- 无标题文档
查看论文信息

论文中文题名:

 寒区隧道喷射混凝土-围岩界面增粘抗冻性能优化试验研究    

姓名:

 吕游    

学号:

 20209071010    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 寒区岩石界面力学    

第一导师姓名:

 申艳军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Experimental study on high adhesion and frost resistance optimization of sprayed concrete interface in cold zone tunnels    

论文中文关键词:

 增粘抗冻界面剂 ; 界面过渡区 ; 冻融循环 ; 力学性能 ; 微观结构    

论文外文关键词:

 High adhesion and frost resistance interface agent ; Interface transition zone ; Freeze-thaw cycle ; Mechanical properties ; Microstructure    

论文中文摘要:

对于高寒区隧道而言,反复冻融作用下的“天然薄弱带”+“冻胀启裂”问题将叠加劣化喷射混凝土-围岩支护体系结构,造成极为严重的工程问题。基于此,本文以喷射混凝土-围岩增粘抗冻界面剂为研究对象,通过对国内外喷射混凝土-围岩界面过渡区(ITZ)优化技术的研究成果归纳凝练,开展界面剂的筛选及试配工作,利用宏观力学、二值化、三维形貌扫描、混凝土抗渗试验等技术,观察冻融循环作用下界面剂对二元体界面力学、断口形貌特征、耐久性的影响,运用纳米压痕技术探究界面剂作用下ITZ空间分布的特点,并结合体视显微镜、扫描电镜(SEM)、核磁共振(NMR)、X射线衍射(XRD)等试验手段,剖析界面剂对ITZ微观结构特征的影响,进而开展界面剂增粘、抗冻行为机理初探。研究成果将较大改善高寒区隧道喷射混凝土-围岩支护体系的服役周期,为后期二元体增粘、抗冻优化研究提供新思路。具体研究成果如下:

(1)经大量试验比对,优选出界面剂最佳配合比设计为:水泥(10)+水(4)+丙烯酸钙(1.5%)+竹材液化粘结剂(4%)+丙烯酸酯复膜胶(8%)+ICA(2%),该界面剂具备良好的增粘、抗冻功能,在常温条件下,界面剂预处理试样剪切峰值相较普通二元体提升1.56MPa;在冻融循环作用下,其剪切峰值相较普通二元体最高可提升了1.64MPa,且随冻融循环加剧,界面剂预处理试样的宏观力学劣化率越低。这表明界面剂在常温下发挥增粘功能的同时,在冻融循环作用下同样具备良好的抗冻优势,同时其亦具备良好的抗渗性能,可有效提升喷射混凝土体系的耐久性。

(2)喷射混凝土-砂岩试样断裂后,混凝土断面一侧粘附不等量砂岩,且断口形貌特征呈现一定的规律。随着冻融循环作用的加剧,二元体断口砂岩粘附面积相应增多,断口形貌愈发起伏,具体而言,温度区间为-20℃~20℃时,冻融循环20次的界面剂预处理试样砂岩粘附量相较无界面剂试样增加8.27%,分形维数增加了0.0056。这是由于在冻融初期砂岩损伤较小,导致外力作用下沿着界面部位脱粘,所产生的断口更加平滑;当经历了一定冻融循环作用后,由于砂岩劣化程度相较ITZ更高,因此砂岩侧孔隙贯通程度更为严重,导致更多裂隙在外力作用下向着砂岩端偏转,造成砂岩大面积剥离,断口愈发起伏不平。因此,界面剂的使用可有效控制冻融劣化效应,在相同冻融循环作用下表现出砂岩粘附面积及起伏程度更大的特点。

(3)ITZ的裂隙扩展可直接影响界面力学,造成ITZ强度薄弱的特征。反复冻融作用促进ITZ裂隙发育,且随着冻融的加剧,ITZ裂隙率增幅也将越大。在相同冻融循环作用下,界面剂预处理试样相较于无界面剂试样ITZ的裂隙率更小,且随着冻融温度降低及冻融次数越大,裂隙率的涨幅也相应减少,具体而言,温度区间为-20℃~20℃时,不同冻融循环次数(N=0、N=5、N=10、N=20、N=30)下界面剂预处理试样裂隙率相较无界面剂试样依次降低0.043%、0.547%、1.274%、2.192%、3.29%。界面剂的使用可增大冻胀力作用下孔隙贯通的阈值,进而有效改善裂隙扩展现象,降低同等冻融条件下裂隙扩展的规模。

(4)反复冻融作用对ITZ的微观结构及力学性能有显著劣化影响,主要结论包括:①ITZ中孔隙内部的蓄水在冻融作用下相变产生冻胀力,促进了孔隙的扩展,在此过程中萌生了更多的有害孔;②冻融循环导致ITZ强度损伤程度加剧,该区段的弹性模量与硬度值逐渐减小,且变化规律具有高度一致性;③冻融循环加剧将导致ITZ拓宽程度愈发显著。而界面剂的使用能够有效优化ITZ的孔隙结构,降低冻融循环对ITZ微观力学及空间分布的影响,有效减弱冻融循环对ITZ的劣化损伤。

(5)在ITZ空间内,越靠近砂岩端的区域水化产物结构越差,而界面剂的使用可有效改善该问题,其作用机理如下:①ICA极大的削弱了氢氧化钙(CH)取向对于ITZ微观力学的负面影响;②HTNS颗粒在砂岩表面可形成致密的硅羟基层,强化ITZ的孔栓封堵,增加物理咬合作用;③丙烯酸钙可在砂岩表面构造网络结构,并与水泥形成有效搭接;④竹材液化胶粘剂与丙烯酸酯复膜胶可在ITZ形成硅凝胶簇层,降低冻融循环对界面粘结强度的劣化效应。

论文外文摘要:

For tunnels in alpine regions, the problem of ' natural weak zone ' + ' frost heave cracking ' under repeated freeze-thaw action will superimpose and deteriorate the shotcrete-surrounding rock support system structure, causing extremely serious engineering problems. Based on this, this paper takes the shotcrete-surrounding rock tackifying and frost-resistant interfacial agent as the research object. By summarizing the research results of the optimization technology of shotcrete-surrounding rock interface transition zone ( ITZ ) at home and abroad, the screening and trial matching of interfacial agents are carried out. The effects of interfacial agents on the interfacial mechanics, fracture morphology and durability of binary bodies under freeze-thaw cycles are observed by means of macroscopic mechanics, binarization, three-dimensional morphology scanning, concrete impermeability test and other techniques. The characteristics of ITZ spatial distribution under the action of interfacial agents are explored by nanoindentation technology. Combined with stereomicroscope, scanning electron microscope ( SEM ), nuclear magnetic resonance ( NMR ), X-ray diffraction ( XRD ) and other test methods, the influence of interfacial agent on the microstructure characteristics of ITZ was analyzed, and the mechanism of interfacial agent thickening and frost resistance was preliminarily explored. The research results will greatly improve the service cycle of the shotcrete-surrounding rock support system of the tunnel in the alpine region, and provide new ideas for the later research on the viscosity and frost resistance optimization of the binary body. The specific research results are as follows :

(1) Through a large number of experimental comparisons, the optimal mix ratio of the interface agent was selected as : cement ( 10 ) + water ( 4 ) + calcium acrylate ( 1.5 % ) + bamboo liquefaction binder ( 4 % ) + acrylate laminating adhesive ( 8 % ) + ICA ( 2 % ). The interface agent has good adhesion and frost resistance. Under normal temperature conditions, the shear peak of the interface agent pretreated sample is 1.56 MPa higher than that of the ordinary binary. Under the action of freeze-thaw cycles, the shear peak can be increased by up to 1.64 MPa compared with the ordinary binary, and with the aggravation of freeze-thaw cycles, the macroscopic mechanical degradation rate of the interface agent pretreated sample is lower. This shows that the interfacial agent plays a role in increasing viscosity at room temperature, and also has good frost resistance under freeze-thaw cycles. At the same time, it also has good impermeability, which can effectively improve the durability of shotcrete system.

(2) After the fracture of the shotcrete-sandstone specimen, unequal amount of sandstone is adhered to one side of the concrete section, and the fracture morphology characteristics show certain rules. With the increase of freeze-thaw cycles, the adhesion area of sandstone in the binary fracture increases correspondingly, and the fracture morphology becomes more and more undulating. Specifically, when the temperature range is-20 °C ~ 20 °C, the amount of sandstone adhesion of the interface agent pretreated sample after 20 freeze-thaw cycles is 8.27 % higher than that of the non-interface agent sample, and the fractal dimension increases by 0.0056. This is due to the small damage of sandstone in the early stage of freeze-thaw, resulting in debonding along the interface under the action of external force, and the resulting fracture is smoother. After a certain freeze-thaw cycle, due to the higher degree of deterioration of sandstone than ITZ, the degree of pore penetration on the side of sandstone is more serious, resulting in more cracks deflecting towards the end of sandstone under the action of external force, resulting in large-scale stripping of sandstone and increasingly uneven fracture. Therefore, the use of interfacial agent can effectively control the freeze-thaw deterioration effect, and the sandstone adhesion area and fluctuation degree are larger under the same freeze-thaw cycle.

(3) The crack propagation of ITZ can directly affect the interface mechanics, resulting in the weak strength of ITZ. Repeated freeze-thaw action promotes the development of ITZ cracks, and with the aggravation of freeze-thaw, the increase of ITZ crack rate will be greater. Under the same freeze-thaw cycle, the crack rate of the ITZ of the interface agent pretreated sample is smaller than that of the ITZ without the interface agent, and the increase of the crack rate decreases with the decrease of the freeze-thaw temperature and the increase of the number of freeze-thaw cycles. Specifically, when the temperature range is-20 °C ~ 20 °C, the crack rate of the interface agent pretreated sample under different freeze-thaw cycles ( N = 0, N = 5, N = 10, N = 20, N = 30 ) is 0.043 %, 0.547 %, 1.274 %, 2.192 %, 3.29 % lower than that of the ITZ without the interface agent. The use of interfacial agent can increase the threshold of pore coalescence under frost heaving force, thus effectively improving the phenomenon of crack propagation and reducing the scale of crack propagation under the same freeze-thaw conditions.

(4) Repeated freeze-thaw action has a significant deterioration effect on the microstructure and mechanical properties of ITZ. The main conclusions include: ① The water storage inside the pores in ITZ produces frost heaving force under the freeze-thaw action, which promotes the expansion of the pores. In the process, more harmful pores are generated; ② Freeze-thaw cycles aggravate the strength damage of ITZ, and the elastic modulus and hardness of ITZ decrease gradually, and the variation law is highly consistent; ③ The aggravation of freeze-thaw cycle will lead to the widening of ITZ. The use of interfacial agent can effectively optimize the pore structure of ITZ, reduce the influence of freeze-thaw cycle on the micromechanics and spatial distribution of ITZ, and effectively reduce the deterioration damage of freeze-thaw cycle to ITZ.

(5) In the ITZ space, the structure of hydration products in the region closer to the sandstone end is worse, and the use of interfacial agents can effectively improve this problem. The mechanism is as follows : ① ICA greatly weakens the negative effect of calcium hydroxide ( CH ) orientation on ITZ micromechanics; ② HTNS particles can form a dense silicon hydroxyl layer on the surface of sandstone, strengthen the plugging of ITZ pore plug and increase the physical occlusion; ③ Calcium acrylate can construct a network structure on the surface of sandstone and form an effective lap with cement; ④ Bamboo liquefaction adhesive and acrylate laminating adhesive can form silica gel cluster layer in ITZ to reduce the deterioration effect of freeze-thaw cycle on interfacial bonding strength.

参考文献:

[1] 彭建兵、崔鹏、庄建琦. 川藏铁路对工程地质提出的挑战 [J]. 岩石力学与工程学报, 2020, 39(12): 13.

[2] 杨昌贤, 马志富, 卢学明, 等. 寒区铁路隧道结构抗冻技术探讨 [J]. 铁道工程学报, 2019, 36(12): 5.

[3] 袁进科, 裴向军, 程强, 等. 川藏高速公路沿线温度变化规律与斜坡温度场-变形分析 [J]. 公路交通科技, 2019, 36(10): 11.

[4] 万建国. 我国寒区山岭交通隧道防冻技术综述与研究展望 [J]. 隧道建设(中英文), 2021, 41(7): 17.

[5] 刘昌, 张顶立, 孙振宇, 等. 初支混凝土硬化特性与围岩流变耦合作用机制 [J]. 工程力学, 2023, 40(1): 14.

[6] YANG, XIAOLONG, SHEN, et al. Deterioration mechanism of interface transition zone of concrete pavement under fatigue load and freeze-thaw coupling in cold climatic areas [J]. Construction & Building Materials, 2018.

[7] 李文贵, 肖建庄, 黄靓, 等. 再生混凝土界面过渡区纳观力学性能试验研究 [J]. 湖南大学学报(自然科学版), 2014, 41(12): 31-9.

[8] SHEN Y, WEI X, YANG G, et al. Freeze-thaw degradation model and experimental analysis of rock-concrete interface bond strength [J]. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2020, 33(3).

[9] PAN J, SHEN Y, YANG G, et al. Debonding behaviors and micro-mechanism of the interface transition zone in sandstone-concrete interface in response to freeze-thaw conditions [J]. Cold Regions Science and Technology, 2021, (5): 103359.

[10] XU L, DENG F, CHI Y. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber and cement paste [J]. Construction & Building Materials, 2017, 145(AUG.1): 619-38.

[11] 陈峰. 在老混凝土约束下的修补混凝土收缩性能试验研究 [J]. 武汉理工大学学报, 2011, 33(9): 4.

[12] 陈峰, 郑建岚. 自密实混凝土与老混凝土黏结收缩有限元分析 [J]. 中国矿业大学学报, 2009, (5): 5.

[13] MEHTA P K. Hardened cement paste-microstructure and its relation to properties [J]. 1986.

[14] 王振军, 沙爱民, 杜少文, 等. 水泥乳化沥青混凝土浆体—集料界面区结构形成机理 [J]. 公路, 2008, (11): 4.

[15] 樊丽辉, 赵庆国, 张君纬, 等. 水泥基材料界面过渡区(ITZ)结构属性与界面干扰的试验研究 [J]. 河北水利电力学院学报, 2019, (3): 8.

[16] 施惠生, 居正慧, 郭晓潞, 等. ITZ形成机制及其对混凝土力学性能与传输性能的影响 [J]. 建材技术与应用, 2014, (6): 8.

[17] JOLIN M, LEMAY J D, GINOUSE N, et al. THE EFFECT OF SPRAYING ON FIBER CONTENT AND SHOTCRETE PROPERTIES; proceedings of the Shotcrete for Underground Support XII, F, 2015 [C].

[18] 许金泉. 界面力学 [M]. 界面力学, 2006.

[19] CHANG X, GUO T, LU J, et al. Experimental study on rock-concrete joints under cyclically diametrical compression [J]. Geomechanics and engineering, 2019, 17(6): 553-64.

[20] GUTIERREZ-CH, J., G., et al. Distinct element method simulations of rock-concrete interfaces under different boundary conditions [J]. Engineering Geology, 2018.

[21] KISHEN J M C, SAOUMA V E. Fracture of Rock-Concrete Interfaces: Laboratory Tests and Applications [J]. Aci Structural Journal, 2004, 101(3): 325-31.

[22] VOLKER, SLOWIK, AND, et al. Mixed mode fracture of cementitious bimaterial interfaces;: Part I: Experimental results [J]. Engineering Fracture Mechanics, 1998.

[23] DONG W, YANG D, ZHOU X, et al. Experimental and numerical investigations on fracture process zone of rock–concrete interface [J]. Fatigue & Fracture of Engineering Materials & Structures, 2016, 40(5): 820-35.

[24] MOS N, BELYTSCHKO T. Extended finite element method for cohesive crack growth [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 69.

[25] ZHONG H, OOI E T, SONG C, et al. Experimental and numerical study of the dependency of interface fracture in concrete–rock specimens on mode mixity [J]. Engineering Fracture Mechanics, 2014, 124-125: 287-309.

[26] LV T H, CHEN X W, CHEN G. The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen [J]. Construction and Building Materials, 2018, 160(JAN.30): 744-64.

[27] MADANDOUST R, KAZEMI M. Numerical analysis of break-off test method on concrete [J]. Construction and Building Materials, 2017, 151(oct.1): 487-93.

[28] BAYRAM F. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions [J]. Cold regions science and technology, 2012, 83-84(DEC.): p.98-102.

[29] TAN X, CHEN W, YANG J, et al. Laboratory investigations on the mechanical properties degradation of granite under freeze-thaw cycles [J]. Cold regions science and technology, 2011, 68(3): p.130-8.

[30] TENG J, SHAN F, HE Z, et al. Experimental study of ice accumulation in unsaturated clean sand [J]. Geotechnique, 2019, 69(3): 251-9.

[31] MAINALI, GANESH, DINEVA, et al. Experimental study on debonding of shotcrete with acoustic emission during freezing and thawing cycle [J]. Cold regions science and technology, 2015.

[32] SHEN Y, ZHANG H, ZHANG J, et al. Sandstone-concrete interface transition zone (ITZ) damage and debonding micromechanisms under freeze-thaw [J]. Sciences in Cold and Arid Regions, 2021, 13(2): 133−49.

[33] SHEN Y, WANG Y, WEI X, et al. Investigation on meso-debonding process of the sandstone–concrete interface induced by freeze–thaw cycles using NMR technology [J]. Construction and Building Materials, 2020, 252: 118962.

[34] SHEN Y, WANG Y, YANG Y, et al. Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface [J]. Construction and Building Materials, 2019, 213(JUL.20): 156-66.

[35] ZHOU Z, SHEN Y, ZHANG H, et al. Sandstone-concrete interface debonding mechanism under freeze-thaw actions: Fracture process and fracture criterion [J]. Construction and Building Materials, 2021, 294(1): 123526.

[36] MILLER G R, STOCK W L. Analysis of branched interface cracks between dissimilar anisotropic media [J]. J Appl Mech, 1989, 56(4): 844-9.

[37] SEVECEK T H, MIROSLAV. Crack kinking out of interface of two orthotropic materials under combined thermal/mechanical loading [J]. Theoretical and Applied Fracture Mechanics, 2020, 105.

[38] 谢慧才, 李庚英, 熊光晶. 新老混凝土界面粘结力形成机理 [J]. 硅酸盐通报, 2003, 22(3): 5.

[39] 申艳军, 魏欣, 杨更社, 等. 岩石–混凝土界面黏结强度冻融劣化模型及试验分析 [J]. 岩石力学与工程学报, 2020, 39(3): 11.

[40] 黄燕, 胡翔, 史才军, 等. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述 [J].

[41] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析 [J]. 材料导报, 2022, 36(4): 7.

[42] 李曙光. 隧道围岩-喷层界面粘结性能试验研究 [J]. 铁道建筑技术, 2021, (008): 000.

[43] 董春源, 吕二帅, 赵国强. 普通湿喷混凝土与高性能湿喷混凝土试验对比研究 [J]. 公路交通科技:应用技术版, 2016, (1): 4.

[44] K L, S J, Y R. Effect of Lithology on Mechanical and Damage Behaviors of Concrete in Concrete-Rock Combined Specimen [J]. Mathematics, 2022, 5(10): 727.

[45] OZTURK H, TANNANT D D. Influence of rock properties and environmental conditions on thin spray-on liner adhesive bond [J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(7): 1196-8.

[46] 王保田, 朱珍德, 张福海, 等. 花岗岩与混凝土胶结面抗剪强度的试验研究 [J]. 期刊, 2016, 25(11).

[47] SAIANG D, MALMGREN L, NORDLUND E. Laboratory Tests on Shotcrete-Rock Joints in Direct Shear, Tension and Compression [J]. Rock Mechanics & Rock Engineering, 2005, 38(4): 275-97.

[48] ZHU J, BAO W, PENG Q, et al. Influence of substrate properties and interfacial roughness on static and dynamic tensile behaviour of rock-shotcrete interface from macro and micro views [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104350.

[49] ABREU M. Adhesion of shotcrete to various types of rock surfaces [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 2002, 17(3): 265-74.

[50] MALMGREN L, NORDLUND E, ROLUND S. Adhesion strength and shrinkage of shotcrete [J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2005, 20(1): 33-48.

[51] CWIRZEN A, PENTTALA V. Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concretes [J]. Cement & Concrete Research, 2005, 35(4): 671-9.

[52] WANG M, XIE Y, LONG G, et al. Microhardness characteristics of high-strength cement paste and interfacial transition zone at different curing regimes [J]. Construction and Building Materials, 2019, 221(OCT.10): 151-62.

[53] WEI X, SHEN Y, LI X. Influence of freeze–thaw cycles and shear rate on sandstone-concrete interfacial bond strength: Experiment and degradation model [J]. Construction and Building Materials, 2022, (327): 126986.

[54] A C C Y, B S W C. Approximate migration coefficient of percolated interfacial transition zone by using the accelerated chloride migration test - ScienceDirect [J]. Cement and Concrete Research, 2005, 35(2): 344-50.

[55] 颜永弟. 喷射混凝土最佳喷速及一次喷层厚度的理论解 [J]. 岩土工程学报, 1998.

[56] 宁逢伟, 丁建彤, 白银, 等. 湿喷混凝土回弹率影响因素的研究进展 [J]. 水利水电技术, 2018, 49(1): 7.

[57] 李文俊. 湿喷防水混凝土施工技术 [J]. 河北建筑工程学院学报, 2005, 23(3): 4.

[58] 熊光晶, 姜浩, 陈立强, 等. 新老混凝土修补界面过渡区微细观结构改善方法的研究 [J]. 硅酸盐学报, 2002, 30(2): 4.

[59] 张雄, 张蕾, 张永娟, 等. 新老混凝土粘结面人造粗糙度表征及性能研究 [J]. 同济大学学报(自然科学版), 2013, 41(5): 753-8.

[60] 韩菊红, 袁群, 张雷顺. 新老混凝土粘结面粗糙度处理实用方法探讨 [J]. 工业建筑, 2001, 31(2): 3.

[61] 王嘉. 水泥石—集料界面过渡层中CH晶体取向机理的探讨 [J]. 武汉理工大学学报, 1986, 000(003): 42-7.

[62] 王爱勤, 张承志. 水泥石-集料界面过渡区的形成机理及改善途径 [J]. 混凝土与水泥制品, 1994, (5): 3.

[63] 孟运, 孟奎. 一种抗冻融型透气混凝土界面剂 [Z]. 2021

[64] 冯博文, 刘杰胜, 魏靖, 等 KH560改性水泥砂浆的防水性能研究 [J]. 有机硅材料, 2022, (036-001).

[65] 卜良桃, 赵军, 等. 新老混凝土界面粘结性能研究综述; 全国建筑物鉴定与加固技术委员会, 2016 [C].

[66] 石运中, 王琦, 贾丽莉. 丙烯酸钙改性集料对砂浆性能影响的研究 [J]. 混凝土与水泥制品, 2011, (9): 3.

[67] 陈惠苏, 孙伟, PIET S. 水泥基复合材料集料与浆体界面研究综述(一):实验技术 [J]. 硅酸盐学报, 2004, 32(1): 7.

[68] WONG H S, HEAD M K, BUENFELD N R. Pore segmentation of cement-based materials from backscattered electron images [J]. Cement & Concrete Research, 2006, 36(6): 1083-90.

[69] HUANG D J. The ITZ in concrete – a different view based on image analysis and SEM observations [J]. Cement and Concrete Composites, 2001.

[70] MITSUI K. Relationship between microstructure and mechanical properties of the paste-aggregate interface [J]. ACI Materials Journal, 1994, 91.

[71] BARNES B D, DIAMOND S, DOLCH W L. The contact zone between portland cement paste and glass "aggregate" surfaces [J]. Cement & Concrete Research, 1978, 8(2): 233-43.

[72] 朱逸, 杨日交, 彭宇, 等 水泥基材料界面过渡区的压汞法联合X射线断层扫描表征 [J]. 硅酸盐学报, 2022, 50(8): 9.

[73] SHEN Y, LUO T, LI X, et al. Mechanism Analysis of the Influence of Freeze-Thaw on the Damage and Debonding Evolution of Sandstone-Concrete Interface [J]. GEOFLUIDS, 2022, 2022: 13.

[74] HILAL A A. Microstructure of Concrete [M]. High Performance Concrete Technology and Applications, 2016.

[75] SHEN Q, PAN G, ZHAN H. Effect of Interfacial Transition Zone on the Carbonation of Cement-Based Materials [J]. Journal of Materials in Civil Engineering, 2017, 29(7): 04017020.

[76] ZHU Z, WANG Z, ZHOU Y, et al. Identification of Chemical Bonds and Microstructure of Hydrated Tricalcium Silicate (C3S) by a Coupled Micro-Raman/BSE-EDS Evaluation [J]. Materials, 2021, 14(18): 5144-.

[77] GATTY L, BONNAMY S, FEYLESSOUFI A, et al. A transmission electron microscopy study of interfaces and matrix homogeneity in ultra-high-performance cement-based materials [J]. Journal of Materials Science, 2001, 36(16): 4013-26.

[78] ZHOU M, JIANG Y, SUI Y. Microstructure and properties of interfacial transition zone in ZTA particle–reinforced iron composites [J]. Applied Physics A, 2019, 125(2): 110-.

[79] YANG C. Effect of the percolated interfacial transition zone on the chloride migration coefficient of cement-based materials [J]. Materials Chemistry & Physics, 2005, 91(2-3): 538-44.

[80] BRETON D, BALLIVY G. Correlation between the Transport Properties of the Transition Zone and Its Mineral Composition and Microstructure [J]. Springer Netherlands, 1996.

[81] 黄庆华, 周承宗, 顾祥林, 等. 混凝土界面过渡区水分传输特性试验研究 [J]. 建筑结构学报, 2019, 40(1): 7.

[82] LI W, XIAO J, SUN Z, et al. Interfacial transition zones in recycled aggregate concrete with different mixing approaches [J]. Construction & Building Materials, 2012, 35: 1045-55.

[83] MARUVANCHERY V. Mechanical characterization of thermally treated calcite-cemented sandstone using nanoindentation, scanning electron microscopy and automated mineralogy [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 125.

[84] 舒畅, 乔丕忠. 混凝土微观界面纳米划痕试验表征研究 [J]. 力学季刊, 2015, 36(2): 8.

[85] LUO Z, LI W, WANG K. (106677)Nano/micromechanical characterisation and image analysis on the properties and heterogeneity of ITZs in geopolymer concrete [J]. Cement and Concrete Research, 2022, (152-): 152.

[86] 董华, 钱春香. 骨料尺寸对微区泌水及界面区结构特征的影响 [J]. 建筑材料学报, 2008, 11(3): 5.

[87] 陈露一, 郑志河, 邵慧权, 等. 混凝土界面过渡区不均匀特性研究 [J]. 武汉理工大学学报, 2007, 29(9): 4.

[88] 尚建丽, 邢琳琳. 钢渣粗骨料混凝土界面过渡区的研究 [J]. 建筑材料学报, 2013, (2): 4.

[89] LUTZ M P, MONTEIRO P, ZIMMERMAN R W. Inhomogeneous Interfacial Transition Zone Model for the Bulk Modulus of Mortar [J]. Cement & Concrete Research, 1997, 27(7): 1113-22.

[90] 唐国宝. 水泥浆体-集料界面过渡区渗流结构及其对砂浆和混凝土性能的影响 [D]. 上海; 同济大学, 2000.

[91] 杨宏伟. 含冰粒蓄冷-相变降温喷砼材料PCLH行为及力学特性研究 [D]; 西安科技大学.

[92] SHEN Y, LV Y, YANG H, et al. Effect of different ice contents on heat transfer and mechanical properties of concrete [J]. Cold regions science and technology, 2022, (Jul.): 199.

[93] 普通混凝土长期性能和耐久性能试验方法标准: [S]. 国内-国家标准-国家市场监督管理总局 CN-GB, 2009:

[94] ZHAO J, LI F M, CHEN Z X. Modeling coarse aggregate distribution in interfacial zone of new-old concrete in precast concrete structures [J]. Structural Concrete, 2022, 23(10).

[95] 陈惠苏, 孙伟, PIET S. 水泥基复合材料集料与浆体界面研究综述(二):界面微观结构的形成、劣化机理及其影响因素 [J]. 硅酸盐学报, 2004, 32(1): 10.

[96] 欧阳利军, 安子文, 杨伟涛, 等. 混凝土界面过渡区(ITZ)微观特性研究进展 [J]. 混凝土与水泥制品, 2018, (2): 6.

[97] 申艳军, 张欢, 潘佳, 等. 混凝土界面过渡区微-细观结构识别及形成机制研究进展 [J]. 硅酸盐通报, 2020, 39(10): 15.

[98] 魏国强, 詹炳根, 孙道胜. 混凝土集料-浆体界面过渡区微观结构表征技术综述 [J]. 安徽建筑工业学院学报:自然科学版, 2008, 16(4): 6.

[99] 石运中. 集料表面改性及对混凝土性能影响的研究 [D]; 济南大学, 2012.

[100] 傅深渊, 马灵飞, 李文珠. 竹材液化及竹材液化树脂胶性能研究 [J]. 林产化学与工业, 2004, 24(3): 5.

[101] PANG, BO, ZHANG, et al. Interface Properties of Nanosilica-Modified Waterborne Epoxy Cement Repairing System [J]. Acs Applied Materials & Interfaces, 2018.

[102] 李金玉, 曹建国. 混凝土冻融破坏机理的研究;全国混凝土耐久性学术交流会, 1996 [C].

[103] TOUTLEMONDE U F. The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques [J]. Cement and Concrete Research, 2008.

[104] 水中和, 魏小胜, 王栋民. 现代混凝土科学技术 [M]. 现代混凝土科学技术, 2014.

中图分类号:

 TU458    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式