论文中文题名: |
急斜水平分段综放开采煤岩联动致灾机理及防控研究
|
姓名: |
杨文化
|
学号: |
B201512035
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
0819
|
学科名称: |
工学 - 矿业工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
能源学院
|
专业: |
矿业工程
|
研究方向: |
矿山压力与岩层控制
|
第一导师姓名: |
来兴平
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-28
|
论文答辩日期: |
2023-06-03
|
论文外文题名: |
Study on the Disaster Mechanism and Prevention and Control of Coal Rock Linkage in Horizontal Section Fully Mechanized Caving Mining of Steeply Inclined Coal Seams
|
论文中文关键词: |
急倾斜特厚煤层 ; 水平分段综放开采 ; 煤岩联动致灾机理 ; 协同防控
|
论文外文关键词: |
Steeply inclined and extremely thick coal seam ; Horizontal section fully mechanized caving mining ; Coal rock linkage disaster mechanism ; Collaborative prevention and control
|
论文中文摘要: |
︿
急倾斜特厚煤层水平分段综放开采的关键是煤炭资源高效开采与围岩动力灾害防控。针对急倾斜特厚煤层水平分段综放开采工艺特点,以及实现安全高效开采必须面对复杂多变地质条件的现实,增加分段高度以提高单位推进度的原煤产量是实现急倾斜特厚煤层高效开采的重要手段之一,同时大段高顶煤强卸荷开采联动影响顶底板围岩局部敏感区应力与结构损伤畸变致灾加剧。论文以急倾斜特厚煤层开采典型矿井乌东煤矿为工程背景,通过现场实测、物理相似模拟实验、力学分析、数值模拟等方法,开展了急倾斜特厚煤层水平分段综放开采顶煤冒放结构特征、顶底板围岩空间结构形成及动态演化规律与减灾增效协同防控研究,为急倾斜特厚煤层安全高效开采提供理论和工程实践支撑。主要研究成果如下:
(1)系统分析了急倾斜煤层资源禀赋环境与结构特征。针对急倾斜煤层开采典型矿井乌东煤矿,开展工程地质特征与开采环境评估,分析了水平分段综放开采煤岩联动致灾因素及特征、综放工作面支架压力与典型动力灾害显现情况。基于地质雷达、3D钻孔电视、松动圈测试仪等探测手段,实施现场开采扰动区煤岩体结构“立体”探测,为揭示围岩力学行为的结构与应力协调控制机制提供必要的基础数据。
(2)揭示了急倾斜大段高顶煤冒放形态及动态演化特征。通过分析顶煤钻孔图像、瞬变电磁实测数据,数值模拟研究不同倾角顶煤冒放结构特征,构建顶煤非对称拱结构力学模型,基于合理拱轴线理论,确定了顶煤非对称拱结构形态及动态演化特征。
(3)基于自主设计与构建的急倾斜煤层多水平分段开采物理相似模拟实验多指标监测平台,发现了围岩结构由开采初期倾斜非对称拱结构转化为悬臂岩梁结构的演化规律,获取了围岩结构形成及周期性失稳过程中声-热-震特征的同步对应关系,定量确定微震大能量事件判定值,引入微震能率偏差值指标,得出急倾斜煤层多水平分段开采微震偏差值分布特征,为后续开采水平围岩结构失稳诱发的动力灾害防控提供借鉴。
(4)构建了不同受载条件下顶板、层间岩柱、底板倾斜悬臂岩梁结构力学模型,获得了顶板、层间岩柱、底板岩梁能量分布函数,分析了急倾斜围岩结构能量展布异化特征,数值模拟研究了不同倾角急倾斜煤层开采围岩塑性区、应力及能量分布特征,揭示了急倾斜煤岩体高应力强卸荷开采条件下围岩局部敏感区-剪切变形局部化带应力/应变与结构损伤畸变致灾机理。
(5)实现了急倾斜煤层资源高效开采与围岩动力灾害防控的协同,通过超前注水与爆破耦合预裂措施提高顶煤采出率和围岩动力灾害的预先控制,动态评估了减灾增效协同防控方案,有效的保障了工作面的安全高效开采。
本研究为急倾斜特厚煤层资源高效开采与围岩动力灾害防控方面具有较好的科学及实用价值,对类似赋存条件下特厚煤层的安全高效开采具有借鉴意义。
﹀
|
论文外文摘要: |
︿
The key to fully mechanized section caving mining in steeply inclined thick coal seam is the efficient mining of coal resources and the prevention and control of surrounding rock dynamic disasters. In view of the characteristics of horizontal section fully mechanized caving mining technology in steeply inclined thick coal seam, and the reality that safe and efficient mining must face complex and changeable geological conditions, increasing the section height to increase the raw coal production per unit advancement is one of the important means to realize the efficient mining of steeply inclined thick coal seam. At the same time, the linkage of strong unloading mining of large section of high top coal affects the stress of local sensitive area of roof and floor surrounding rock and the aggravation of structural damage and distortion. This paper takes Wudong Coal Mine, a typical mine in steeply inclined and extra-thick coal seam mining, as the engineering background. Through field measurement, physical similarity simulation experiment, mechanical analysis, numerical simulation and other methods, the characteristics of top coal caving structure, the formation of spatial structure of roof and floor surrounding rock, the dynamic evolution law and the coordinated prevention and control of disaster reduction and efficiency improvement in horizontal section fully mechanized caving mining of steeply inclined and extra-thick coal seam are studied, which provides theoretical and engineering practice support for safe and efficient mining of steeply inclined and extra-thick coal seam. The main research results are as follows:
(1)The resource endowment environment and structural characteristics of steeply inclined coal seam are systematically analyzed. Aiming at Wudong Coal Mine, a typical mine in steeply inclined coal seam mining, the engineering geological characteristics and mining environment assessment were carried out, and the disaster-causing factors and characteristics of coal-rock linkage in horizontal section fully-mechanized caving, the support pressure of fully-mechanized caving face and the occurrence of typical dynamic disasters were analyzed. Based on detection methods such as geological radar, 3D drilling television, and loose zone tester, a "three-dimensional" detection of the coal and rock mass structure in the disturbed area of on-site mining is implemented, providing necessary basic data for revealing the structural and stress coordination control mechanism of the surrounding rock mechanical behavior.
(2)The caving form and dynamic evolution characteristics of steeply inclined large section high top coal are revealed. By analyzing the borehole image of top coal and the measured data of transient electromagnetic, the characteristics of top coal caving structure with different dip angles are studied by numerical simulation, and the mechanical model of asymmetric arch structure of top coal is constructed. Based on the theory of reasonable arch axis, the shape and dynamic evolution characteristics of asymmetric arch structure of top coal are determined.
(3)Based on the self-designed and constructed multi-index monitoring platform of physical similarity simulation experiment for multi-level section mining in steep coal seam, the evolution law of surrounding rock structure from inclined asymmetric arch structure to cantilever rock beam structure in the early stage of mining is found. The synchronous correspondence of acoustic-thermal-seismic characteristics in the formation and periodic instability of surrounding rock structure is obtained, and the judgment value of microseismic large energy event is quantitatively determined. By introducing the index of microseismic energy rate deviation, the distribution characteristics of microseismic deviation value in multi-level section mining of steep coal seam are obtained, which provides reference for the prevention and control of dynamic disasters induced by the instability of horizontal surrounding rock structure in subsequent mining.
(4)The mechanical model of inclined cantilever rock beam structure of roof, interlayer rock pillar and floor under different loading conditions is constructed. The energy distribution functions of roof, interlayer rock pillar and floor rock beam are obtained. The energy distribution alienation characteristics of steeply inclined surrounding rock structure are analyzed. The plastic zone, stress and energy distribution characteristics of surrounding rock in steeply inclined coal seam mining with different dip angles are studied by numerical simulation. The stress / strain and structural damage distortion mechanism of local sensitive area of surrounding rock-shear deformation localization zone under high stress and strong unloading mining conditions of steeply inclined coal and rock mass are revealed.
(5)The coordination of efficient mining of steeply inclined coal seam resources and prevention and control of dynamic disasters of surrounding rock is realized. The pre-control of top coal recovery rate and dynamic disasters of surrounding rock is improved by advanced water injection and blasting coupling pre-splitting measures. The coordinated prevention and control scheme of disaster reduction and efficiency improvement is dynamically evaluated, which effectively guarantees the safe and efficient mining of working face.
This study has good scientific and practical value for the efficient mining of steeply inclined thick coal seam resources and the prevention and control of surrounding rock dynamic disasters, and has reference significance for the safe and efficient mining of thick coal seams under similar occurrence conditions.
﹀
|
参考文献: |
︿
[1] 钱鸣高,许家林,王家臣.再论煤炭的科学开采[J].煤炭学报,2018,43(1):1-13. [2] 王家臣.我国综放开采40年及展望[J].煤炭学报,2023,48(01):83-99. [3] 杨西栋,赵光存.新疆伊犁煤炭产业在“一带一路”中的机遇与挑战[J].煤炭经济研究,2015,35(07):85-86+91. [4] 裘品姬.新疆煤炭行业“十三五”发展的思考与建议[J].煤炭经济研究,2015,35(01):14-21. [5] 来兴平,贾冲,崔峰,等.急倾斜巨厚煤层开采深度影响的覆岩能量演化规律研究[J].岩石力学与工程学报,2023,42(02):261-274. [6] 来兴平,贾冲,崔峰,等.急倾斜巨厚煤层群难采资源开采的覆岩破断与能量释放规律研究[J/OL].煤炭学报:1-15.https://doi.org/10.13225/j.cnki.jccs.2022.0623. [7] 来兴平,许慧聪,陈建强,等.急斜采动夹持岩柱能量异化特征及其调控方法[J].采矿与安全工程学报,2021,38(03):429-438. [8] 来兴平,代晶晶,李超.急倾斜煤层开采覆岩联动致灾特征分析[J].煤炭学报,2020,45(01):122-130. [9] 来兴平,杨毅然,单鹏飞,等.急斜煤层顶板应力叠加效应致灾特征综合分析[J].煤炭学报,2018,43(01):70-78. [10] 来兴平,杨毅然,王宁波,等.急斜煤岩体动力失稳时空演化特征综合分析[J].岩石力学与工程学报,2018,37(03):583-592. [11] 来兴平,杨毅然,陈建强,等.急斜特厚煤层群采动应力畸变致诱动力灾害控制[J].煤炭学报,2016,41(07):1610-1616. [12] Lai X P, Jia, C, Cui, F, et al. Microseismic energy distribution and impact risk analysis of complex heterogeneous spatial evolution of extra-thick layered strata[J]. Scientific Reports, 2023, 12(1): 10.1038/s41598-022-14538-7 [13] Lai X P, Cai M F, Xie M W. In situ monitoring and analysis of rock mass behavior prior to collapse of the main transport roadway in Linglong Gold Mine, China[J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43(4):640-646. [14] Xu H C, Lai X P, Shan P F, et al. Energy dissimilation characteristics and shock mechanism of coal-rock mass induced in steeply-inclined mining: comparison based on physical simulation and numerical calculation[J]. Acta Geotechnica, 2023, 18(2): 843-864. [15] Lai X P, Jia, C, Cui, F, et al. Mechanical Behavior Characteristics and Energy Evolution Law of Coal Samples under the Influence of Loading Rate-A Case Study of Deep Mining in Wudong Coal Mine[J]. Minerals, 2022, 12(8): 1032; https://doi.org/10.3390/min12081032. [16] Yang W H, Lai X P, Shan P F, et al. Study on the Characteristics of Top-Coal Caving and Optimization of Recovery Ratio in Steeply Inclined Residual High Sectional Coal Pillar[J]. GEOFLUIDS, 2020, 2020, https://doi.org/10.1155/2020/8883784. [17] Yang W H, Lai X P, Cao J T, et al. Study on Evolution Characteristics of Overburden Caving and Void During Multi-Horizontal Sectional Mining in Steeply Inclined Coal Seams [J]. Thermal Science 2020, 24(6B), 3915-3921. [18] 钱鸣高,石平五,许家林.矿山压力与岩层控制.第2版[M].中国矿业大学出版社,2010. [19] 石平五,张幼振.急斜煤层放顶煤开采“跨层拱”结构分析[J].岩石力学与工程学报,2006,25(1):79-79. [20] 邵小平,石平五,贺桂成.急斜放顶煤开采顶板卸载拱结构分析[J].工程科学学报,2007,29(5):447-451. [21] 杨帆.急倾斜煤层采动覆岩移动模式及机理研究[D].辽宁工程技术大学,2006. [22] 张荣亮,麻凤海,杨帆,等.运用ANSYS分析开采倾斜煤层引起的地表变形[J].中国地质灾害与防治学报,2006,17(1):91-94. [23] 杨帆,麻凤海,刘书贤,等.采空区岩层移动的动态过程与可视化研究[J].中国地质灾害与防治学报,2005,16(1):84-88. [24] 鞠文君.急倾斜特厚煤层水平分层开采巷道冲击地压成因与防治技术研究[D].北京交通大学,2009. [25] 鞠文君,李文洲.急倾斜特厚煤层水平分段开采老顶断裂力学模型[J].煤炭学报,2008,33(6):606-608. [26] 鞠文君,李前,魏东,等.急倾斜特厚煤层水平分层开采矿压特征[J].煤炭学报,2006,31(5):558-561. [27] 戴华阳,郭俊廷,易四海,等.特厚急倾斜煤层水平分层开采岩层及地表移动机理[J].煤炭学报,2013,38(7):1109-1115. [28] 戴华阳,易四海,鞠文君,等.急倾斜煤层水平分层综放开采岩层移动规律[J].工程科学学报,2006,28(5):409-412. [29] 来兴平,栾小东,伍永平,等.开采扰动区变尺度采空区覆岩介质动态损伤实验[J].煤炭学报,2007,32(9):902-906. [30] 来兴平,王宁波,胥海东,等.复杂环境下急倾斜特厚煤层安全开采[J].工程科学学报,2009,31(3):277-280. [31] 王宁波,张农,崔峰,等.急倾斜特厚煤层综放工作面采场运移与巷道围岩破裂特征[J].煤炭学报,2013,38(08):1312-1318. [32] 王明立,张玉卓,张华兴.急斜煤层开采覆岩非均衡破坏机理分析[J].采矿与安全工程学报,2010,27(04):558-561. [33] 王明立.急倾斜煤层开采岩层破坏机理及地表移动理论研究[D].煤炭科学研究总院,2008. [34] 张基伟.王家山矿急倾斜煤层长壁开采覆岩破断机理及强矿压控制方法(博士学位论文)[D].北京科技大学,2015. [35] 王家臣,宋正阳,张锦旺,等.综放开采顶煤放出体理论计算模型[J].煤炭学报,2016,41(02):352-358. [36] 王家臣,张锦旺.综放开采顶煤放出规律的BBR研究[J].煤炭学报,2015,40(03):487-493. [37] 王家臣,杨胜利,李良晖.急倾斜煤层水平分段综放顶板“倾倒-滑塌”破坏模式[J].中国矿业大学学报,2018,47(06):1175-1184. [38] 蔡美峰,冀东,郭奇峰.基于地应力现场实测与开采扰动能量积聚理论的岩爆预测研究[J].岩石力学与工程学报,2013,32(10):1973-1980. [39] 蔡美峰,彭华,乔兰,等.万福煤矿地应力场分布规律及其与地质构造的关系[J].煤炭学报,2008,(11):1248-1252. [40] 吴绍倩,石平五.急斜煤层矿压显现规律的研究[J].西安科技大学学报,1990(2):1-9. [41] 单鹏飞,张帅,来兴平,等.不同卸压措施下“双能量”指标协同预警及调控机制分析[J].岩石力学与工程学报,2021,40(S2):3261-3273. [42] 来兴平,方贤威,单鹏飞,等.脆性孔洞煤样承载过程破坏模式及能量阶段蓄积释放规律分析[J].采矿与安全工程学报,2021,38(05):1005-1014. [43] 来兴平,任杰,单鹏飞,等.不同孔径冲击倾向性煤样破坏特征能量演化规律[J].中南大学学报(自然科学版),2021,52(08):2601-2610. [44] 来兴平,张帅,代晶晶,等.水力耦合作用下煤岩多尺度损伤演化特征[J].岩石力学与工程学报,2020,39(S2):3217-3228. [45] 来兴平,张帅,崔峰,等.含水承载煤岩损伤演化过程能量释放规律及关键孕灾声发射信号拾取[J].岩石力学与工程学报,2020,39(03):433-444. [46] 伍永平,解盘石,贠东风,等.大倾角层状采动煤岩体重力-倾角效应与岩层控制[J].煤炭学报,2023,48(01):100-113. [47] 罗生虎,伍永平,解盘石,等.大倾角煤层走向长壁开采支架稳定性力学分析[J].煤炭学报,2019,44(09):2664-2672. [48] 张浩,伍永平,解盘石.大倾角大采高采场塑性区分布及主控因素效能[J/OL].煤炭科学技术:1-10[2023-03-11].DOI:10.13199/j.cnki.cst.2022-0949. [49] 伍永平,贠东风,解盘石,等.大倾角煤层长壁综采:进展、实践、科学问题[J].煤炭学报,2020,45(01):24-34. [50] 罗生虎,伍永平,刘孔智,等.大倾角大采高综采工作面煤壁非对称受载失稳特征[J].煤炭学报,2018,43(07):1829-1836. [51] Wang H W, Wu Y P, Jiao J Q, et al. Stability Mechanism and Control Technology for Fully Mechanized Caving Mining of Steeply Inclined Extra-Thick Seams with Variable Angles[J]. 2020, 38(2):1047-1057. [52] 黄庆享,王小军,贺雁鹏,等.浅埋近距离煤层开采顶板活化结构及支架动载研究[J].采矿与安全工程学报,2022,39(05):857-866. [53] 黄庆享,曹健.浅埋近距煤层开采三场演化规律及煤柱群结构控制效应[J].煤炭学报,2021,46(S1):1-9. [54] 黄庆享,赵萌烨,黄克军.浅埋煤层群开采顶板双关键层结构及支护阻力研究[J].中国矿业大学学报,2019,48(01):71-77+86. [55] 黄庆享,杜君武,侯恩科,等.浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J].采矿与安全工程学报,2019,36(01):7-15. [56] 黄克军,黄庆享,王苏健,等.浅埋煤层群采场周期来压顶板结构及支架载荷[J].煤炭学报,2018,43(10):2687-2693. [57] 黄庆享,周金龙,马龙涛,等.近浅埋煤层大采高工作面双关键层结构分析[J].煤炭学报,2017,42(10):2504-2510. [58] 索永录,祁小虎,刘建都,等.急斜煤层阶段煤柱稳定性与顶板控制研究[J].煤炭技术,2014,33(10):174-177. [59] 索永录,张铎严,吴侨宁,等.急倾斜煤层水平分段综放开采覆岩运移规律研究[J].煤炭工程,2017,49(4):86-89. [60] 谢和平,张茹,邓建辉,等.基于“深地–地表”联动的深地科学与地灾防控技术体系初探[J].工程科学与技术,2021,53(04):1-12. [61] 谢和平,高明忠,付成行,等.深部不同深度岩石脆延转化力学行为研究[J].煤炭学报,2021,46(03):701-715. [62] 谢和平,高峰,鞠杨.深部岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2161-2178. [63] 谢和平,高峰,鞠杨,等.深部开采的定量界定与分析[J].煤炭学报,2015,40(01):1-10. [64] 谢和平,鞠杨,黎立云,等.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008(09):1729-1740. [65] 谢广祥,王磊.综放工作面煤层及围岩破坏特征的采厚效应[J].煤炭学报, 2010,35(2):177-181. [66] 谢广祥,王磊.采场围岩应力壳力学特征的岩性效应[J].煤炭学报,2013,38(1):44-49. [67] 谢广祥,杨科.采场围岩宏观应力壳演化特征[J].岩石力学与工程学报, 2010,29(s1):2676-2680. [68] 王磊,谢广祥,王金安.采场围岩应力壳对破坏场的影响规律及应用[J].煤炭学报,2015,40(9):2009-2014. [69] 唐春安.脆性材料破坏过程分析的数值试验方法[J].力学与实践,1999,21(2):21-24. [70] Tang C A, Kaiser P K. Numerical Simulation of Cumulative Damage and Seismic Energy Release During Brittle Rock Failure—Part I: Fundamentals[J]. International Journal of Rock Mechanics & Mining Sciences, 1998, 35(2):113-121. [71] T Tang C, Tang C. Numerical simulation of progressive rock failure and associated seismicity [J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34(2):249-261. [72] 姜耀东,潘一山,姜福兴,等.我国煤炭开采中的冲击地压机理和防治[J].煤炭学报,2014,39(2):205-213. [73] 姜耀东,赵毅鑫.我国煤矿冲击地压的研究现状:机制、预警与控制[J].岩石力学与工程学报,2015,34(11):2188-2204. [74] 李夕兵,宫凤强.基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J].煤炭学报,2021,46(03):846-866. [75] 宫凤强,钟文辉,高明忠,等.卸荷和冲击载荷作用下高应力红砂岩的动力特性(英文)[J].Journal of Central South University,2022,29(02):596-610. [76] 罗松,宫凤强,李留留,等.不同围压三轴循环压缩下岩石的线性储能和耗能规律及损伤演化特征(英文)[J/OL].Transactions of Nonferrous Metals Society of China:1-26[2023-03-23].http://kns.cnki.net/kcms/detail/43.1239.TG.20220630.1050.010.html. [77] 伍武星,宫凤强,江权.单轴压缩下高静预应力花岗岩受低频动力扰动的强度弱化效应(英文)[J].Transactions of Nonferrous Metals Society of China,2022,32(07):2353-2369. [78] 左建平,宋洪强.煤岩组合体的能量演化规律及差能失稳模型[J].煤炭学报,2022,47(08):3037-3051. [79] 左建平,陈岩,宋洪强.深部煤岩组合体破坏行为与非线性模型研究进展[J].中南大学学报(自然科学版),2021,52(08):2510-2521. [80] 左建平,陈岩,刘晓丽.围压作用下岩石峰前裂纹演化行为及其扩展模型(英文)[J].Journal of Central South University,2019,26(11):3045-3056. [81] 左建平,宋洪强,陈岩,等.煤岩组合体峰后渐进破坏特征与非线性模型[J].煤炭学报,2018,43(12):3265-3272. [82] 左建平,谢和平,孟冰冰,等.煤岩组合体分级加卸载特性的试验研究[J].岩土力学,2011,32(05):1287-1296. [83] 张自政,柏建彪,韩志婷,等.空巷顶板稳定性力学分析及充填技术研究[J].采矿与安全工程学报,2013,30(2):194-198. [84] Bondarenko, Yu.V;Makeev, A.Yu;Zhurek, P;Klega, L. Technology of coal extraction from steep seam in the Ostrava-Karvina basin.Ugol Ukrainy. 1993 (3).45-48. [85] Aksenov, V. V:Lukashev, G. E. Design of universal equipment set for workingsteepseams. Ugol. 1993 (4).5-9. [86] Kulakov, V.N. Stress state in the face region of a steep coal bed. Jounal of Mining Science. 1995(9). 161-168. [87] Bodi, J. .Safety and technological aspects of manless exploitation technology for steep coal seams. 27th international conference of safety in mines research institutes. 955-965. 20-22, 1997. [88] Singh, T.N.; Gehi, L.D. .State behaviour during mining of steeply dipping thick seams-A case study, Proceedings of the International Symposium on Thick Seam Mining, 311-315, 1993. [89] Zubelewicz A, Mróz Z. Numerical simulation of rock burst processes treated as problems of dynamic instability[J]. Rock Mechanics & Rock Engineering, 1983, 16(4):253-274. [90] Müller W. Numerical simulation of rock bursts[J]. Mining Science & Technology, 1991, 12(1):27-42. [91] Park, D W; Jiang, Y M; Morley, L A, et al. Stability analysis of a room-and-pillar mine with thinly-laminated roof, strong pillars and weak floor[J]. Mining Sciences and Technology, 2008, 23(3):1852-1858. [92] Brauner G. Rockbursts in coal mines and their prevention[J]. Crc Press, 1994. [93] Vesela V. The investigation of rockburst focal mechanisms at Lazy coal mine, Czech Republic[J]. 1996(8):380A. [94] Stewart R A, Reimold W U, Charlesworth E G, et al. The nature of a deformation zone and fault rock related to a recent rockburst at Western Deep Levels Gold Mine, Witwatersrand Basin, South Africa[J]. Tectonophysics, 2001, 337(3–4):173-190. [95] Mansurov V A. Prediction of rockbursts by analysis of induced seismicity data[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(6):893-901. [96] Lippmann H. Mechanics of ``Bumps'' in Coal Mines: A Discussion of Violent Deformations in the Sides of Roadways in Coal Seams[J]. Applied Mechanics Reviews, 1987, 40(8):1033. [97] Lippmann H. Mechanical considerations of bumps in coal mines[J]. Rockbursts and Seismicity in Mines, Rotterdam: Balkema 1990, 20(8):279-284. [98] 袁亮.煤矿典型动力灾害风险判识及监控预警技术“十三五”研究进展[J].矿业科学学报,2021,6(01):1-8. [99] 袁亮.煤矿典型动力灾害风险判识及监控预警技术研究进展[J].煤炭学报,2020,45(05):1557-1566. [100] 齐庆新,李一哲,赵善坤,等.我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J].煤炭科学技术,2019,47(09):1-40. [101] 袁亮,姜耀东,何学秋,等.煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J].煤炭学报,2018,43(02):306-318. [102] 赵善坤,李宏艳,刘军,等.深部冲击危险矿井多参量预测预报及解危技术研究[J].煤炭学报,2011,36(S2):339-345. [103] 王宏伟,王晴,石瑞明,等.煤矿冲击地压与断层构造失稳的多物理场互馈机制研究进展[J].煤炭学报,2022,47(02):762-790. [104] 石平五,张幼振.急斜煤层放顶煤开采跨层拱结构分析[J].岩石力学与工程学报, 2006,25(01):79-82. [105] Lai X P, Jia, C, Cui, F, et al. Mechanism of Rock Burst and Its Dynamic Control Measures in Extra-Thick Coal Seam Mining from below the Residual Coal Seam to below the Gob[J]. Lithosphere, 2022, 11, 10.2113/2022/8179501 [106] Xu H C, Lai X P, Zhang S, et al. Precursor Information Recognition of Rockburst in the Coal-Rock Mass of Meizoseismal Area Based on Multiplex Microseismic Information Fusion and Its Application: A Case Study of Wudong Coal Mine[J]. Lithosphere, 2022, 11, 10.2113/2022/7349759 [107] Lai X P, Yang Y B, Zhang L M, et al. Research on Structural Evolution and Microseismic Response Characteristics of Overlying Strata during Repeated Mining of Steeply Inclined and Extra Thick Coal Seams[J]. Lithosphere, 2021, 2021(S1), 10.2113/2021/8047321 [108] Xu H C, Lai X P, Shan P F, et al. Research on Mechanism and Control of Floor Heave of Mining-Influenced Roadway in Top Coal Caving Working Face[J]. Energies, 2020,13(2):381. [109] 来兴平,李云鹏,王宁波,等.基于梁结构的急斜煤层综放工作面顶板变形特征[J].采矿与安全工程学报,2015,32(06):871-876. [110] 来兴平,漆涛,蒋东晖,等.急斜煤层(群)水平分段顶煤超前预爆范围的确定[J].煤炭学报,2011,36(05):718-721. [111] 来兴平,孙欢,单鹏飞,等.急倾斜坚硬岩柱动态破裂“声-热”演化特征试验[J].岩石力学与工程学报,2015,34(11):2285-2292. [112] 杨文化,来兴平,王宁波,等.急倾斜水平分段综放面强矿压致灾机理及其防治[J].西安科技大学学报,2020,40(02):221-228. [113] L. R. Alejanoa, P. RamõÂrez-Oyangurenb, J. Taboadaa. FDM predictive methodology for subsidence due to flat and inclined coal seam mining [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(4): 475-491. [114] 何生全,何学秋,宋大钊,等.冲击地压多参量集成预警模型及智能判识云平台[J].中国矿业大学学报,2022,51(05):850-862. [115] 何学秋,陈建强,宋大钊,等.典型近直立煤层群冲击地压机理及监测预警研究[J].煤炭科学技术,2021,49(06):13-22. [116] 李东辉,何学秋,陈建强,等.乌东煤矿近直立煤层冲击地压机制研究[J].中国矿业大学学报,2020,49(05):835-843. [117] 柴敬,刘永亮,王梓旭,等.保护层开采下伏煤岩卸压效应及其光纤监测[J].煤炭学报,2022,47(08):2896-2906. [118] 朱磊,古文哲,柴敬,等.采动覆岩全场变形演化过程分布式光纤监测研究[J].采矿与岩层控制工程学报,2022,4(01):43-50. [119] 杜文刚,柴敬,张丁丁,等.采动覆岩导水裂隙发育光纤感测与表征模型试验研究[J].煤炭学报,2021,46(05):1565-1575. [120] 柴敬,刘永亮,袁强,等.矿山围岩变形与破坏光纤感测理论技术及应用[J].煤炭科学技术,2021,49(01):208-217. [121] 柴敬,杜文刚,雷武林,等.浅埋煤层隔水关键层失稳光纤传感检测试验研究[J].采矿与安全工程学报,2020,37(04):731-740. [122] 柴敬,杨玉玉,欧阳一博,等,李淑军.采场覆岩变形破坏模拟试验的光测方法对比[J].煤炭学报,2021,46(01):154-163. [123] 柴敬,雷武林,杜文刚,等.分布式光纤监测的采场巨厚复合关键层变形试验研究[J].煤炭学报,2020,45(01):44-53. [124] 康红普,冯彦军,张震,等.煤矿井下定向钻孔水力压裂岩层控制技术及应用[J].煤炭科学技术,2023,51(01):31-44. [125] 康红普,姜鹏飞,冯彦军,等.煤矿巷道围岩卸压技术及应用[J].煤炭科学技术,2022,50(06):1-15. [126] 王琦,何满潮,许硕,等.恒阻吸能锚杆力学特性与工程应用[J].煤炭学报,2022,47(04):1490-1500. [127] 朱淳,何满潮,张晓虎,等.恒阻大变形锚杆非线性力学模型及恒阻行为影响参数分析[J].岩土力学,2021,42(07):1911-1924. [128] 潘一山,齐庆新,王爱文,等.煤矿冲击地压巷道三级支护理论与技术[J].煤炭学报,2020,45(05):1585-1594. [129] 潘一山,高学鹏,王伟,等.冲击地压矿井综采工作面两巷超前支护液压支架研究[J].煤炭科学技术,2021,49(06):1-12. [130] 王爱文,潘一山,齐庆新,等.煤矿冲击地压巷道三级吸能支护的强度计算方法[J].煤炭学报,2020,45(09):3087-3095. [131] 齐庆新,潘一山,李海涛,等.煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J].煤炭学报,2020,45(05):1567-1584. [132] 王正义,窦林名,何江.动静组合加载下急倾斜特厚煤层开采煤岩冲击破坏特征研究[J].采矿与安全工程学报,2021,38(05):886-894. [133] 何江,窦林名,曹晋荣,等.急倾斜特厚煤层水平分段综放开采冲击矿压机理[J].煤炭学报,2020,45(05):1701-1709. [134] 李安宁,窦林名,王正义,等.近直立煤层水平分段开采夹持煤体型冲击机理及防治[J].煤炭学报,2018,43(12):3302-3308. [135] 齐庆新,李海涛,郑伟钰,等.煤岩弹性变形能的表征物理模型及实测方法[J].煤炭科学技术,2022,50(01):70-77. [136] 齐庆新,王守光,李海涛,等.冲击地压应力流理论及其数值实现[J].煤炭学报,2022,47(01):172-179. [137] 齐庆新,李一哲,李海涛,等.冲击地压应力流思想及其控制理论初探[J].采矿与安全工程学报,2021,38(05):866-875. [138] 潘俊锋,康红普,闫耀东,等.顶板“人造解放层”防治冲击地压方法、机理及应用[J/OL].煤炭学报:1-11[2023-03-21].https://doi.org/10.13225/j.cnki.jccs.2022.1727. [139] 潘俊锋,陆闯,马小辉,等.井上下煤层顶板区域压裂防治冲击地压系统及应用[J/OL].煤炭科学技术:1-9[2023-03-21].https://doi.org/10.13199/j.cnki.cst.2022-0903. [140] 轩大洋,许家林,王秉龙.覆岩隔离注浆充填绿色开采技术[J].煤炭学报,2022,47(12):4265-4277. [141] 许家林,轩大洋,朱卫兵,等.基于关键层控制的部分充填采煤技术[J].采矿与岩层控制工程学报,2019,1(02):69-76. [142] 韩红凯,王晓振,许家林,等.覆岩关键层结构失稳后的运动特征与“再稳定”条件研究[J].采矿与安全工程学报,2018,35(04):734-741. [143] 蓝航.近直立特厚两煤层同采冲击地压机理及防治[J].煤炭学报,2014,39(增刊02):308-315. [144] 蓝航,杜涛涛.急倾斜特厚煤层开采冲击地压发生过程监测与分析[J].煤炭科学技术,2016,44(06):78-82. [145] 杜涛涛,李康,蓝航,刘旭东.近直立特厚煤层冲击地压致灾过程分析[J].采矿与安全工程学报,2018,35(01):140-145. [146] 林军,杜涛涛,刘旭东.近直立特厚煤层冲击危险源辨识及控制研究[J].煤炭科学技术,2021,49(06):119-125. [147] Vardoulakis I. Rock bursting as a surface instability phenomenon[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1984, 21(3):137-144. [148] Frid V. Electromagnetic radiation method water-infusion control in rockburst-prone strata[J]. Journal of Applied Geophysics, 2000, 43(1):5-13. [149] Urbancic T I, Trifu C I. Recent advances in seismic monitoring technology at Canadian mines[J]. Journal of Applied Geophysics, 2000, 45(4):225-237. [150] Arora S K, Willy Y A, Srinivasan C, et al. Local seismicity due to rockbursts and near-field attenuation of ground motion in the Kolar gold mining region, India[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38(5):711-719. [151] LURKA. Location of high seismic activity zones and seismic hazard assessment in Zabrze Bielszowice coal mine using passive tomography[J]. Journal of China University of Mining & Technology, 2008, 18(2):177-181. [152] 朱月明,潘一山,孙可明.急倾斜煤层开采解放层相似模拟实验[J].辽宁工程技术大学学报,2003,22(2):205-207. [153] 唐治,潘一山,李忠华,等.深部强冲击地压易发矿区厚煤层开采解放层卸压效果数值模拟[J].中国地质灾害与防治学报,2011,22(1):128-132. [154] 朱月明,张玉林,潘一山.急倾斜煤层冲击地压防治的可行性研究[J].辽宁工程技术大学学报,2003,22(3):332-333. [155] 关杰,孙可明,朱月明.急倾斜煤层开采解放层防治冲击地压数值模拟[J].辽宁工程技术大学学报,2002,21(4):411-413. [156] 窦林名,陆菜平,牟宗龙,等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报,2005,30(6):1-6. [157] 陆菜平,窦林名,吴兴荣,等.煤矿冲击矿压的强度弱化[J].工程科学学报,2007,29(11):1074-1078. [158] 张寅.深部特厚煤层巷道冲击地压机理及防治研究[D].中国矿业大学,2010. [159] 于正兴,姜福兴,桂兵,等.防治冲击地压的应力三向化理论研究及应用[J].煤炭科学技术,2011,39(7):1-4. [160] 陆菜平,刘海顺,刘彪,等.深部高应力异常集中区冲击矿压动态防治实践[J].煤炭学报,2010,35(12):1984-1989. [161] 齐庆新,李晓璐,赵善坤.煤矿冲击地压应力控制理论与实践[J].煤炭科学技术,2013,41(6):1-5. [162] 张智慧.大台井急倾斜煤层冲击地压及注水防治研究[D].辽宁工程技术大学,2003. [163] 袁亮,张平松.煤矿透明地质模型动态重构的关键技术与路径思考[J].煤炭学报,2023,48(01):1-14. [164] 袁亮,张平松.煤炭精准开采透明地质条件的重构与思考[J].煤炭学报,2020,45(07):2346-2356. [165] 王国法,徐亚军,张金虎,等.煤矿智能化开采新进展[J].煤炭科学技术,2021,49(01):1-10. [166] 葛世荣,张帆,王世博,等.数字孪生智采工作面技术架构研究[J].煤炭学报,2020,45(06):1925-1936. [167] 赵阳升,梁卫国,冯子军,等.原位改性流体化采矿科学、技术与工程[J].煤炭学报,2021,46(01):25-35. [168] 谢和平,鞠杨,高明忠,等.煤炭深部原位流态化开采的理论与技术体系[J].煤炭学报,2018,43(05):1210-1219. [169] 来兴平,伍永平,曹建涛,等.复杂环境下围岩变形大型三维模拟实验[J].煤炭学报,2010,35(01):31-36. [170] 崔峰,杨彦斌,来兴平,等.基于微震监测关键层破断诱发冲击地压的物理相似材料模拟实验研究[J].岩石力学与工程学报,2019,38(04):803-814. [171] 肖盛燮, 等著.灾变链式理论及应用[M]. 北京: 科学出版社, 2006 [172] 肖盛燮.生态环境灾变链式理论原创结构梗概[J].岩石力学与工程学报,2006(S1):2593-2602. [173] 梅涛,肖盛燮.基于链式理论的单灾种向多灾种演绎[J].灾害学,2012,27(03):19-21. [174] 李文,王东昊,李宏杰,等.煤矿采空区失稳灾害链式效应与链式类型研究[J].煤炭科学技术,2020,48(07):288-295. [175] 崔峰,来兴平,曹建涛,等.煤岩体耦合致裂作用下的强度劣化研究[J].岩石力学与工程学报,2015,34(S2):3633-3641. [176] 陈建强,来兴平,崔峰,等.急倾斜特厚煤层耦合致裂与破碎工艺研发及应用[J].西安科技大学学报,2015,35(02):139-143. [177] 崔峰,来兴平,曹建涛,等.煤体耦合致裂后整体–散体的等效转化及其垮放能力评估[J].岩石力学与工程学报,2015,34(03):565-571. [178] 来兴平,崔峰,曹建涛,等.特厚煤体爆破致裂机制及分区破坏的数值模拟[J].煤炭学报,2014,39(08):1642-1649. [179] 崔峰.复杂环境下煤岩体耦合致裂基础与应用研究[D].西安科技大学,2014.
﹀
|
中图分类号: |
TD325
|
开放日期: |
2025-06-29
|