chemie International Edition, 2020, 59(50):22392-22396.

[9] Li Y , Karimi M , Gong Y N , et al. Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications [J]. Matter, 2021, 4(7):2230-2265.

[10] Platt J R . Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field [J]. The Journal of Chemical Physics, 1961, 34(3):862-863.

[11] Granqvist C G . Handbook of Inorganic Electrochromic Materials [M]. Elsevier, 1995.

[12] Granqvist C G . Electrochromics for smart windows: Oxide-based thin films and devices [J]. Thin Solid Films, 2014, 564(aug.1):1-38.

[13] Deb, S. K. A Novel Electrophotographic System [J]. Applied Optics, 1969, 8(S1): 192.

[14] Wei W , Wang M , Ma J , et al. Electrochromic Metal Oxides: Recent Progress and Prospect[J]. Advanced Electronic Materials, 2018, 4(8):1800185.

[15] Schoot C J, Ponjee J J. Image display apparatus [J]. CA, 1974, US3806229A.

[16] Kim J , M Rémond, Kim D , et al. Electrochromic Conjugated Polymers for Multifunctional Smart Windows with Integrative Functionalities[J]. Advanced Materials Technologies, 2020, 5(6):1900890.

[17] Granqvist C G . electrochromic tungsten oxide lms: review of progress 19931998.

[18] 付子怡, 韦友秀, 刘伟明, et al. 阳极电致变色材料的研究进展 [J]. 航空材料学报, 2019, 39(6): 17.

[19] Wang Y , Xiong S , Wang X , et al. Water‐dispersible polyaniline‐carbon nanotubes composites with interface covalent bond and their enhanced electrochemical and electrochromic properties[J]. Polymer Engineering & Science, 2020, 60(9):2204-2213.

[20] Wang Y , Xiong S , Wang X , et al. Covalently bonded polyaniline-reduced graphene oxide/single-walled carbon nanotubes nanocomposites: influence of various dimensional carbon nanostructures on the electrochromic behavior of PANI [J]. Polymer Journal, 2020, 52(7):783-792.

[21] Xiong S , Zhang J , Wu B , et al. Electrochemical Preparation of Covalently Bonded PEDOT Graphene Oxide Composite Electrochromic Materials Using Thiopheneethylanine as Bridging Group[J]. ChemistrySelect, 2020, 5(39):12206-12212.

[22] Runnerstrom E L , Llordes A , Lounis S D , et al. Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals[J]. Chemical Communications, 2015, 45(40):10555-10572.

[23] Balamurugan G , Park J S . Metallo-terpyridine modified asymmetric viologen exhibiting remarkable optical memory effect in single-layered electrochromic devices[J]. Electrochimica Acta, 2021, 382:138308.

[24] Xiong S , Yin S , Wang Y , et al. Organic/inorganic electrochromic nanocomposites with various interfacial interactions: A review [J]. Materials Science and Engineering: B, 2017, 221:41-53.

[25] Xiong S , Wang R , Li S , et al. Electrochromic Behaviors of Water-Soluble Polyaniline with Covalently Bonded Acetyl Ferrocene [J]. Journal of Electronic Materials, 2018, 47(7):3974-3982.

[26] Zhang W , Li H , Elezzabi A Y . Electrochromic Displays Having Two-Dimensional CIE Color Space Tunability [J]. Advanced Functional Materials, 2022, 32(7):2108341.

[27] Ma D , Wang J . Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures [J]. Science China Chemistry, 2017, 61(1):54-62.

[28] K Madasamy, D Velayutham, S Vembu, et al. Viologen based Electrochromic Materials and Devices [J]. Journal of Materials Chemistry C, 2019, 7(16):4622-4637.

[29] B Gélinas, Das D , Rochefor D . Air-Stable, Self-Bleaching Electrochromic Device Based on Viologen- and Ferrocene-Containing Triflimide Redox Ionic Liquids[J]. ACS Applied Materials & Interfaces, 2017, 9(34):28726-28736.

[30] Kim Y , Park C , Im S , et al. Design of intrinsically stretchable and highly conductive polymers for fully stretchable electrochromic devices [J]. Scientific Reports, 2020, 10(1):16488.

[31] Brooke R , Edberg J , Iandolo D , et al. Controlling the electrochromic properties of conductive polymers using UV-light [J]. Journal of Materials Chemistry C, 2018, 6(17):4663-4670.

[32] Guofa, Cai, Peter, et al. Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors [J]. Advanced Energy Materials, 2016, 6(4):1501882.

[33] 王元成. 三苯胺基共价有机框架(COFs)薄膜的制备及电致变色性能的研究 [D]; 西安科技大学, 2020.

[34] Cai K , Zuo S , Luo S P , et al. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings [J]. RSC Advances, 2016, 6(98):95965-95972.

[35] Enhancing the Electrochromic Properties of Polyaniline through Incorporating Terpyridine Units and Coordination Bonding with Transition Metal Ions [J]. ChemistrySelect, 2019, 4(48):14343-14350.

[36] 蔡国发. 金属氧化物基电致变色薄膜的制备及性能改善 [D]; 浙江大学, 2014.

[37] Cai G , Wang X , Cui M , et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles [J]. Nano Energy, 2015, 12:258-267.

[38] Cai G F , Tu J P , D Zhou, et al. Dual electrochromic film based on WO3/polyaniline core/shell nanowire array [J]. Solar Energy Materials & Solar Cells, 2014, 122:51-58.

[39] G. A , Niklasson, C. G , et al. Electrochromism in sputter-deposited W-Ti oxide films: Durability enhancement due to Ti [J]. Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion, 2014, 125:184-189.

[40] Cai G , Wang J , Lee P S . Next-Generation Multifunctional Electrochromic Devices [J]. Accounts of Chemical Research, 2016,49(8):1469-1476.

[41] Dou, Shuliang, Tian, et al. A comprehensive study of electrochromic device with variable infrared emissivity based on polyaniline conducting polymer [J]. Solar Energy Materials & Solar Cells An International Journal Devoted to Photovoltaic Photothermal & Photochemical Solar Energy Conversion, 2017, 170: 120-126.

[42] Javier, Padilla, Anna, et al. Process controlled performance for soluble electrochromic polymers [J]. Solar Energy Materials & Solar Cells, 2015, 140: 54-60.

[43] Xiong, Shanxin, Wang, et al. Enhancing the electrochromic performances of polyaniline film through incorporating polyaniline nanofibers synthesized by interfacial polymerization approach [J]. Polymer Bulletin, 2018, 75(8):3427-3443.

[44] Choi D S , Han S H , Kim H , et al. Electrochromic characterization of amorphous tungsten oxide films deposited on indium tin oxide and CVD-graphene electrodes by RF magnetron sputtering [J]. Journal of Ceramic Processing Research, 2014, 15(4):273-276.

[45] Vargas Garcia J R , Lazcano Ugalde E M , Hernandez Santiago F , et al. Nanostructured nickel oxide films prepared by chemical vapor deposition and their electrochromic properties [J]. Journal of Nanoscience & Nanotechnology, 2008, 8(5):2703-2706.

[46] Peihua, Yang, Peng, et al. Electrochromic energy storage devices [J]. Materials Today, 2016, 19(7):394-402.

[47] Li W , Zhang X , Chen X , et al. Preparation and performance of fast-response ITO/Li-NiO/Li-WO_3/ITO all-solid-state electrochromic devices by evaporation method [J]. Materials Letters, 2020, 265(Apr.15):127464.1-127464.3.

[48] Chung-Wen, Kuo, Bor-Kuan, et al. Effects of Supporting Electrolytes on Spectroelectrochemical and Electrochromic Properties of Polyaniline-poly(styrene sulfonic acid) and Poly(ethylenedioxythiophene)-poly(styrene sulfonic acid)-based Electrochromic Device [J]. Journal of the Chinese Chemical Society, 2014, 61(5):563-570.

[49] Ju H K , Lee H , Choi J , et al. Microporous organic polymer-induced gel electrolytes for enhanced operation stability of electrochromic devices [J]. Polymer Chemistry, 2019, 10(4):455-459.

[50] Puguan J , Kim H . A switchable single-molecule electrochromic device derived from a viologen-tethered triazolium-based poly(ionic liquid)[J]. Journal of Materials Chemistry A, 2019, 7(38):21668-21673.

[51] Yang B , Yang G , Zhang Y M , et al. Recent advances in poly(ionic liquid)s for electrochromic devices [J]. Journal of Materials Chemistry C, 2021, 9(14):4739-4741.

[52] Vijay, Kumar, Thakur, et al. Hybrid materials and polymer electrolytes for electrochromic device applications [J]. Advanced Materials, 2012, 24(30):4070-4070.

[53] Shchegolkov A V , Jang S H , Shchegolkov A V , et al. A Brief Overview of Electrochromic Materials and Related Devices: A Nanostructured Materials Perspective [J]. Nanomaterials, 2021, 11(9):2376.

[54] Andersson A M , Granqvist C G , Stevens J R . Electrochromic Li(x)WO(3)/poymer laminate/Li(y)V(2)O(5) device: toward an all-solid-state smart window [J]. Appl Opt, 1989, 28(16):3295-3302.

[55] Chandrasekhar P . Basics of Conducting Polymers (CPs) [J]. Springer US, 1999, DOI: 10.1007/978-1-4615-5245-1_1.

[56] Chandrasekhar P , Zay B J , Birur G C , et al. Large, Switchable Electrochromism in the Visible Through Far-Infrared in Conducting Polymer Devices [J]. Advanced Functional Materials, 2002, 12(2):95–103.

[57] Chandrasekhar P, Birur G C, Stevens P, et al. Far infrared electrochromism in unique conducting polymer systems [J]. Synthetic Metals, 2001, 119(1-3): 293-294.

[58] S. C J, Meskers, J. K J, et al. Thermally Induced Transient Absorption of Light by Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonic acid) (PEDOT:PSS) Films: A Way to Probe Charge-Carrier Thermalization Processes [J]. Adv Funct Mater, 2003, 13(10): 805-810.

[59] 张树海, 苟瑞君. 隐身技术的研究进展 [J]. 华北工学院学报, 2002.

[60] 唐高山. 防眩光玻璃的制备及性能表征 [J]. 科技创新导报, 2019, 16(8): 2.

[61] Kang H , Park H , Park Y , et al. Fully roll-to-roll gravure printable wireless (13.56 MHz) sensor-signage tags for smart packaging.[J]. Scientific Reports, 2014, 4:5387.

[62] Yen H J , Liou G S . Recent advances in triphenylamine-based electrochromic derivatives and polymers[J]. Polymer Chemistry, 2018, 9(22):3001-3018.

[63] Hjy A , Gslb C . Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications [J]. Progress in Polymer Science, 2019, 89:250-287.

[64] Rybakiewicz, Renata, Zagorska, et al. Triphenylamine-based electroactive compounds: synthesis, properties and application to organic electronics [J]. Chemicke Zvesti, 2017, 71(2): 243-268.

[65] Fan Y , Chen C , Liou G . Facile Fabrication of Triphenylamine‐Based Redox‐Active Nanocomposites by a Sol‐Gel Method: Enhanced Electrochromic Response Capability and Stability Performance[J]. Macromolecular Rapid Communications, 2019, 40(13):1900118.

[66] Rongzong, Zheng, et al. A bifunctional triphenylamine-based electrochromic polymer with excellent self-healing performance [J]. Electrochimica Acta, 2018, 286:296-303.

[67] Huang D C , Wu J T , Fan Y Z , et al. Preparation and optoelectronic behaviours of novel electrochromic devices based on triphenylamine-containing ambipolar materials [J]. Journal of Materials Chemistry C, 2017, 5(36):9370-9375.

[68] Cai S , Wen H , Wang S , et al. Electrochromic polymers electrochemically polymerized from 2, 5–dithienylpyrrole (DTP) with different triarylamine units: Synthesis, characterization and optoelectrochemical properties [J]. Electrochimica Acta, 2017, 228:332-342.

[69] Porous, Crystalline, Covalent Organic Frameworks [J]. Science, 2005, 310(5751):1166-1170.

[70] Guo Z C , Shi Z Q , Wang X Y , et al. Proton conductive covalent organic frameworks [J]. Coordination Chemistry Reviews, 2020, 422:213465.

[71] Yang C X , Liu C , Cao Y M , et al. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation [J]. Chemical communications, 2015, 51(61):12254-12257.

[72] Thomas S, Li H, Zhong C, et al. Electronic Structure of Two-Dimensional €-Conjugated Covalent Organic Frameworks [J]. Chemistry of Materials, 2019, 31(9):3051-3065.

[73] HuiminDing, ArindamMal, ChengWang. Tailored covalent organic frameworks by post-synthetic modification [J]. Materials Chemistry Frontiers, 2020, 4(1):113-127.

[74] He M , Liang Q , Tang L , et al. Advances of covalent organic frameworks based on magnetism: Classification, synthesis, properties, applications [J]. Coordination Chemistry Reviews, 2021, 449:214219.

[75] Guo L , Yang L , Li M , et al. Covalent organic frameworks for fluorescent sensing: Recent developments and future challenges [J]. Coordination Chemistry Reviews, 2021, 440:213957.

[76] Souto M , Perepichka D . Electrically conductive Covalent Organic Frameworks: Bridging the Fields of Organic Metals and 2D Materials [J]. Journal of Materials Chemistry C, 2021, 9(33):10668-10676.

[77] Danyon, M, Fischbach, et al. Controlling the crystalline structure of imine-linked 3D covalent organic frameworks.[J]. Chemical communications (Cambridge, England), 2019, 55(25):3594-3597.

[78] Feng L , Qian C , Y Zhao. Recent Advances in Covalent Organic Framework-Based Nanosystems for Bioimaging and Therapeutic Applications [J]. ACS Materials Letters, 2020, 2(9):1074-1092.

[79] Hu K , Lv Y , Ye F , et al. Boric Acid-Functionalized Covalent-Organic Framework for Specific Enrichment and Direct Detection of Cis-Diol-Containing Compounds by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry[J]. Analytical Chemistry, 2019, 91(9):6353-6362.

[80] Sharath, Kandambeth, Arijit, et al. Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route [J]. Journal of the American Chemical Society, 2012, 134(48):19524-19527.

[81] José L. Segura, María J. Mancheo, Félix Zamora. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications[J]. Chemical Society Reviews, 2016, 45(20):5635-5671.

[82] El-Mahdy A , Hung Y H , Mansoure T H , et al. Synthesis of [3 + 3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103:199-208.

[83] Fang Q , Wang J , Gu S , et al. 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery[J]. Journal of the American Chemical Society, 2015, 137(26):8352-8355.

[84] Fang Q , Zhuang Z , Gu S , et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nature Communications, 2014, 5:4503.

[85] PIERRE, KUHN, MARKUS, et al. Porous, Covalent Triazine‐Based Frameworks Prepared by Ionothermal Synthesis [J]. Angewandte Chemie International Edition, 2007, 47(18):3450-3453.

[86] Liu M, Jiang K, Ding X, et al. Controlling Monomer Feeding Rate to Achieve Highly Crystalline Covalent Triazine Frameworks [J]. Advanced Materials, 2019, 31(19):1807865.1-7.

[87] Liu M, Huang Q, Wang S, et al. Crystalline Covalent Triazine Frameworks by In Situ Oxidation of Alcohols to Aldehyde Monomers [J]. Angewandte Chemie International Edition, 2018, 57(37): 11968-11972.

[88] Guan X, Ma Y, Hui L, et al. Fast, Ambient Temperature and Pressure Ionothermal Synthesis of Three-Dimensional Covalent Organic Frameworks [J]. Journal of the American Chemical Society, 2018, 140(13):4494-4498.

[89] Zhi, Y., Shao, et al. Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO2 under mild conditions [J]. Journal of Materials Chemisrty A, 2018, 6(2):374-382.

[90] Shinde D, Aiyappa H B, Bhadra M, et al. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte [J]. Journal of Materials Chemisrty A, 2016, 4(7):2682-2690.

[91] Wang J, Li N, Xu Y, et al. Frontispiece: Two-Dimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry [J]. Chemistry-A European Journal, 2020, 26(29):6402-6422.

[92] A, Wang Zhang, et al. Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives [J]. Journal of Hazardous Materials, 2012, s 221–222(4): 147-154.

[93] Ren S, Bojdys M J, Dawson R, et al. Porous, Fluorescent, Covalent Triazine-Based Frameworks Via Room-Temperature and Microwave-Assisted Synthesis [J]. Advanced Materials, 2012, 24(17):2357-2361.

[94] Han W, Chai S, Hu N, et al. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity [J]. Chemical Communications, 2015, 51(61):12178-12181.

[95] Biswal B P, Chandra S, Kandambeth S, et al. Mechanochemical Synthesis of Chemically Stable Isoreticular Covalent Organic Frameworks [J]. Journal of the American Chemical Society, 2013, 135(14): 5328-5331.

[96] He B, Liu Q, Wang T, et al. Pd-loaded "Two-in-one" Covalent Organic Framework Composite Material: Synthesis, Characterization and Detection of Bisphenol A [J]. Chemistry Letters, 2021, 50(9): 1703-1706.

[97] Wan S, Guo J, Kim J, et al. A belt-shaped, blue luminescent, and semiconducting covalent organic framework [J]. Angewandte Chemical International Ed English, 2008, 47(46): 8826-8830.

[98] Sharath, Kandambeth, Digambar, et al. Enhancement of Chemical Stability and Crystallinity in Porphyrin-Containing Covalent Organic Frameworks by Intramolecular Hydrogen Bonds [J]. Angewandte Chemie, 2013, 52(49):13052-13056.

[99] Guo L, Jin S. Stable Covalent Organic Frameworks for Photochemical Applications [J]. ChemPhotoChem, 2019, 3(10):973-983.

[100] Deeg K S , Borges D D , Ongari D , et al. In Silico Discovery of Covalent Organic Frameworks for Carbon Capture[J]. ACS Applied Materials & Interfaces, 2020, 12(19):21559-21568.

[101] Krishnaraj C, Jena H S, Lecoeuvre F, et al. Rigid Nanoporous Urea-Based Covalent Triazine Frameworks for C2/C1 and CO2/CH4 Gas Separation [J]. Molecules, 2021, 26(12):3670.

[102] Sizhuo, Yang, Wenhui, et al. 2D Covalent Organic Frameworks as Intrinsic Photocatalysts for Visible Light-Driven CO2 Reduction [J]. Journal of the American Chemical Society, 2018,140(44):14614-14618.

[103] Liu S, Yao L, Lu Y, et al. All-organic covalent organic framework/polyaniline composites as stable electrode for high-performance supercapacitors [J]. Material Letters, 2018, 236:354-357.

[104] Yu F, Liu W, Ke S W, et al. Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch [J]. Nature Communications, 2020, 11(1):5534.

[105] Sattar T. Current Review on Synthesis, Composites and Multifunctional Properties of Graphene [J]. Topics in Current Chemistry, 2019, 377(2):10.

[106] Weinaberg M, Staarmann C, Olschiager C, et al. Breaking inversion symmetry in a state-dependent honeycomb lattice: Artificial graphene with tunable band gap [J]. 2D Materials, 2016, 3(2):024005.

[107] Qiu L, Huang B, He Z, et al. Extremely Low Density and Super-Compressible Graphene Cellular Materials [J]. Advanced Materials, 2017, 29(36): 1701553.

[108] Schniepp H C, Li J L, Mcallister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide [J]. Journal of Physical Chemistry B, 2006, 110(17): 8535-8539.

[109] Plutnar, Jan, Pumera, et al. The chemistry of CVD graphene [J]. Journal of Materials Chemistry C Materials for Optical & Electronic Devices, 2018, 6(23):6082-6101.

[110] Jr W, Offeman R E. Preparation of Graphitic Oxide [J]. Journal of the American Chemical Society, 1958, 80(6).

[111] Wang P, Wu Q, Han L, et al. Synthesis of conjugated covalent organic frameworks/graphene composite for supercapacitor electrodes [J]. RSC Advances, 2015, 5(35): 27290-27294.

[112] Fl A, Sx A, Jz A, et al. Enhanced electrochromic properties of 2,6-diaminoanthraquinone and 1,3,5-triformylresorcinol (DAAQ-TFP) covalent organic framework/functionalized graphene oxide composites containing anthraquinone active unit [J]. Electrochimica Acta, 2021, 398: 139301.

[113] Popov Y V, Korchagina T K, Chichierina G V, et al. Synthesis and Properties of Carbocyclic Schiff Bases [J]. Russian Journal of Organic Chemistry, 2002, 38(3): 350-354.

[114] Chen H, Yuan X, Wang H, et al. Nanostructured covalent organic frameworks with elevated crystallization for (electro)photocatalysis and energy storage devices [J]. Journal of Materials Science, 2021, 56(25):13875-13924.

[115] Mulzer C R, Shen L, Bisbey R P, et al. Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework [J]. Acs Central Science, 2016, 2(9):667-673.

[116] Liu X, Wang Y, Liu Y, et al. A Covalent Organic Framework with High Surface Area for Drug Delivery [J]. Chemical Journal of Chinese Universities, 2019, 40(9):1813-1817.

[117] Xiong S, Wang Y, Wang X, et al. Schiff base type conjugated organic framework nanofibers: Solvothermal synthesis and electrochromic properties [J]. Solar Energy Materials and Solar Cells, 2020, 209:110438.

[118] He X, Jiang Z, Akakuru O U, et al. Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy [J]. Chemical Communications, 2021, 57(93):12417-12435.

[119] El-Mahdy A F M, Mohamed M G, Mansoure T H, et al. Ultrastable tetraphenyl-p-phenylenediaminebased covalent organic frameworks as platforms for high-performance electrochemical supercapacitors [J]. Chemical Communications, 2019, 55(99): 14890-14893.

[120] Zhang X, Wang Z, Yao L, et al. Synthesis of core-shell covalent organic frameworks/multi-walled carbon nanotubes nanocomposite and application in lithium-sulfur batteries [J]. Material Letters, 2018, 213: 143-147.

[121] Li C, Yang J, Pachfule P, et al. Ultralight covalent organic framework/graphene aerogels with hierarchical porosity [J]. Nature Communications, 2020, 11(1): 471

中图分类号:

 TB34    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式