- 无标题文档
查看论文信息

论文中文题名:

 基于巷道围岩能量分析的锚杆支护技术研究    

姓名:

 高占    

学号:

 19204209117    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 岩土力学与工程应用    

第一导师姓名:

 谷拴成    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Research on bolt support technology based on energy analysis of roadway surrounding rock    

论文中文关键词:

 巷道围岩 ; 围岩分区 ; 能量分析 ; 支护技术 ; 稳定性评价    

论文外文关键词:

 surrounding rock of roadway ; surrounding rock partition ; energy analysis ; support technology ; stability evaluation    

论文中文摘要:

近年随着煤炭行业的规模化发展,矿井的工程地质条件越来越复杂。复杂的工况导致巷道出现各种失稳破坏现象,选择合理的支护参数是防止失稳现象发生的重要措施。目前的支护参数设计方法大多为静力设计方法,从能量角度进行围岩和支护的分析是一种新角度的支护设计方法,对优化支护参数有着重要的工程意义。本文通过理论分析得到了理想弹性、理想弹塑性及弹—脆—塑性圆形三种情况下的能量分布,提出了围岩能量释放机理,得到了锚杆的吸能计算公式,确定锚杆和围岩的能量转化准则,提出了能量支护理论。以某煤矿回风及运输大巷为工程依托,对能量支护理论进行了合理性验证。论文主要研究成果如下:

(1)建立了理想弹性假设和理想弹塑性假设圆形巷道模型,推导出了理想弹性假设和理想弹塑性假设下圆形巷道模型弹性应变能及其密度分布式,得到理想弹塑性假设圆形巷道模型能量释放公式,提出围岩塑性区的能量释放机理。

(2)基于围岩变形程度和应力重分布状态分析将围岩分为破碎区、塑性区及弹性区,得出了弹—脆—塑性圆形巷道模型破碎区的弹性应变能及密度分布,确定了围岩破碎区和塑性区的能量释放机理。

(3)根据锚杆工作机理,推导出了普通锚杆、让压锚杆的吸能计算公式,根据围岩能量释放机理和锚杆吸能公式,确定了支护与围岩能量转化准则,提出了一种基于围岩能量分析的支护理论(简称能量支护理论)。

(4)根据某煤矿岩层地质参数、巷道几何参数,分别采用传统支护理论和能量支护理论进行锚杆支护参数设计。对两种支护设计方案参数利用FLAC3D6.0数值模拟软件进行巷道应力、塑性区、竖向位移的对比分析,符合工程要求,验证了本文理论的合理性。

(5)在某煤矿回风、运输大巷进行现场工业性试验,对某煤矿运输大巷试验段某断面采用能量支护理论进行支护,在回风大巷设置对照组,分别对两组监测结果进行对比分析。结果表明,在保证巷道稳定性的前提下,能量支护理论可以较好地发挥锚杆的支护作用,节约一定支护成本。

论文外文摘要:

In recent years, with the large-scale development of the coal industry, the engineering geological conditions of the mine are more and more complex. Complex working conditions lead to various instability and failure phenomena of roadway. Choosing reasonable support parameters is an important measure to prevent instability. The current design method of support parameters is mostly static design method. The analysis of surrounding rock and support from the energy point of view is a new support design method, which has important engineering significance for optimizing support parameters. In this paper, the energy distribution of ideal elasticity, ideal elastic-plasticity and elastic-brittle-plastic circle is obtained through theoretical analysis. The energy release criterion of surrounding rock is proposed, and the energy absorption calculation formula of anchor is obtained. The energy conversion criterion of anchor and surrounding rock is determined, and the energy support theory is proposed. Based on the return air and transportation roadway of a coal mine, the rationality of energy support theory is verified. The main research results are as follows :

(1) The ideal elastic assumption and the ideal elastic-plastic assumption circular roadway model are established.The elastic strain energy and its density distribution of the circular roadway model under the ideal elastic assumption and the ideal elastic-plastic assumption are derived.The energy release formula of the circular roadway model under the ideal elastic-plastic assumption is obtained, and the energy release mechanism of the plastic zone of the surrounding rock is proposed.

(2) Based on the stress redistribution analysis of surrounding rock, the surrounding rock is divided into fracture zone, plastic zone and elastic zone.The elastic strain energy and density distribution of elastic-brittle-plastic circular roadway model fracture zone are obtained, and the energy release mechanism of surrounding rock fracture zone and plastic zone is determined.

(3) According to the working mechanism of bolt, the energy absorption formulas of ordinary bolt and pressure-transfer bolt are deduced. According to the energy release mechanism of surrounding rock and the energy absorption formula of bolt, the energy conversion criterion between support and surrounding rock is determined, and a support theory based on surrounding rock energy analysis ( referred to as energy support theory ) is proposed.

(4) According to the geological parameters and roadway geometric parameters of a coal mine, the traditional support theory and energy support theory are used to design the bolt support parameters. Two kinds of support design parameters using FLAC3D6.0numerical simulation software for roadway stress, plastic zone, vertical displacement comparative analysis, verify the rationality of this theory.

(5) Field industrial tests were carried out in the return air and transportation roadway of a coal mine. The energy support theory was used to support a certain section of the test section of the transportation roadway of a coal mine, and the control group was set in the return air roadway. The monitoring results of the two groups were compared and analyzed. The results show that under the premise of ensuring the stability of roadway, the energy support theory can better play the supporting role of bolt and save a certain support cost.

参考文献:

[1] 康红普. 我国煤矿巷道锚杆支护技术发展60年及展望[J]. 中国矿业大学学报, 2016, 45(6): 1071-1081.

[2] 康红普,王金华,林健. 煤矿巷道支护技术的研究与应用[J]. 煤炭学报, 2010, 35(11): 1809-1814.

[3] 侯朝炯,勾攀峰. 巷道锚杆支护围岩强度强化机理研究[J]. 岩石力学与工程学报, 2000(3): 342-345.

[4] 董方庭,宋宏伟,郭志宏,等. 巷道围岩松动圈支护理论[J]. 煤炭学报, 1994(1): 21-32.

[5] RA Loomis, BA Mcguire, CH Johnson, S Blair, A Robertson, AJ Remijan. Investigating the minimum energy principle in searches for new molecular species the case of h2c3o isomers[J]. Astrophysical Journal, 2015, 799(341).

[6] 陈昊祥, 王明洋, 戚承志,等. 深部圆形巷道围岩能量的调整机制及平衡关系[J]. 岩土工程学报, 2020, 42(10):9.

[7] ZZ Zhang, F Gao, XJ Shang. Rock burst proneness prediction by acoustic emission test during rock deformation[J]. Journal of Central South University, 2014, 21(1): 373-380.

[8] M Gao, Y Zhao, C Xi, Q Lu, A Liu. Destruction mechanism of rock burst in mine roadways and their prevention[J], 2016, 6(5): 34-43.

[9] JL Bonner, DR Russell, RE Reinke. Modeling surface waves from aboveground and underground explosions in alluvium and limestone[J]. Bulletin of The Seismological Society of America, 2013, 103(6): 2953-2970.

[10] 赵阳升,冯增朝,万志军. 岩体动力破坏的最小能量原理[J]. 岩石力学与工程学报, 2003(11): 1781-1783.

[11] 张志镇,高峰. 受载岩石能量演化的围压效应研究[J]. 岩石力学与工程学报, 2015, 34(1): 1-11.

[12] 张志镇,高峰. 单轴压缩下红砂岩能量演化试验研究[J]. 岩石力学与工程学报, 2012, 31(5): 953-962.

[13] D Huang, Y Li. Conversion of strain energy in triaxial unloading tests on marble[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 160-168.

[14] B Dai, GY Zhao, H Konietzky, PLP Wasantha. Experimental investigation on damage evolution behaviour of a granitic rock under loading and unloading[J], 2018, 25(5): 1213-1225.

[15] 赵忠虎,鲁睿,张国庆. 岩石失稳破碎的能量原理分析[J]. 金属矿山, 2006(10): 17-20, 37.

[16] 赵忠虎,谢和平. 岩石变形破坏过程中的能量传递和耗散研究[J]. 四川大学学报(工程科学版), 2008(2): 26-31.

[17] 谢和平,鞠杨,黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005(17): 3003-3010.

[18] 谢和平,彭瑞东,鞠杨,等. 岩石破坏的能量分析初探[J]. 岩石力学与工程学报, 2005(15): 2603-2608.

[19] 谢和平,彭瑞东,鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004(21): 3565-3570.

[20] 谢和平,鞠杨,黎立云,等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008(9): 1729-1740.

[21] 黎立云,徐志强,谢和平,等. 不同冲击速度下岩石破坏能量规律的实验研究[J]. 煤炭学报, 2011, 36(12): 2007-2011.

[22] 华安增,孔园波,李世平,等. 岩块降压破碎的能量分析[J]. 煤炭学报, 1995(4): 389-392.

[23] 彭瑞东,谢和平,鞠杨. 砂岩拉伸过程中的能量耗散与损伤演化分析[J]. 岩石力学与工程学报, 2007(12): 2526-2531.

[24] 白琦,肖明. 基于能量法的地下隧洞动静力稳定性分析[J]. 工程科学与技术, 2018, 50(3): 247-255.

[25] 陈卫忠,吕森鹏,郭小红,等. 基于能量原理的卸围压试验与岩爆判据研究[J]. 岩石力学与工程学报, 2009, 28(8): 1530-1540.

[26] 尤明庆,华安增. 岩石试样破坏过程的能量分析[J]. 岩石力学与工程学报, 2002(6): 778-781.

[27] H Zhao, Y Liu, D Ji, T Wu. Analysis on Energy Adjustment Mechanism and Stability of Roadway Surrounding Rock Based on Anchoring Mechanics[J]. Arabian Journal of Geosciences volume 15, 2022, 206.

[28] Y Ding, Z Tan, S Li, R Huo, Y Ma. Research on Tunnel Surrounding Rock Failure and Energy Dissipation Based on Cyclic Impact and Shear Loading[J]. Advances in Civil Engineering, 2021(5):1-15.

[29] Pan Y, Wang Z Q, Wu M Y .Analysis and calculation of energy release and deviatoric stress energy generation of surrounding rock in tunnel excavation process[J]. Rock and Soil Mechanics, 2007.

[30] 李子运. 深埋隧道围岩变形能演化及分布规律研究[D]. 西南交通大学, 2019.

[31] X Dong, A Karrech, H Basarir, M Elchalakani, C Qi. Analytical solution of energy redistribution in rectangular openings upon in-situ rock mass alteration[J]. International Journal of Rock Mechanics& Mining Sciences, 2018, 106: 74-83.

[32] A Jaworski. Searching for the relationship between seismicity level and analytically calculated increase of elastic strain energy[J]. Acta Mont, 2000, 118.

[33] A Jaworski. Description of induced seismicity level basing on analytically calculated changes of elastic energy in rock layers subjected to deformation[J]. Acta Geodyn Et Geomater, 2004, 1: 7-17.

[34] 赖应得,崔兰秀,孙惠兰. 能量支护学概论[J]. 山西煤炭, 1994(5): 17-23.

[35] 赖应得,钱佩. 用能量支护理论设计井巷锚喷支护[J]. 煤矿设计, 1993(4): 10-15, 44.

[36] 赖应得. 能量支护学[M]. 北京: 煤炭工业出版社, 2020.

[37] 华安增. 地下工程周围岩体能量分析[J]. 岩石力学与工程学报, 2003(7): 1054-1059.

[38] 朱汉华,吴志军,王迎超,等. 地下工程平衡稳定理论再研究[J]. 隧道建设(中英文), 2019, 39(8): 1221-1231.

[39] Nicholls H R . Coupling Explosive Energy to Rock[J]. Geophysics, 2012, 27(3):305.

[40] Lu A , Xu J , Xia Y , et al. Study on Dynamic Behavior and Energy Dissipation of Rock considering Initial Damage Effect[J]. Shock and Vibration, 2021, 2021(11):1-10.

[41] 朱初初. 基于能量分析的锚杆与锚索协同支护研究[D]. 中国矿业大学, 2015.

[42] Wiles T, Marisett S, Martin C. Correlation between local energy release density and observed bursting conditions at Creighton mine[J]. Mine modelling report.Sudbury,Canada, 1998.

[43] Potvin Y, Hudyma M, Wiles T D. Rock burst Prediction Using Numerical Modelling: Realistic Limits for Failure Prediction Accuracy[J], 2005.

[44] Beck D A, Brady B H G. Evaluation and application of controlling parameters for seismic events in hard-rock mines[J]. International Journal of Rock Mechanics&Mining Sciences, 2002, 39(5): 633-642.

[45] Quan Jiang, Xia-Ting Feng, Tian-Bing Xiang, Guo-Shao Su. Rock burst characteristics and numerical simulation based on a new energy index: a case study of a tunnel at 2,500m depth[J]. Bulletin of Engineering Geology & the Environment, 2010, 69(3): 381-388.

[46] J Xu, J Jiang, N Xu, Q Liu, Y Gao. A new energy index for evaluating the tendency of rockburst and its engineering application[J]. Engineering Geology, 2017, 230: 46-54.

[47] 秦四清. 初论岩体失稳过程中耗散结构的形成机制[J]. 岩石力学与工程学报, 2000(3): 265-269.

[48] 张斌川. 基于能量平衡理论的深部软岩巷道支护技术研究[D]. 中国矿业大学(北京), 2015.

[49] 范勇,江璐,卢文波,等. 圆形隧洞爆破荷载与瞬态卸荷作用围岩应变能效应研究[J]. 岩石力学与工程学报, 2017, 36(8): 1855-1866.

[50] 严鹏,谢良涛,范勇,等. 不同开挖方式下深部岩体应变能的释放机制[J]. 煤炭学报, 2015, 40(S1): 60-68.

[51] Y.Fan, W.B.Lu, P.Yan, M.Chen, Y.Z.Zhang. Transient characters of energy changes induced by blasting excavation of deep-buried tunnels[J]. Tunnelling and Underground Space Technology, 2015, 49: 9-17.

[52] J.-A.Wang, H.D.Park. Comprehensive prediction of rockburst based on analysis of strain energy in rocks[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2001, 16(1): 49-57.

[53] Xiangjian Dong, Ali Karrech, Hakan Basarir, Mohamed Elchalakani, Abdennour Seibi. Energy Dissipation and Storage in Underground Mining Operations[J]. Rock Mechanics and Rock Engineering, 2018.

[54] 靖洪文,宋宏伟,郭志宏. 软岩巷道围岩松动圈变形机理及控制技术研究[J]. 中国矿业大学学报, 1999(6): 43-47.

[55] 程良奎,范景伦,韩军. 岩土锚固[M]. 北京: 中国建筑工业出版社, 2003.

[56] 陈庆敏,郭颂. 基于高水平地应力的锚杆“刚性”梁支护理论及其设计方法[C]//21世纪高效集约化矿井学术研讨会论文集: 《煤炭学报》编辑部, 2001: 116-120.

[57] G Song, J Stankus. Control mechanism of a tensioned bolt system in the laminated roof with a large horizontal stress[C]//The 16th Int.Conf.on Ground Control in Mining. Morgantown, 1997: 167-172.

[58] 康红普,姜铁明,高富强. 预应力在锚杆支护中的作用[J]. 煤炭学报, 2007, 154(7): 680-685.

[59] 张农,高明仕. 煤巷高强预应力锚杆支护技术与应用[J]. 中国矿业大学学报, 2004 (5) : 34-37.

[60] 单仁亮,杨昊,钟华,等. 让压锚杆能量本构模型及支护参数设计[J]. 中国矿业大学学报, 2014, 43(2): 241-247.

[61] 刘洪涛,王飞,王广辉,等. 大变形巷道顶板可接长锚杆支护系统性能研究[J]. 煤炭学报, 2014, 39(4): 600-607.

[62] 祝启虎,卢文波,孙金山. 基于能量原理的岩爆机理及应力状态分析[J]. 武汉大学学报(工学版), 2007, 185(2): 84-87.

[63] Jianhang Chen, FulianHe, ShoubaoZhanga. A study of the load transfer behavior of fully grouted rock bolts with analytical modelling[J]. International Journal of Mining Science and Technology, 2020, 30: 105-109.

[64] Charlie Chunlin Li. A new energy-absorbing bolt for rock support in high stress rock masses[J]. International Journal of Rock Mechanics&Mining Sciences, 2010, 47: 396.

[65] YasuhiroYokota, Zhiye Zhao, Wen Nie, Kensuke Date,Keita Iwano, Yu Koizumic , Yuko Okadac. Development of a new deformation-controlled rock bolt: Numerical modelling and laboratory verification[J]. Tunnelling and Underground Space Technology, 20200, 98: 103305.

[66] Wang M . Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance.

[67] I.w.farmer. Stress Distribution along a Resin Grouted Rock Anchor[J]. nt.,l.Rock Mech. Mm.Sci.&Geomech.Abstr., 12.

[68] 何满潮,李晨,宫伟力. 恒阻大变形锚杆冲击拉伸实验及其有限元分析[J]. 岩石力学与工程学报, 2015, 34(11): 2179-2187.

[69] 何满潮,郭志飚. 恒阻大变形锚杆力学特性及其工程应用[J]. 岩石力学与工程学报, 2014, 33(7): 1297-1308.

[70] 孙晓明,王冬,王聪,等. 恒阻大变形锚杆拉伸力学性能及其应用研究[J]. 岩石力学与工程学报, 2014, 33(9): 1765-1771.

[71] 徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 2016.030000.

[72] 沈明荣,陈建峰. 岩体力学[M]. 上海: 同济大学出版社, 2015.800000.

[73] 郑颖人,孔亮. 岩土塑性力学[M]. 北京: 中国建筑工业出版社, 2010.050000.

[74] 蒋斌松,张强,贺永年,韩立军.深部圆形巷道破碎围岩的弹塑性分析[J]. 岩石力学与工程学报, 2007, 26(5): 982-986.

中图分类号:

 TD353    

开放日期:

 2023-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式