论文中文题名: | 空间步进频雷达煤层近场目标参数估计方法研究 |
姓名: | |
学号: | 18207042027 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081002 |
学科名称: | 工学 - 信息与通信工程 - 信号与信息处理 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 雷达信号处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-18 |
论文答辩日期: | 2021-06-05 |
论文外文题名: | Research on Estimation Method of Target Parameters in Coal Seam Near Field by Spatial Stepped Frequency Radar |
论文中文关键词: | |
论文外文关键词: | Coal seam heterogeneous objects ; Spatial stepped frequency ; Sparse recovery ; Range-angle |
论文中文摘要: |
随着社会经济的不断发展,所需要的能源消耗也越发增加,煤炭资源作为重要的社会资源消耗之一,其开采的安全性和有效性越来越受到关注,在开采过程中能够及时得到煤层中物质信息可以有效的提高开采的安全性和有效性。探地雷达具有较好的穿透性和较快的探测速度,被广泛的用于井下煤层探测。传统的冲激脉冲雷达和单站时间步进频连续波雷达在煤层异质体探测中存在空间分辨率差、时间利用率低的问题,而多输入多输出的空间步进频雷达在接收端可以获得较大的带宽和孔径,具有较高的空间分辨率,因此,研究多输入多输出空间步进频雷达应用于煤层介质中的异质体探测具有十分重要的意义。 论文首先研究了空间步进频雷达的远场信号模型,利用发射信号的正交特性在接收端通过匹配分离将发射的各频点信号分离,建立接收信号模型。然后在煤层介质的基础上,根据近场模型的几何形状计算异质体相对于阵列的位置关系,得到距离和角度联合的近场等效接收信号模型。进一步,针对煤层异质体在少快拍和低信噪比情况下估计精度较低的问题,提出了基于2D-lq-SAMV稀疏恢复算法的距离-角度二维功率谱估计方法。仿真结果表明,所提的2D-lq-SAMV算法能准确的实现目标距离-角度的二维参数估计,相对于2D-MUSIC、NF-IAA和2D-SAMV算法,该方法在少快拍和低信噪比情况下具有较高的估计精度。 最后,针对煤层介质中存在邻近强弱不同异质体时估计性能下降的问题,提出了2D-lq-SAMV-CRELAX联合算法实现邻近强弱异质体的二维参数联合估计。仿真结果表明,相比于2D-RELAX算法,所提的2D-lq-SAMV-CRELAX算法能够有效的改善邻近强弱异质体的参数估计性能,更好的提高弱目标的参数估计准确度。 |
论文外文摘要: |
With the continuous development of social economy, the energy consumption is also increasing. As one of the important social resource consumption, the safety and effectiveness of coal mining have attracted more and more attention. The timely acquisition of material information in the coal seam during the mining process can effectively improve the safety and effectiveness of mining. Ground penetrating radar (GPR) has good penetrability and fast detection speed, which is widely used in underground coal seam detection. The traditional impulse radar and single station time stepped frequency continuous wave radar have the problems of poor spatial resolution and low time utilization in the detection of heterogeneous objects in coal seam. The spatial stepped frequency radar with multiple-input and multiple-output (MIMO) can obtain larger bandwidth and aperture at the receiving end, and has higher spatial resolution. Therefore, it is of great significance to study the application of multi-input and multi-output spatial stepped frequency radar to heterogeneous body detection in coal seam media. In this paper, the far-field signal model of spatial stepped frequency radar is studied firstly. By using the orthogonality of the transmitted signal, the transmitted signals of each frequency point are separated by matching separation at the receiving end, the receiving signal model is established. Then, based on the coal seam medium, the position relationship between the heterogeneous body and the array is calculated according to the geometry of the near-field model, and the near-field equivalent received signal model with joint range and angle is obtained. Furthermore, to solve the problem of low estimation accuracy of coal seam heterogeneous bodies in the case of few snapshots and low signal-to-noise ratio, a range-angle two-dimensional power spectrum estimation method based on 2D-lq-SAMV sparse recovery algorithm is proposed. The simulation results show that the proposed 2D-lq-SAMV algorithm can accurately estimate the range-angle parameters of the target. Compared with 2D-MUSIC, NF-IAA and 2D-SAMV, the proposed method has higher estimation accuracy in the case of less snapshots and low signal-to-noise ratio. Finally, in view of the problem that the estimation performance is degraded when there are adjacent strong and weak heterogeneous bodies in coal seam media, the 2D-lq-SAMV-CRELAX joint algorithm is proposed to realize the joint estimation of two-dimensional parameters of adjacent strong and weak heterogeneous bodies. Simulation results show that, compared with 2D-RELAX algorithm, the proposed 2D-lq-SAMV-CRELAX algorithm can effectively improve the parameter estimation performance of adjacent strong and weak heterogeneous bodies, and better improve the parameter estimation accuracy of weak targets. |
参考文献: |
[1] 王康, 李冬. 探地雷达在煤矿井下地质预报中的应用[J]. 煤炭技术, 2018,37(06): 124-127. [2] 程江洲, 陈秋航, 卞九洲, 等. 探地雷达技术在变电站地层隐蔽管线探测中的应用[J]. 现代雷达, 2021, 43(02): 82-88. [3] 董鹏曙, 向龙, 谢幼才, 等. 综合脉冲孔径雷达的一种长时间相参积累方法[J]. 空军预警学院学报, 2020, 34(06): 397-401. [4] 李靖翔, 赵明, 赖皓, 等. 地下电缆的探地雷达图像特征与识别技术[J]. 物探与化探, 2020, 44(06): 1482-1489. [5] 乔旭, 赵学军, 杨峰, 等. 城市道路地基病害核匹配追踪识别算法[J]. 中国公路学报, 2017, 30(5): 44-51. [6] 金光来, 臧国帅, 蔡文龙, 等. 基于探地雷达的路面结构完整性定量化评价方法[J]. 公路, 2020, 65(05): 16-20. [7] 程琦, 张世文, 罗明, 等. 基于探地雷达粉煤灰充填复垦土壤含水率反演[J/OL]. 地球物理学进展, 2021-02-07. [12] 曹树刚, 刘勇, 杨红运, 等. 基于地质雷达与3DEC回采巷道支护优化研究[J]. 地下空间与工程学报, 2017, 13(增2): 777-783. [13] 王昕, 丁恩杰, 胡克想, 等. 煤岩散射特性对探地雷达探测煤岩界面的影响[J]. 中国矿业大学学报, 2016, 45(1): 34-41. [14] 刘帅, 赵文生, 高思伟. 超宽带探地雷达煤层厚度探测试验研究[J]. 煤炭科学技术, 2019, 47(08): 207-212. [15] 张开伟, 聂庆科, 王世淼, 等. 基于矿井隧道施工地质雷达预报技术的应用研究[J]. 中国矿业, 2017, 26(2): 391-395. [16] 段毅, 许献磊. 地质雷达超前探测在常村煤矿的应用研究[J]. 中国矿业, 2017, 26(8): 150-153. [17] 李冬, 杜文凤, 许献磊. 矿井地质雷达超前探测方法及应用研究[J]. 煤炭科学技术, 2018, 46(07): 223-228. [18] 崔凡, 耿晓航, 俞慧婷, 等. 基于探地雷达的煤层小构造超前探测[J]. 煤矿安全, 2019, 50(5): 153-157. [20] 郭继坤, 赵清, 陈司晗. 基于相位补偿的矿井超宽带雷达压缩感知成像算法[J]. 煤炭科学技术, 2020, 48(01): 211-218. [21] 闫锋刚, 沈毅, 刘帅, 等. 高效超分辨波达方向估计算法综述[J]. 系统工程与电子技术, 2015, 37(07): 1465-1475. [22] 陈建, 田野, 孙晓颖. 基于稀疏谱匹配的高分辨DOA估计方法[J]. 北京理工大学学报, 2016, 36(10): 1043-1047. [24] 王秀红. 基于稀疏表示的波达方向估计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [25] 陈宝欣, 黄勇, 陈小龙, 等. 基于迭代超分辨的单快拍DOA估计方法[J]. 信号处理, 2019, 35(05): 775-780. [33] 贺顺, 杨志伟, 张娟, 等. 自适应加权修正的强弱信号Capon谱估计方法[J]. 系统工程与电子技术, 2013, 35(05): 905-908. [34] 徐亮, 曹操, 廖桂生, 等. 基于特征波束形成的强弱信号波达方向与信源数估计[J]. 电子与信息学报, 2011, 33(2): 321-325. [35] 方庆园, 韩勇, 金铭, 等. 基于噪声子空间特征值重构的DOA估计算法[J]. 电子与信息学报, 2014(12): 86-91. [36] 贺顺. 阵列信号处理若干关键问题研究[D]. 西安: 西安电子科技大学, 2015. [37] 束宇翔, 杨磊, 金术玲, 等. 基于伪协方差矩阵的强弱邻近信源DOA估计方法[J]. 舰船电子对抗, 2015, 38(05): 34-38. [40] 马菁涛, 陶海红, 黄鹏辉. 一种用于密集强弱目标速度高分辨估计的IAA-MCapon算法[J]. 电子学报, 2016, 44(07): 1605-1612. [41] 袁浩娟, 刘国满, 姜伟, 等. 步进频信号距离-多普勒成像的干扰抑制[J]. 系统工程与电子技术, 2009, 31(9): 2059-2062. [42] 赵光辉, 陈伯孝, 杨雪亚. SIAR体制单基地MIMO雷达分辨率分析及距离高分辨技术[J]. 系统工程与电子技术, 2010, 32(1): 57-61+66. [43] 王旭, 纠博, 周生华, 等. 基于脉冲串编码的MIMO雷达距离旁瓣抑制方法[J]. 电子与信息学报, 2012, 34(12): 2948-2953. [44] 卢再奇, 曾祥桂, 夏阳. 频率步进雷达距离高分辨旁瓣抑制自适应脉冲压缩算法[J]. 国防科技大学学报, 2016, 38(6): 154-160. [46] 巩朋成, 刘刚, 黄禾等. 频控阵MIMO雷达中基于稀疏迭代的多维信息联合估计方法[J]. 雷达学报, 2018, 7(2): 194-201. [49] 王波, 刘德亮. 基于迭代自适应方法的近场源二维参数联合估计[J]. 计算机应用, 2019, 39(02): 523-527. |
中图分类号: | TN958 |
开放日期: | 2021-06-18 |