- 无标题文档
查看论文信息

题名:

 不同年龄矿工风险感知的认知机理及分类识别模型研究    

作者:

 武蓉    

学号:

 19120089008    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 应急与安全管理    

导师姓名:

 李红霞    

导师单位:

 西安科技大学    

提交日期:

 2025-06-23    

答辩日期:

 2025-06-12    

外文题名:

 A Study on the Cognitive Mechanism and Classification Recognition Model of Risk Perception in Miners of Different Ages    

关键词:

 矿工 ; 年龄 ; 风险感知 ; 认知机理 ; 分类识别模型 ; 认知神经方法    

外文关键词:

 Miner ; Age ; Risk Perception ; Cognitive Mechanism ; Classification Recognition Model ; Cognitive Neuroscience Method    

摘要:

摘  要

全球人口老龄化正加速演进为不可逆的历史进程,其引发的劳动力结构性变迁将对21世纪人类社会产生深远影响。在采矿业这一高危基础产业领域,矿工老龄化现象尤为值得关注:随着我国人口预期寿命持续攀升(2024年已达79岁)、“60后”劳动群体进入职业衰退期以及总和生育率持续低位运行,年长矿工群体正成为采掘作业的主力军,这一趋势在未来20年内将呈现持续强化态势。煤矿安全生产作为国家能源安全的战略基石,其风险防控体系正面临前所未有的复合型挑战。高龄劳动者在生理机能、应急反应、技术适应等方面存在天然劣势,企业安全培训体系、人机工程优化和设备适老化改造亟待升级,这一转变直接关涉国家能源供应链韧性、区域经济可持续发展及社会治理效能。因而,开展不同年龄矿工风险感知的认知机理研究是老龄化时代背景下保障煤炭企业安全生产水平亟待解决的重要现实问题。本文聚焦矿工风险感知能力的年龄差异,构建融合个体特征、认知偏差与神经机制的研究框架。通过编制风险感知量表与实地调研,分析年龄等因素对风险感知的影响,提取关键感知特征,划分年龄画像,并结合fNIRS技术测量认知神经差异,最终建立适用于不同年龄矿工的风险感知状态识别模型,为煤矿作业中个体化风险预警与干预提供支持。主要研究内容和结论如下:

(1)揭示了个体生理状态与经验水平在风险认知中的互动关系,发现矿工对风险的主观感知偏差已成为诱发事故的重要心理机制。本文以认知老化理论与Haddon矩阵为理论基础,围绕年龄相关的生理与经验变化如何影响矿工风险感知偏差进行研究设计,构建分析框架并提出6条针对性研究假设。通过对398份有效问卷数据进行信效度检验、相关性分析与层级回归建模,验证了年龄变化-生理衰退和经验积累-风险感知偏差的路径机制,识别了经验积累与生理衰退的双重调节作用。研究结果揭示了个体生理状态与经验水平在风险认知中的互动关系,为提升矿工风险辨识能力和制定差异化干预策略提供了理论依据和实证支持。

(2)揭示了不同年龄矿工风险感知差异及其动态演化规律。综合运用安全科学、心理学与认知科学理论,采用扎根理论提取矿工风险感知影响因素,进行核心维度划分;基于煤矿全年龄层矿工样本,采用问卷调研,通过结构方程模型SEM关联路径分析,解析矿工个体安全状态、安全素养、组织支持与风险感知的交互路径,结合K-means聚类算法,量化年龄对风险感知的调节效应及群体异质性特征,构建年轻矿工与年长矿工风险感知特征标签体系;通过独立样本T检验,检验年轻矿工与年长矿工风险感知的显著敏感标签,以此为依据,构建不同年龄矿工风险感知特征画像。研究发现:年轻矿工风险感知呈现“情绪-环境”双驱动模式,心理状态的焦躁不安、紧张感与工作环境的有毒有害气体显著正向驱动风险感知,而组织支持的负向调节效应揭示了其对管理实效性的高敏感性;年长矿工表现为“经验-知识”协同驱动模式,安全素养与事故细节预警通过认知框架重构增强风险判断,但生理状态的慢性疲劳与心理状态的失控性担忧导致风险响应迟滞;基于风险感知敏感指标的聚类分析,“绘制”年龄分层的风险感知特征画像,将年轻矿工划分为失衡高敏型矿工和规则游离型矿工,年长矿工划分为知识缺位型矿工、意识疏离型矿工和态度钝化型矿工。本文通过融合跨学科理论与大样本分析方法,构建了矿工风险感知的评估框架,为矿山安全管理提供了从“群体普适”到“个体精准”的理论模式突破打开了一个窗口。

(3)明确了呈现年龄差异的矿工风险感知的认知神经特征。在所有实验任务中,左侧前额叶表现出对风险感知状态的显著敏感性,是识别矿工是否具备风险感知的关键脑区。当矿工处于有风险感知状态时,其左侧前额叶的HbO浓度t值显著升高,而在无风险感知状态下则明显降低。进一步分析显示,不同年龄矿工在风险感知状态下的脑部激活程度存在显著差异,年轻矿工在高风险情境中左侧前额叶的神经响应更为强烈,表现出更高的t值,反映其对风险信息的加工能力较强。此外,在无风险感知状态下,年轻与年长矿工在通道8和13所对应的前额叶区域HbO浓度均值存在显著差异,提示年龄因素在风险感知的神经加工过程中具有重要影响。该研究从神经层面揭示了不同年龄矿工风险感知能力的结构性差异,为理解个体在高危作业中的风险响应机制提供了实证依据。

(4)构建不同年龄矿工风险感知状态识别模型,并验证模型的可行性。采用ReliefF算法和Kruskal Wallis算法,优选矿工风险感知状态相关的多源异构数据关键特征指标,通过决策树、支持向量机、集成学习和神经网络4种机器学习分类器分别训练了年长和年轻矿工风险感知状态4分类和2分类识别模型,对5折交叉验证得出的高准确率模型进行评估,通过测试集测试了4种分类器各自最优模型的鲁棒性。结果表明:所训练矿工风险感知状态4分类和2分类最优模型中,EL模型的4分类平均准确率最高可达40.16%,SVM模型的2分类平均准确率最高可达90.42%;本研究构建的不同年龄矿工风险感知状态识别模型分类结果表明,使用可穿戴式便携fNIRS进行矿工风险感知状态识别是可行的。

综上所述,本研究围绕年龄相关因素对风险感知偏差的作用机制展开分析,识别了生理退化与经验积累在不同年龄群体中的影响路径,并构建了年轻矿工与年长矿工的风险感知特征标签体系;揭示了不同年龄矿工风险感知的认知神经特征和机理;构建了矿工风险感知状态识别模型。研究结果进一步拓展了神经安全管理的理论和实践视野,有助于推动煤矿安全管理模式由粗放型事后结果管理向精准事前预防转型。

外文摘要:

ABSTRACT

Global population aging is accelerating into an irreversible historical process, bringing profound structural changes to the labor force that will significantly impact 21st-century human society. In the mining industry—one of the most hazardous foundational sectors—this aging trend among workers warrants particular attention. With China’s life expectancy rising steadily (reaching 79 years in 2024), the “post-60s” labor group entering the late stage of their careers, and the country’s total fertility rate remaining persistently low, older miners are becoming the dominant workforce in extraction operations—a trend expected to intensify over the next two decades. As a strategic cornerstone of national energy security, coal mine safety is now facing unprecedented, multifaceted challenges. Elderly workers have inherent disadvantages in terms of physical function, emergency responsiveness, and adaptability to new technologies. Consequently, enterprise safety training systems, ergonomics optimization, and age-friendly equipment upgrades are urgently needed. This demographic shift directly affects the resilience of national energy supply chains, regional economic sustainability, and the overall effectiveness of social governance. Therefore, investigating the cognitive mechanisms underlying risk perception across different age groups of miners has become a critical and urgent issue for ensuring safety in coal enterprises under the context of aging. This study focuses on age-related differences in miners’ risk perception capabilities and constructs an integrated research framework combining individual characteristics, cognitive bias, and neurophysiological mechanisms. By developing a risk perception scale and conducting field surveys, the study analyzes the influence of age and other factors on risk perception, extracts key perceptual features, and categorizes age-specific profiles. It further incorporates fNIRS (functional near-infrared spectroscopy) technology to measure cognitive neural differences, ultimately establishing risk perception state recognition models tailored to miners of different age groups. This provides scientific support for personalized risk warning and intervention strategies in coal mine operations. The main research contents and conclusions are as follows:

(1) This study reveals the interactive relationship between individuals’ physiological states and experience levels in risk cognition, identifying miners’ subjective risk perception bias as a critical psychological mechanism contributing to accidents. Grounded in cognitive aging theory and the Haddon Matrix, the research is designed to explore how age-related changes in physiology and experience influence miners’ risk perception bias. An analytical framework is constructed, and six targeted research hypotheses are proposed. By conducting reliability and validity tests, correlation analysis, and hierarchical regression modeling on 398 valid questionnaire data, the path mechanisms of age change physiological decline and experience accumulation risk perception bias were validated, and the dual moderating effects of experience accumulation and physiological decline were identified. The research results reveal the interactive relationship between individual physiological status and experience level in risk cognition, providing theoretical basis and empirical support for improving miners’ risk identification ability and formulating differentiated intervention strategies.

(2) Revealed the differences in risk perception among miners of different ages and their dynamic evolution patterns. Integrating safety science, psychology, and cognitive science theories, using grounded theory to extract factors influencing miners' risk perception, and dividing them into core dimensions; Based on a sample of miners of all ages in coal mines, a questionnaire survey was conducted to analyze the interaction paths between individual safety status, safety literacy, organizational support, and risk perception through structural equation modeling SEM correlation path analysis. Combined with K-means clustering algorithm, the moderating effect of age on risk perception and group heterogeneity characteristics were quantified, and a risk perception feature label system for young and older miners was constructed; By conducting independent sample t-test, significant sensitive labels of risk perception between young and older miners are examined, and based on this, risk perception feature profiles of miners of different ages are constructed.Research has found that the risk perception of young miners presents a dual driving mode of ‘emotion environment’. The psychological state of restlessness, tension, and toxic and harmful gases in the work environment significantly positively drive risk perception, while the negative moderating effect of organizational support reveals their high sensitivity to management effectiveness; Older miners exhibit a ‘experience knowledge’ collaborative driving mode, where safety literacy and accident detail warning enhance risk assessment through cognitive framework reconstruction. However, chronic fatigue in physiological states and concerns about loss of control in psychological states lead to delayed risk response; Cluster analysis based on risk perception sensitive indicators is used to “draw” age stratified risk perception feature portraits, dividing young miners into imbalanced high-sensitivity miners and rule free miners, and older miners into knowledge deficiency miners, consciousness alienation miners, and attitude blunting miners. This article constructs an evaluation framework for miners’ risk perception by integrating interdisciplinary theories and large sample analysis methods, providing a breakthrough in theoretical models from ‘group universality’ to "individual precision" for mine safety management.

(3) Identification of age-related cognitive neural characteristics of miners’ risk perception. Across all experimental tasks, the left prefrontal cortex demonstrated significant sensitivity to risk perception states, serving as a key brain region for distinguishing whether miners possess risk awareness. When miners were in a state of risk perception, the HbO concentration t-values in the left prefrontal cortex significantly increased, whereas they notably decreased when no risk perception was present. Further analysis revealed significant differences in brain activation between miners of different age groups under risk perception conditions. Younger miners exhibited stronger neural responses in the left prefrontal cortex under high-risk scenarios, reflected by higher t-values, indicating a greater capacity for processing risk-related information. Moreover, in the absence of risk perception, significant differences were observed in the mean HbO concentrations in prefrontal regions corresponding to channels 8 and 13 between younger and older miners, suggesting that age plays a critical role in the neural processing of risk perception. This study unveils structural differences in risk perception abilities among miners of different ages at the neural level, providing empirical support for understanding individual risk response mechanisms in high-risk operations.

(4) Build a risk perception state recognition model for miners of different ages and verify the feasibility of the model. Using ReliefF algorithm and Kruskal Wallis algorithm, key feature indicators of multi-source heterogeneous data related to miners’ risk perception status were selected. Four machine learning classifiers, DT, SVM, EL, and NN, were used to train 4-classification and 2-classification recognition models for risk perception status of older and younger miners, respectively. The high-precision models obtained by 5-fold cross validation were evaluated, and the robustness of the optimal models of the four classifiers was tested on the test set. The results showed that among the trained miners’ risk perception state 4-classification and 2-classification optimal models, the EL model had the highest average accuracy of 40.16% for 4-classification, and the SVM model had the highest average accuracy of 90.42% for 2-classification; The classification results of the risk perception state recognition model for miners of different ages constructed in this study indicate that using wearable portable fNIRS for miner risk perception state recognition is feasible.

In summary, this study analyzes the mechanism by which age-related factors influence risk perception bias, identifies the impact pathways of physiological degradation and experience accumulation across different age groups, establishes a characteristic labeling system for the risk perception of both younger and older miners, draws a risk perception feature label system for young miners and older miners, constructs a risk perception state recognition model for miners, expands the theoretical and practical perspectives of neural safety management, and helps promote the transformation of coal mine safety management mode from extensive post result management to precise pre prevention.

参考文献:

参考文献

[1]刘丰,王维国,付裕.人口老龄化对工业化的影响及其传导机制研究[J/OL].系统工程理论与实践,1-18[2025-04-21].

[2]吴星星.我国人口老龄化对制造业结构升级的影响研究[J].现代商贸工业,2024,45(10):4-6.

[3]张轩.人口红利消失背景下建筑业经济增长模式的转变[J].经济研究导刊,2017,(29):53-54.

[4]邓磊,葛信勇.以人才红利推进教育强国:老龄社会下的大学育人系统革新[J].大学教育科学,2024,(02):14-23.

[5]联合国开发计划署.走向公正转型的未来:中国绿色转型对就业的影响[EB/OL].2023[2025-05-07].https://www.undp.org/sites/g/files/zskgke326/files/2023-08/paiban9gao0807_cn_zouxianggongzhengzhuanxingdeweilaizhongguolusezhuanxingduijiuyedeyingxiang.pdf.

[6]Kramer D M, Holness D L, Haynes E, et al. From awareness to action: Sudbury, mining and occupational disease in a time of change[J]. Work, 2017, 58(2): 149-162.

[7]Jiang P T, Hou Q, Cao Y, et al. Integral object mining via online attention accumulation[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 2070-2079.

[8]Margolis K A. Underground coal mining injury: A look at how age and experience relate to days lost from work following an injury[J]. Safety science, 2010, 48(4): 417-421.

[9]石亚勇.建筑工人年龄断层现象分析及探讨[J].安徽建筑,2014,21(05):212-213.

[10]苏虹.不同年龄产业工人科学素质的差异研究[J].科技传播,2023,15(24):30-34.

[11]王双明.对我国煤炭主体能源地位与绿色开采的思考[J].中国煤炭,2020,46(02):11-16.

[12]王双明,申艳军,宋世杰,等.“双碳”目标下煤炭能源地位变化与绿色低碳开发[J].煤炭学报,2023,48(07):2599-2612.

[13]袁亮.煤炭工业碳中和发展战略构想[J].中国工程科学,2023,25(05):103-110.

[14]Chen H, Qi H, Feng Q. Characteristics of direct causes and human factors in major gas explosion accidents in Chinese coal mines: Case study spanning the years 1980–2010[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(01): 38-44.

[15]Yang X, Chen Q. Mining violations, rent-seeking, and resource governance in China: evidence from central environmental protection inspection[J]. The Extractive Industries and Society, 2023, 13: 101218.

[16]Mościcka-Teske A, Sadłowska-Wrzesińska J, Najder A, et al. The relationship between psychosocial risks and occupational functioning among miners[J]. International Journal of Occupational Medicine and Environmental Health, 2019, 32(1): 87-98.

[17]Smeulders A W M, Chu D M, Cucchiara R, et al. Visual tracking: An experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(7): 1442-1468.

[18]Misthos L M, Pavlidis A, Karabassakis E, et al. Exploring the visual impact from open pit mines applying eye movement analyses on mining landscape photographs[J]. International Journal of Mining, Reclamation and Environment, 2020, 34(9): 609-624.

[19]孙仕琪.矿山智能化发展趋势研究[J].工程技术创新与发展,2025,3(4),73-75.

[20]邓蕾,周平.2022—2023年宜宾市翠屏区煤矿工人职业健康素养现状及影响因素分析[J].疾病预防控制通报,2025,40(02):10-14.

[21]师晶晶,朱熹阳,李玥毅,等.煤矿工人睡眠质量与心理健康状况相关性研究[J].人类工效学,2024,30(06):9-17.

[22]Yin W, Wu X, Ci H P, et al. Demographic variables in coal miners’ safety attitude[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2017, 59(1): 012030.

[23]Wang C, Wang J, Wang X, et al. Exploring the impacts of factors contributing to unsafe behavior of coal miners[J]. Safety science, 2019, 115: 339-348.

[24]Saha R, Dey N C, Samanta A, et al. A comparison of cardiac strain among drillers of two different age groups in underground manual coal mines in India[J]. Journal of Occupational Health, 2008, 50(6): 512-520.

[25]Cheberiachko S, Cheberiachko Y, Sotskov V, et al. Analysis of the factors influencing the level of professional health and the biological age of miners during underground mining of coal seams[J]. Mining of mineral deposits, 2018, 12(3): 87-96.

[26]Margolis K A. Underground coal mining injury: A look at how age and experience relate to days lost from work following an injury[J]. Safety science, 2010, 48(4): 417-421.

[27]Butani S J. Relative risk analysis of injuries in coal mining by age and experience at present company[J]. Journal of occupational accidents, 1988, 10(3): 209-216.

[28]程保全,黄健陵,董博,等.基于ERP实验的大龄建筑工人自我认知偏差研究[J].铁道科学与工程学报,2024,21(11):4767-4778.

[29]黄健陵,王肖茹,王成,等.基于ERP的社会排斥对建筑工人冒险行为影响研究[J/OL].铁道科学与工程学报,1-12[2025-04-22].

[30]申策,何源,胡正涛,等.基于DEMATEL-ISM的新生代建筑工人不安全行为因素研究[J/OL].工业安全与环保,1-7[2025-04-22].

[31]Fan X, Wang D, Tong Z, et al. Investigation and analysis of the safety risk factors of aging construction workers[J]. Safety science, 2023, 167: 106281.

[32]Idrees M D, Hafeez M, Kim J Y. Workers’ age and the impact of psychological factors on the perception of safety at construction sites[J]. Sustainability, 2017, 9(5): 745.

[33]Yang S, Wang T, Li H, et al. The Cross-Cutting Effects of Age Expectation and Safety Value on Construction Worker Safety Behavior: A Multidimensional Analysis[J]. Buildings, 2024, 14(8): 2290.

[34]Camino López M A, González Alcántara O J, Fontaneda I, et al. The risk factor of age in construction accidents: important at present and fundamental in the future[J]. BioMed research international, 2018, 2018(1): 2451313.

[35]田水承,郭谦.险兆事件矿工不安全行为意向研究[J].煤矿安全,2023,54(06):260-264.

[36]田水承,高晓颖,冯帅,等.矿工疲劳状态分析及评定研究[J].安全与环境学报,2024,24(07):2721-2730.

[37]成连华,赵帅.不同文化程度与工龄矿工习惯性违章差异研究[J].煤矿安全,2018,49(11):241-244+248.

[38]景国勋,雒赵飞.不同工龄矿工对警示语标识的视觉注意特征[J].安全与环境学报,2016,16(06):163-168.

[39]佟瑞鹏,赵辉,张娜等.矿工不安全行为涌现性建模研究[J].矿业科学学报,2020,5(03):311-319.

[40]安宇,王袆,李子琪,等.基于TPB的矿工不安全行为形成机制[J].中国安全科学学报,2020,30(10):20-26.

[41]禹敏,栗继祖.基于心理健康中介作用的安全压力对矿工安全行为的影响[J].煤矿安全,2019,50(12):253-256.

[42]禹敏,栗继祖,秦文静.心理社会安全氛围对矿工不安全行为的影响[J].中国安全科学学报,2022,32(7):34-40.

[43]Tian S, Hui L, Li H. Effectiveness Research of Safety Signs in Coal Mines Based on Eye Movement Experiment[C]//Human Interface and the Management of Information: Information, Knowledge and Interaction Design: 19th International Conference, HCI International 2017, Vancouver, BC, Canada, Proceedings, Part I 19. Springer International Publishing, 2017: 290-300.

[44]Tian C, Li H, Tian S, et al. The neurocognitive mechanism linking temperature and humidity with miners’ working memory: an fNIRS study[J]. Frontiers in Human Neuroscience, 2024, 18: 1414679.

[45]田水承,胥静,田方圆,等.基于EEG的夜班矿工疲劳检测[J].安全与环境学报,2022,22(04):2034-2040.

[46]Tetzlaff E J, Kirby N V, Ioannou L G, et al. An exploratory survey assessing the determinants of heat stress and heat strain in the Canadian mining industry from the worker’s perspective[J]. Journal of Occupational and Environmental Hygiene, 2025: 1-25.

[47]Wu G, Liu H, Wu S, et al. Can heart rate variability (HRV) be used as a biomarker of thermal comfort for mine workers?[J]. International Journal of Environmental Research and Public Health, 2021, 18(14): 7615.

[48]Das S, Maiti J. Assessment of cognitive workload based on information theory enabled eye metrics[J]. Safety Science, 2024, 176: 106567.

[49]Chen Y, Chai P, Gu Q, et al. Research on the effects of operational fatigue and bagging-SVM recognition of deep coal mine workers[J]. Journal of Loss Prevention in the Process Industries, 2025, 94: 105508.

[50]杨雪,田阳,宋爱峰,等.Bradley Curve视角下矿工违章行为的惩罚机制分析[J].管理学报,2021,18(08):1238-1244.

[51]张晶,栗继祖.社会支持对智能化矿井矿工违章行为的影响——缓解职业倦怠和心智游移的方法研究[J].中国安全生产科学技术,2021,17(03):162-168.

[52]李静,冒香凝,吴悠,等.托管视角下矿工违章行为的动态演化博弈分析[J].煤炭经济研究,2024,44(11):159-165.

[53]Zhou K, Wang Q, Tang J. Tripartite evolutionary game and simulation analysis of coal mining safe production supervision under the Chinese central government’s reward and punishment mechanism[J]. Mathematical Problems in Engineering, 2021, 2021(1): 5298890.

[54]Wang X, Zhang C, Deng J, et al. Analysis of Factors Influencing Miners’ Unsafe Behaviors in Intelligent Mines using a Novel Hybrid MCDM Model[J]. International Journal of Environmental Research and Public Health, 2022, 19(12): 7368.

[55]王永明,陈宇星,殷自力,等.基于大数据分析的电力用户行为画像构建方法研究[J].高压电器,2022,58(10):173-179+187.

[56]Senapati A, Bhattacherjee A, Chatterjee S. Causal relationship of some personal and impersonal variates to occupational injuries at continuous miner worksites in underground coal mines[J]. Safety Science, 2022, 146: 105562.

[57]王磊,刘洋,李文峰,等.基于用电行为数字特征画像的电力用户两阶段分类方法[J].电力建设,2022,43(02):70-80.

[58]张馨月,牟冬梅,王长聪,等.面向健康管理的个体健康画像概念模型构建[J/OL].现代情报,1-19[2025-04-23].

[59]Corral-Acero J, Margara F, Marciniak M, et al. The ‘Digital twin’ to enable the vision of precision cardiology[J]. European Heart Journal, 2020, 41(48): 4556-4564.

[60]Vildjiounaite E, Kallio J, Kantorovitch J, et al. Challenges of learning human digital twin: Case study of mental wellbeing: Using sensor data and machine learning to create HDT[C]. Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments, 2023: 574-583.

[61]余传明,田鑫,郭亚静,等.基于行为-内容融合模型的用户画像研究[J].图书情报工作,2018,62(13):54-63.

[62]Lin W, Xu H, Li J, et al. Deep-profiling: a deep neural network model for scholarly web user profiling[J]. Cluster Computing, 2023, 26(3): 1753-1766.

[63]Wen X, Zhao S, Wang H, et al. Multi-source multi-label learning for user profiling in online games[J]. IEEE Transactions on Multimedia, 2022, 25: 4135-4147.

[64]Zheng Y, Zhang T, Liu G, et al. Research of New Energy Vehicles User Portrait and Vehicle-Owner Matching Model Based on Multi-source Big Data[C]//Signal and Information Processing, Networking and Computers: Proceedings of the 8th International Conference on Signal and Information Processing, Networking and Computers (ICSINC). Singapore: Springer Nature Singapore, 2022: 1440-1448.

[65]王宇,于春华,陈晓青,等.基于多模态特征融合的井下人员不安全行为识别[J].工矿自动化,2023,49(11):138-144.

[66]李红霞,徐浩冉,田水承.基于随机森林的矿工不安全行为预测预警模型[J].中国安全科学学报,2022,32(12):10-18.

[67]田水承,孙璐瑶,唐艺璇,等.矿工不安全状态评价指标体系的构建与分析[J].西安科技大学学报,2021,41(03):402-409.

[68]Li X, Long Y, Yang C, et al. Research on psychophysiological characteristics of construction workers during consciously unsafe behaviors[J]. Heliyon, 2023, 9(10): e20484.

[69]Kuang Y, Tian S, Li H, et al. EEG-Based measurement for detecting distraction in coal mine workers[J]. Applied Sciences, 2025, 15(1), 273.

[70]Bauer R A. Consumer behavior as risk taking[J]. Marketing: Critical perspectives on business and management, 1967, 593: 13-21.

[71]Starr C. Social benefit versus technological risk: what is our society willing to pay for safety?[J]. Science, 1969, 165(3899): 1232-1238.

[72]Slovic P. Perception of risk[J]. science, 1987, 236(4799): 280-285.

[73]Pidgeon, N. F., Kasperson, R. E., & Slovic, P. (Eds.). Risk analysis, perception and management [M]. London: The Royal Society, 1992: Chapter 5: Risk perception. [EB/OL]. https://royalsociety.org/news-resources/publications/1992/risk/.

[74]Böhm G, Brun W. Intuition and affect in risk perception and decision making[J]. Judgment and decision making, 2008, 3(1): 1-4.

[75]时勘,范红霞,贾建民,等.我国民众对SARS信息的风险认知及心理行为[J].心理学报,2003,(04):546-554.

[76]谢晓非,周俊哲,王丽.风险情景中不同成就动机者的冒险行为特征[J].心理学报,2004,(06):744-749.

[77]孟博,刘茂,李清水,等.风险感知理论模型及影响因子分析[J].中国安全科学学报,2010,20(10):59-66.

[78]肖泽元.矿工风险感知与不安全行为的关系研究[D].西安科技大学,2014.

[79]韩晓静.风险偏好对矿工不安全行为的影响研究[D].西安科技大学,2014.

[80]杨振宏,李盼,王文杰.基于社会认知理论的事故体验对矿工不安全行为影响研究[J].安全与环境学报,2021,21(04):1607-1614.

[81]陈平,郭凤香,张盛.老年驾驶人风险感知研究进展[J].人类工效学,2016,22(06):76-82.

[82]Boua M, Kouabenan D R, Belhaj A. Road safety behaviors: role of control beliefs and risk perception[J]. Transportation research part F: traffic psychology and behaviour, 2022, 91: 45-57.

[83]Perlman A, Sacks R, Barak R. Hazard recognition and risk perception in construction[J]. Safety science, 2014, 64: 22-31.

[84]Xia N N, Wang X Q, Ni W, et al. Risk Perception and Safety Compliance of Construction Workers[J]. College of Management and Economics, 2016, 16(3): 466-70.

[85]成连华,赵旭东,郝杰,等.建筑工人安全能力对安全行为的影响——信息认知与AMO理论的双重视角[J].西安科技大学学报, 2023,43(03):449-456.

[86]Kouabenan D R, Ngueutsa R, Mbaye S. Safety climate, perceived risk, and involvement in safety management[J]. Safety Science, 2015, 77: 72-79.

[87]Sung H, Kim J U, Lee D, et al. Radiation risk perception and its associated factors among residents living near nuclear power plants: A nationwide survey in Korea[J]. Nuclear Engineering and Technology, 2022, 54(4): 1295-1300.

[88]Zhang S, Hua X, Huang G, et al. What influences miners’ safety risk perception?[J]. International journal of environmental research and public health, 2022, 19(7): 3817.

[89]Yang L, Wang X, Zhu J, et al. Influencing factors, formation mechanism, and pre-control methods of coal miners’ unsafe behavior: a systematic literature review[J]. Frontiers in public health, 2022, 10: 792015.

[90]Nolte J, Hanoch Y. Adult age differences in risk perception and risk taking[J]. Current opinion in psychology, 2024, 55: 101746.

[91]Liu Z, Chen X, Zhu T. Influence mechanism of coping behaviours for natural hazards: Empirical study in Henan, China[J]. International Journal of Disaster Risk Reduction, 2024, 100: 104169.

[92]Low B K L, Man S S, Chan A H S, et al. Construction worker risk-taking behavior model with individual and organizational factors[J]. International journal of environmental research and public health, 2019, 16(8): 1335.

[93]Marshall T, Thongs G, Saint Ville A. An investigation into risk governance processes to encourage behaviour change to reduce disaster risk: A case study of Barbados[J]. International Journal of Disaster Risk Reduction, 2024, 107: 104458.

[94]Elshirbiny H, Abrahamse W. Public risk perception of climate change in Egypt: A mixed methods study of predictors and implications[J]. Journal of Environmental Studies and Sciences, 2020, 10(3): 242-254.

[95]Blaylock B K. Risk perception: Evidence of an interactive process[J]. Journal of Business Research, 1985, 13(3): 207-221.

[96]李乃文,金洪礼.基于情境认知的安全注意力研究[J].中国安全科学学报,2013,23(09):58-63.

[97]李乃文,郭利霞.基于Multi-agent的矿工情绪稳定性模型构建[J].中国安全生产科学技术,2014,10(12):172-177.

[98]李乃文,王春迪,牛莉霞.高危岗位矿工个体风险感知影响因素仿真研究[J].中国安全生产科学技术,2015,11(09):184-190.

[99]Han Z, Lu X, Hörhager E I, et al. The effects of trust in government on earthquake survivors’ risk perception and preparedness in China[J]. Natural Hazards, 2017, 86: 437-452.

[100]Van Gunst A, Roodenburg A J C. Consumer distrust about E-numbers: a qualitative study among food experts[J]. Foods, 2019, 8(5): 178.

[101]Xu H, Li H, Tian S, et al. Effects of flood risk warnings on preparedness behavior: evidence from northern China[J]. International journal of disaster risk reduction, 2023, 96: 103971.

[102]Dvir R, Vedlitz A, Mostafavi A. Far from home: Infrastructure, access to essential services, and risk perceptions about hazard weather events[J]. International Journal of Disaster Risk Reduction, 2022, 80: 103185.

[103]薛韦一,刘泽功.基于ISM法的矿工安全心理影响因素分析[J].中国安全生产科学技术,2013,9(12):112-118.

[104]Stahlschmidt S R, Ulfenborg B, Synnergren J. Multimodal deep learning for biomedical data fusion: a review[J]. Briefings in bioinformatics, 2022, 23(2): bbab569.

[105]Li L H, Yatskar M, Yin D, et al. Visualbert: A simple and performant baseline for vision and language[J]. arXiv preprint arXiv:1908.03557, 2019.

[106]Wu D, Chen J, Deng W, et al. The recognition of teacher behavior based on multimodal information fusion[J]. Mathematical Problems in Engineering, 2020, 2020(1): 8269683.

[107]Williamson J R, Godoy E, Cha M, et al. Detecting depression using vocal, facial and semantic communication cues[C]//Proceedings of the 6th international workshop on audio/visual emotion challenge. 2016: 11-18.

[108]Jiang J, Yan Z, Shen T, et al. Use of deep belief network model to discriminate mild cognitive impairment and normal controls based on EEG, eye movement signals and neuropsychological tests[J]. Journal of Medical Imaging and Health Informatics, 2019, 9(9): 1978-1985.

[109]Ding X, Yue X, Zheng R, et al. Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data[J]. Journal of affective Disorders, 2019, 251: 156-161.

[110]Guo J J, Zhou R, Zhao L M, et al. Multimodal emotion recognition from eye image, eye movement and EEG using deep neural networks[C]//2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, 2019: 3071-3074.

[111]Hu S, Gao Q, Xie K, et al. Efficient detection of driver fatigue state based on all-weather illumination scenarios[J]. Scientific Reports, 2024, 14(1): 17075.

[112]韩坤,潘海为,张伟, 等.基于多模态医学图像的Alzheimer病分类方法[J].清华大学学报(自然科学版),2020,60(08):664-671+682.

[113]Liang Y, Liu Y, Lu C, et al. Research on Intelligent Monitoring and Protection Equipment of Vital Signs of Underground Personnel in Coal Mines[J]. Sensors (Basel, Switzerland), 2024, 25(1): 63.

[114]Pan H, Tong S, Wei X, et al. Fatigue state recognition system for miners based on a multi-modal feature extraction and fusion framework[J]. IEEE Transactions on Cognitive and Developmental Systems, 2024, 17(2): 410-420.

[115]Chen S, Xu K, Yao X, et al. Psychophysiological data-driven multi-feature information fusion and recognition of miner fatigue in high-altitude and cold areas[J]. Computers in biology and medicine, 2021, 133: 104413.

[116]Chen S, Pan L, Xu K, et al. Real-time monitoring and prediction of remote operator fatigue in plateau deep mining based on dynamic Bayesian networks[J]. Scientific Reports, 2025, 15(1): 1063.

[117]Lee K, Pooladvand S, Esmaeili B, et al. Understanding Construction Workers’ Risk Perception Using Neurophysiological Responses[J]. Journal of Computing in Civil Engineering, 2024, 38(6): 04024039.

[118]Liao P C, Sun X, Zhang D. A multimodal study to measure the cognitive demands of hazard recognition in construction workplaces[J]. Safety science, 2021, 133: 105010.

[119]Lee K, Hasanzadeh S, Esmaeili B. Spatial exposure to dynamic safety hazards in construction sites through 360-degree augmented panoramas: Ecological validity in safety research[C]//Construction Research Congress 2022. 2022: 715-725.

[120]Cheng B, Fan C, Fu H, et al. Measuring and computing cognitive statuses of construction workers based on electroencephalogram: a critical review[J]. IEEE Transactions on Computational Social Systems, 2022, 9(6): 1644-1659.

[121]Scholkmann F, Kleiser S, Metz A J, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology[J]. Neuroimage, 2014, 85: 6-27.

[122]Yu B, Shen T, Na H, et al. MineAgent: Towards Remote-Sensing Mineral Exploration with Multimodal Large Language Models[J]. arXiv preprint arXiv:2412.17339, 2024.

[123]王宇,于春华,陈晓青,等. 基于多模态特征融合的井下人员不安全行为识别[J].工矿自动化,2023,49(11):138-144.

[124]王海军.矿山行业大模型建设路径探索与应用展望[J].煤炭科学技术,2024,52(11):45-59.

[125]Liu C, Sun C. A Fusion Deep Learning Model of ResNet and Vision Transformer for 3D CT Images[J]. IEEE Access, 2024, 12: 93389-93397.

[126]Zhang M, Zhang Y, Liu S, et al. Dual-attention transformer-based hybrid network for multi-modal medical image segmentation[J]. Scientific Reports, 2024, 14(1): 25704.

[127]Yan H, Mubonanyikuzo V, Komolafe T E, et al. Hybrid-RViT: Hybridizing ResNet-50 and Vision Transformer for Enhanced Alzheimer’s disease detection[J]. PloS one, 2025, 20(2): e0318998.

[128]Atila O, Şengür A. Attention guided 3D CNN-LSTM model for accurate speech based emotion recognition[J]. Applied Acoustics, 2021, 182: 108260.

[129]Kumar C S A, Maharana A D, Krishnan S M, et al. Speech emotion recognition using cnn-lstm and vision transformer[C]//International Conference on Innovations in Bio-Inspired Computing and Applications. Cham: Springer Nature Switzerland, 2022: 86-97.

[130]Liu S, Wang Y, Wang K, et al. Semantic-wise guidance for efficient multimodal emotion recognition with missing modalities[J]. Multimedia Systems, 2024, 30(3): 144.

[131]Yan S, Xiong Y, Lin D. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the AAAI conference on artificial intelligence. 2018, 32(1).

[132]Li X, Hao T, Li F, et al. Faster R-CNN-LSTM construction site unsafe behavior recognition model[J]. Applied Sciences, 2023, 13(19): 10700.

[133]年立辉.基于多模态融合构建的建设工程工人不安全行为识别模型[J].佳木斯大学学报(自然科学版),2024,42(09):118-120+148.

[134]Yu B, Cao L, Jia J, et al. E-FNet: A EEG-fNIRS dual-stream model for Brain–Computer Interfaces[J]. Biomedical Signal Processing and Control, 2025, 100: 106943.

[135]Bouchane M, Guo W, Yang S. Hybrid CNN-GRU Models for Improved EEG Motor Imagery Classification[J]. Sensors, 2025, 25(5): 1399.

[136]Li X, Wei W, Zhao K, et al. Exploring EEG and Eye Movement Fusion for Multi-Class Target RSVP-BCI[J]. arXiv preprint arXiv:2501.03596, 2025.

[137]Wang L, Cao Q, Han C, et al. Group dynamics analysis and the correction of coal miners’ unsafe behaviors[J]. Archives of environmental & occupational health, 2021, 76(4): 188-209.

[138]Hannani M, Bascompta M, Sabzevar M G, et al. Causal analysis of safety risk perception of Iranian coal mining workers using Fuzzy Delphi and DEMATEL[J]. Sustainability, 2023, 15(19): 14277.

[139]李广利.煤矿员工风险感知量表开发与应用[J].中国安全生产科学技术,2022,18(07):128-134.

[140]Jones S A, Beierholm U, Meijer D, et al. Older adults sacrifice response speed to preserve multisensory integration performance[J]. Neurobiology of aging, 2019, 84: 148-157.

[141]Park D C. Cognitive ability in old age is predetermined by age 20 y[J]. Proceedings of the National Academy of Sciences, 2019, 116(6): 1832-1833.

[142]The handbook of aging and cognition[M]. Psychology press, 2011.

[143]You Q, Yu K, Zhou L, et al. Research on risk analysis and prevention policy of coal mine workers’ group behavior based on evolutionary game[J]. Resources Policy, 2023, 80: 103262.

[144]Çelik S, Yıldırım E, Güntekin B. Electrophysiological and cognitive changes in hard coal miners associated with working underground[J]. Clinical EEG and Neuroscience, 2024, 55(5): 561-571.

[145]Haddon Jr W. A logical framework for categorizing highway safety phenomena and activity[J]. Journal of Trauma and Acute Care Surgery, 1972, 12(3): 193-207.

[146]Haddon Jr W. Advances in the epidemiology of injuries as a basis for public policy[J]. Public health reports, 1980, 95(5): 411.

[147]Tsopa V A, Cheberiachko S I, Yavorska O O, et al. Improving the process of occupational risk­management according to the Haddon matrix[J]. Naukovyi Visnyk Natsionalnoho Hirnychoho Commisytetu, 2023, (2): 105-112.

[148]Slovic P. Perception of risk[J]. Science, 1987, 236(4799): 280-285.

[149]Cai F, Xue S, Si G, et al. Prediction and validation of mild cognitive impairment in occupational dust exposure population based on machine learning[J]. Ecotoxicology and Environmental Safety, 2024, 285: 117111.

[150]Owsley C. Aging and vision[J]. Vision research, 2011, 51(13): 1610-1622.

[151]Seidler R D, Bernard J A, Burutolu T B, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects[J]. Neuroscience & Biobehavioral Reviews, 2010, 34(5): 721-733.

[152]Van der Lubbe R H J, Verleger R. Aging and the Simon task[J]. Psychophysiology, 2002, 39(1): 100-110.

[153]Gillingham S M, Vallesi A, Pichora-Fuller M K, et al. Older adults with hearing loss have reductions in visual, motor and attentional functioning[J]. Frontiers in Aging Neuroscience, 2018, 10: 351.

[154]Jiskani I M, Han S, Shahani N M, et al. Evaluation of physical and environmental working conditions of underground coal mines within the framework of ergonomics[J]. International Journal of Mining and Mineral Engineering, 2020, 11(3): 240-256.

[155]Endsley M R. Toward a theory of situation awareness in dynamic systems[J]. Human factors, 1995, 37(1): 32-64.

[156]Hale A R, Glendon A I. Individual behaviour in the control of danger[M]. Elsevier Science, 1987.

[157]Weil R S, Schrag A E, Warren J D, et al. Visual dysfunction in Parkinson’s disease[J]. Brain, 2016, 139(11): 2827-2843.

[158]Sakai H, Shin D, Uchiyama Y, et al. Slow eye movement as a possible predictor of reaction delays to auditory warning alarms in a drowsy state[J]. Ergonomics, 2011, 54(2): 146-153.

[159]刘姝妤.基于眼动的决策策略识别方法及策略选择研究:以风险决策为例[D].中国科学院大学,2022.

[160]景国勋,赵攀飞,吕鹏飞,等.不同煤矿噪声暴露时间对视觉认知影响研究[J].安全与环境学报,2018,18(02):615-618.

[161]Aghilinejad M, Kouhpayezade J, Noori M K, et al. Association of age and work experience with work-related injuries in mining and mineral industries in Iran 2003-2011[J]. 2013: 20-28.

[162]高金霞,刘娜娜,韩晓琴,等.2016—2020年兰州市煤尘作业工人职业健康状况及影响因素分析[J].环境卫生学杂志,2025,15(01):63-67+84.

[163]Yin J, Chen H, Liu Z, et al. Evaluation and Early Warning Simulation of Personnel Unsafe Behavior in Mines Prone to Coal‐Rock Dynamic Disasters[J]. Geofluids, 2022, 2022(1): 1822894.

[164]Reason J. Human error: models and management[J]. Bmj, 2000, 320(7237): 768-770.

[165]Luo Y, Seo J O, AMASCE S H. Investigating the Neural Correlates of Different Levels of Situation Awareness and Work Experience[C]//ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction. IAARC Publications, 2024, 41: 34-41.

[166]Blignaut C J H. The perception of hazard II. The contribution of signal detection to hazard perception[J]. Ergonomics, 1979, 22(11): 1177-1183.

[167]Perdue C W, Kowalski K M, Barrett E A. Hazard recognition in mining: A psychological perspective. Information circular/1995[R]. Bureau of Mines, Pittsburgh, PA (United States). Pittsburgh Research Center, 1995.

[168]Warnings and risk communication[M]. CRC Press, 1999.

[169]Eiter B M, Bellanca J L. Identify the influence of risk attitude, work experience, and safety training on hazard recognition in mining[J]. Mining, metallurgy & exploration, 2020, 37(6): 1931-1939.

[170]李啸然,陈昕.基于组合赋权的煤矿作业人员行为安全状态界定及评估研究[J].矿业科学学报,2023,8(02):256-264.

[171]De Raedt R, Ponjaert-Kristoffersen I. Cognitive/neuropsychological functioning and compensation related to car driving performance in older adults[J]. Traffic and transport psychology: theory and application: proceedings of the ICTTP 2000, 2004: 267.

[172]Payzan-LeNestour E, Balleine B, Doran J, et al. Friend or Foe: The Influence of Ambient Sound on Risk Perception[J]. Available at SSRN 3422762, 2020.

[173]Oltmanns J, Godde B, Winneke A H, et al. Don’t lose your brain at work–The role of recurrent novelty at work in cognitive and brain aging[J]. Frontiers in Psychology, 2017, 8: 117.

[174]李乃文,刘祎,黄敏.非常规突发事件中个体风险直觉偏差影响因素仿真研究[J].中国安全科学学报,2014,24(5):9-14.

[175]Baltes P B, Lindenberger U. Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging?[J]. Psychology and aging, 1997, 12(1): 12-21.

[176]Laurienti P J, Burdette J H, Maldjian J A, et al. Enhanced multisensory integration in older adults[J]. Neurobiology of aging, 2006, 27(8): 1155-1163.

[177]Zhu Y, He G, Qiao G, et al. Research on dynamic warning of miners' safety behavior ability in complex environment[C]//International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2016). Atlantis Press, 2016: 67-72.

[178]Wargo M J. Delayed sensory feedback in visual and auditory tracking[J]. Perceptual and Motor Skills, 1967, 24(1): 55-62.

[179]李雪,易孝婷,刘继文.新疆某煤矿作业人员职业紧张及心理健康状况对工作相关肌肉骨骼疾患的影响[J].环境与职业医学,2021,38(12):1177-1183.

[180]谢尔瓦妮古丽·阿卜力米提,迪丽娜尔·艾克拜尔,曲超,等.职业倦怠在露天煤矿企业员工社会支持与出勤主义行为间的中介作用[J].环境与职业医学,2024,41(07):796-800.

[181]余善法.充分认识职业倦怠的危害,积极推动科学研究和预防控制工作[J].环境与职业医学,2023,40(4):369-373.

[182]王璟.矿工安全心理资本与不安全行为的关系研究[D].西安科技大学,2016.

[183]Makwana J J, Chandak P. Changes in reaction time with ageing in males[J]. 2012. Retrieved from https://scispace.com/papers/changes-in-reaction-time-with-ageing-in-males-541hmv2rnl.

[184]de Boer M J, Jürgens T, Cornelissen F W, et al. Degraded visual and auditory input individually impair audiovisual emotion recognition from speech-like stimuli, but no evidence for an exacerbated effect from combined degradation[J]. Vision Research, 2021, 180: 51-62.

[185]Stern Y. Cognitive reserve in ageing and Alzheimer's disease[J]. The Lancet Neurology, 2012, 11(11): 1006-1012.

[186]Hirst R J, Setti A, Kenny R A, et al. Age-related sensory decline mediates the Sound-Induced Flash Illusion: Evidence for reliability weighting models of multisensory perception[J]. Scientific Reports, 2019, 9(1): 19347.

[187]Tan Y, Lv H, Huang X, et al. Profiling users with tag-enhanced spherical metric learning for recommendation[J]. International Journal of Machine Learning and Cybernetics, 2025: 1-15.

[188]刘炼.基于社交媒体的用户画像构建及精准服务策略研究——以华南农业大学图书馆为例[J].情报探索,2025,(01):129-134.

[189]Wang L, Zeng W, Jing Z, et al. Multi-level Hierarchical Structure Analysis of Influencing Factors of Coal Mine Managers' Blame Avoidance Behavior[J]. Safety and Health at Work, 2024, 15(4): 396-403.

[190]田水承,刘延峰,张倩.基于扎根理论的矿工心理负荷影响因素研究[J].西安科技大学学报,2024,44(03):430-437.

[191]申娟娟,王向梅,王英臣.煤矿群体不安全行为的网络拓扑结构与传播特性研究[J].煤炭工程,2023,55(09):181-186.

[192]Chen L, Li H, Tian S. Application of AHP and DEMATEL for identifying factors influencing coal mine practitioners’ unsafe state[J]. Sustainability, 2022, 14(21): 14511.

[193]张颖,冀巨海.矿工违章作业演化博弈分析——计划行为理论视角[J].矿业安全与环保,2021,48(01):126-130.

[194]丁宇.基于脑电与心电融合的矿工疲劳状态识别研究[D].西安建筑科技大学,2023.

[195]高玲.基于生理参数的矿工不安全状态检测与识别研究[D].西安科技大学,2022.

[196]任营营.煤矿井下不同交接班时段作业人员的生理心理研究[D].河南理工大学,2021.

[197]李文琴,崔博露,张巍,等.基于SEM的矿工安全素养对不安全行为的影响研究[J].煤矿安全,2023,54(01):246-251.

[198]Wang Y, Luo H, Fang W. An integrated approach for automatic safety inspection in construction: Domain knowledge with multimodal large language model[J]. Advanced Engineering Informatics, 2025, 65: 103246.

[199]Liu Y, Zhang Y, Zhang Y, et al. People as interconnected beings: the impact of leader and colleague safety consciousness on employee safety performance from the perspective of social interaction[J]. International Journal of Occupational Safety and Ergonomics, 2025: 1-13.

[200]Langwana V, Khoza N, Rathebe P C, et al. Knowledge, Attitudes, and Practices on Occupation Health and Safety Amongst Mine Workers Exposed to Crystalline Silica Dust in a Low-Income Country: A Case Study from Lesotho[J]. Safety, 2024, 10(3): 76.

[201]Li Y, Gao J, Qian C, et al. The mediation role of safety attitude in the impact of resilience on the safety behavior of coal miners in China[J]. International journal of environmental research and public health, 2022, 19(22): 15164.

[202]Chai Y, Wang Y, Jing G, et al. Study on the influence of thermal environment on miners’ physiological and cognitive ability in deep mining face[J]. Physiology & Behavior, 2025: 114915.

[203]Brassington S, Thomas-Hawkins C, Johansen M L, et al. Impact of Registered Nurse Staffing, Workload, and the Practice Environment on Burnout in Emergency Nurses[J]. Journal of Emergency Nursing, 2025, Advance online publication.

[204]Lehmann R, Vogt B. Breakdown of the compositional data approach in psychometric Likert scale big data analysis: about the loss of statistical power of two-sample t-tests applied to heavy-tailed big data[J]. Brain Informatics, 2025, 12(1): 1-12.

[205]Yu Q, Niu J, Ou J, et al. Exploring the inter-relationship among hazardous actions, causal factors, and motorcyclist injury severity using path analysis[J]. Accident Analysis & Prevention, 2025, 216: 108033.

[206]Matsumura M, Fujita K, Matsunaga-Myoji Y, et al. Reliability and Validity of the Japanese Version of the Exercise Self-Efficacy Scale in Older People Undergoing Lower Extremity Arthroplasty[J]. Nursing & Health Sciences, 2025, 27(2): e70111.

[207]Bezuidenhout H S, Vanhala A, Fonseca K, et al. Development of a Mathematics Vocabulary Test: Evidence of validity and reliability in a multilingual context[J]. Developmental Psychology, 2025, Advance online publication.

[208]王丙参,王国长,魏艳华.基于k-means算法的聚类个数确定方法改进[J].统计与决策,2025,41(07):59-64.

[209]卜伟,郑园园,陈军冰.江苏高校科技创新政策绩效评价——基于层次分析-熵值法和K-means聚类分析法[J].科技管理研究,2022,42(24):118-124.

[210]Turan D S, Ordin B. The incremental SMOTE: A new approach based on the incremental k-means algorithm for solving imbalanced data set problem[J]. Information Sciences, 2025, 711: 122103.

[211]Abdulrahman M. Basahel. Safety Leadership, Safety Attitudes, Safety Knowledge and Motivation toward Safety-Related Behaviors in Electrical Substation Construction Projects[J]. International Journal of Environmental Research and Public Health, 2021, 18(8): 4196.

[212]Lu Peng, Chan A H S. Exerting Explanatory Accounts of Safety Behavior of Older Construction Workers within the Theory of Planned Behavior[J]. International Journal of Environmental Research and Public Health, 2019, 16(18): 3342.

[213]Kowalski-Trakofler K M, Steiner L J, Schwerha D J. Safety considerations for the aging workforce[J]. Safety Science, 2005, 43(10): 779-793.

[214]Yuanlong Li, Wu X, Luo X, et.al. Impact of Safety Attitude on the Safety Behavior of Coal Miners in China[J]. Sustainability, 2019, 11(22): 6382.

[215]Udara Ranasinghe, Tang L M, Harris C, et.al. A systematic review on workplace health and safety of ageing construction workers[J]. Safety Science, 2023, 167: 106276.

[216]Hyun-Jin Park, Jeong B Y. Older Male Construction Workers and Sustainability: Work-Related Risk Factors and Health Problems[J]. Sustainability, 2021, 13(23): 13179.

[217]Gonzalo Bravo, Viviani C, Lavallière M, et.al. Do older workers suffer more workplace injuries? A systematic review[J]. International Journal of Occupational Safety and Ergonomics, 2022, 28(1): 398-427.

[218]Mehdi Mohajeri, Ardeshir A, Malekitabar H, et.al. Structural Model of Internal Factors Influencing the Safety Behavior of Construction Workers[J]. Journal of Construction Engineering and Management, 2021, 147(11): 04021156.

[219]王晓蕾,程俊杰,姬治岗.我国煤矿安全形势变化特征——基于数理统计分析[J].数学的实践与认识,2024,54(11):54-62.

[220]张培森,张晓乐,董宇航,等.2008—2021年我国煤矿事故规律分析及预测研究[J].矿业安全与环保,2023,50(02):136-140.

[221]Blakemore S J, Robbins T W. Decision-making in the adolescent brain[J]. Nature neuroscience, 2012, 15(9): 1184-1191.

[222]Jennifer R. St. Onge, Stan B. Floresco. Prefrontal cortical contribution to risk-based decision making[J]. Cerebral cortex, 2010, 20(8): 1816-1828.

[223]Polezzi D, Sartori G, Rumiati R, et al. Brain correlates of risky decision-making[J]. Neuroimage, 2010, 49(2): 1886-1894.

[224]Huppert T J, Diamond S G, Franceschini M A, et al. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain [J]. Appl Opt, 2009, 48(10): D280-D298.

[225]Hou X, Zhang Z, Zhao C, et al. NIRS-KIT: a MATLAB toolbox for both resting-state and task fNIRS data analysis [J]. Neurophotonics, 2021, 8(01): 010802.

[226]Tian C, Li H, Tian S, et al. The neurocognitive mechanism linking temperature andhumidity with miners’ alertness: an fNlRS study[J]. Scientific reports, 2024, 14(1): 11796.

[227]Wang F, Mao M, Duan L, et al. Intersession instability in fNIRS-based emotion recognition[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(7): 1324-1333.

[228]Fishburn F A, Ludlum R S, Vaidya C J, et al. Temporal derivative distribution repair (TDDR): a motion correction method for fNIRS[J]. Neuroimage, 2019, 184: 171-179.

[229]Pinti P, Tachtsidis I, Hamilton A, et al. The present and future use of functional near‐infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Annals of the new York Academy of Sciences, 2020, 1464(1): 5-29.

[230]ZHAO Y, SUN P P, TAN F L, et al. NIRS-ICA: A MATLAB Toolbox for Independent Component Analysis Applied in fNIRS Studies[J]. Front Neuroinform, 2021, 15: 683735.

[231]许博俊,刘化东,李梦琪.基于fNIRS的恐惧情绪分级研究[J].现代电子技术,2023,46(20):142-146.

[232]冯帅.基于fNIRS的矿工不安全情绪识别模型研究[D].西安科技大学,2024.

[233]Kupchenko Y, Dreyer-Alster S, Broscheid K C, et al. Prefrontal hemodynamics during forward and backward walking, with and without a cognitive task, in people with multiple sclerosis[J]. EuropEan Journal of physical and rEhabilitation MEdicinE, 2023, 59(2): 164.

[234]Li X, Ouyang H, Pang M Y C. Abstract TP37: Brain Activity During Cognitive-motor Balance Dual-tasking Among Healthy Older Adults and People With Subcortical Stroke: A Cross-sectional Study[J]. Stroke, 2025, 56(Suppl_1): ATP37-ATP37.

[235]Gahan P, Harbridge R, Healy J, et al. The ageing workforce: Policy dilemmas and choices[J]. Australian Journal of Public Administration, 2017, 76(4): 511-523.

[236]田水承,寇猛.不同年龄组矿工安全行为能力的差异研究[J].中国安全生产科学技术,2015,11(10):179-184.

[237]Persatuan Osteoporosis Malaysia, Academy of Medicine Malaysia. Clinical Practice Guidelines on Management of Osteoporosis 2006[M]. Kuala Lumpur: Academy of Medicine Malaysia, 2006.

[238]Kmietowicz Z. Vascular screening of over 40s will save 2000 lives a year, says health department[J]. BMJ, 2008, 336, 737.

[239]王海军,敖英芳,龚熹,等.不同年龄患者前交叉韧带重建术后的疗效对比[J].中华医学杂志,2015,95(43):3529-3532.

[240]田丰.“中年危机”的蔓延与应对[J].人民论坛,2019,(08):53-55.

[241]任小云,段锦云,徐悦,等.自知者明:自我概念清晰性的概念及其影响机制和开发策略[J].应用心理学,2022,28(03):237-244.

[242]Yang C L, Lim S B, Peters S, et al. Cortical activation during shoulder and finger movements in healthy adults: A functional near-infrared spectroscopy (fNIRS) study[J]. Frontiers in Human Neuroscience, 2020, 14: 260.

[243]Tian F, Li H, Tian S, et al. Effect of shift work on cognitive function in Chinese coal mine workers: a resting-state fNIRS study[J]. International Journal of Environmental Research and Public Health, 2022, 19(7): 4217.

[244]Chong J S, Chan Y L, Ebenezer E G M, et al. fNIRS-based functional connectivity estimation using semi-metric analysis to study decision making by nursing students and registered nurses[J]. Scientific reports, 2020, 10(1): 22041.

[245]Liu M, Zhao W, Yan X, et al. The investigation of resting-state functional connectivity in male sprinters and endurance runners brains based on fNIRS[J]. Scientific Reports, 2025, 15(1): 14938.

[246]Yang Z, Liu L, You T, et al. Comparative study of brain functional imaging of brain in patients with mild to moderate Alzheimer’s disease based on functional near infrared spectroscopy[J]. BMC neurology, 2025, 25(1): 1-14.

[247]Weibley H, Di Filippo M, Liu X, et al. fNIRS monitoring of infant prefrontal cortex during crawling and an executive functioning task[J]. Frontiers in behavioral neuroscience, 2021, 15: 675366.

[248]Khan H, Noori F M, Yazidi A, et al. Classification of individual finger movements from right hand using fNIRS signals[J]. Sensors, 2021, 21(23): 7943.

[249]俞风云,朱玉连,徐乐义,等.基于功能性近红外光谱的不同模式外周刺激对成人皮质功能活动的影响[J].中国康复医学杂志,2025,40(01):73-78.

[250]Meng Y H, Su Y R, Li D, et al. Decoding of multi-modal signals for motor imagery based on window positioning[J]. Signal, Image and Video Processing, 2025, 19(3): 242.

[251]Liu M, Wan C, Wang C, et al. Effects of intermittent theta burst stimulation on upper limb motor recovery in early stroke patients: an fNIRS study[J]. Frontiers in Neurology, 2025, 16: 1542827.

[252]Yang B, Deng X, Qu X, et al. Identification of functional near-infrared spectroscopy for older adults with mild cognitive impairment: a systematic review[J]. Frontiers in Aging Neuroscience, 2025, 17: 1492800.

[253]Fernández-Martín P, Tovar-Suárez D, Rodríguez-Herrera R, et al. Behavioral and neurofunctional profiles of delay aversion in children with attention-deficit hyperactivity disorder[J]. Translational Psychiatry, 2025, 15(1): 125.

[254]Petrillo K, Ehsani H, Akbas K, et al. Differences in brain function entropy due to cognitive impairment: Application of functional near infrared spectroscopy measures during dual-tasking[J]. International Journal of Psychophysiology, 2025, 211: 112558.

[255]Xiao H, Li Z, Zhou Y, et al. High-Density Functional Near-Infrared Spectroscopy and Machine Learning for Visual Perception Quantification[J]. Sensors, 2023, 23(21): 8696.

[256]Gkintoni E, Antonopoulou H, Sortwell A, et al. Challenging Cognitive Load Theory: The Role of Educational Neuroscience and Artificial Intelligence in Redefining Learning Efficacy[J]. Brain Sciences, 2025, 15(2): 203.

[257]Minhas H S, Nazeer H, Naseer N, et al. Enhancing classification accuracy of fnirs-bci for gait rehabilitation[J]. IEEE Access, 2024, 12: 117944-117954.

[258]Ali M U, Zafar A, Kallu K D, et al. Correlation-filter-based channel and feature selection framework for hybrid EEG-fNIRS BCI applications[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 28(6): 3361-3370.

[259]Kim Y, Choi J, Kim B, et al. Investigating the relationship between CSAT scores and prefrontal fNIRS signals during cognitive tasks using a quantum annealing algorithm[J]. Scientific reports, 2024, 14(1): 19760.

[260]Liao W, Li H, Liu Q, et al. Comparison of Brain Function Between Medication-Naïve ADHD with and without Comorbidity in Chinese Children Using Resting-State fNIRS[J]. Alpha Psychiatry, 2024, 25(4): 485.

[261]Reddy P, Izzetoglu K, Shewokis P A. Wavelet-Based Analysis of fNIRS Measures Enable Assessment of Workload[C]//International Conference on Human-Computer Interaction. Cham: Springer International Publishing, 2022: 173-182.

[262]Xu G, Zhou M, Wang J, et al. The effect of sensory manipulation on the static balance control and prefrontal cortex activation in older adults with mild cognitive impairment: a functional near-infrared spectroscopy (fNIRS) study[J]. BMC geriatrics, 2024, 24(1): 1020.

[263]Cheng C, Liu T, Zhang B, et al. Effects of robot-assisted hand function therapy on brain functional mechanisms: a synchronized study using fNIRS and sEMG[J]. Frontiers in Medicine, 2024, 11: 1411616.

[264]Mahdi W A, Alhowyan A, Obaidullah A J. Estimation and validation of solubility of recombinant protein in E. coli strains via various advanced machine learning models[J]. Scientific Reports, 2025, 15(1): 12784.

[265]Zhu J, Wang S, Li P, et al. The impact of particulate matter exposure on global and domain-specific cognitive function: evidence from the Chinese Square Dancer Study[J]. BMC Public Health, 2025, 25(1): 1289.

[266]Robnik-Šikonja, M., Kononenko, I. Theoretical and Empirical Analysis of ReliefF and RReliefF[J]. Machine learning, 2003, 53: 23-69.

[267]Alcaraz J, Anton-Sanchez L, Monge J F. The Concordance Test, an Alternative to Kruskal-Wallis Based on the Kendall-T Distance: An R Package[J]. The R Journal, 2022, 14: 26-53.

[268]Ahmadullah A B, Irshad A S, Khaled B A. Classification of Daily Weather Conditions using Decision Tree-Based Machine Learning Models: A Case Study of Kabul, Afghanistan[J]. AUIQ Technical Engineering Science, 2(1): 6.

[269]Wang K, Wang L, Sun J. The data analysis of sports training by ID3 decision tree algorithm and deep learning[J]. Scientific Reports, 2025, 15(1): 15060.

[270]Ulutaş H, Coşar H İ, Şahin M E, et al. Innovative Hybrid CNN+ SVM Model for Accurate Covid-19 Detection From CT Images[J]. Duzce University Journal of Science and Technology, 13(2): 868-892.

[271]Adaramola O J, Aliu O H. Evaluating the Impact of Denial-of-Service (DoS) Attacks on Enterprise Networks Using Optimized Network Engineering Tools (OPNET 14.5) and Machine Learning[J]. International Journal of Scientific Research in Network Security and Communication, 2025, 13(2): 1-11.

[272]Schaduangrat N, Chuntakaruk H, Rungrotmongkol T, et al. M3S-GRPred: a novel ensemble learning approach for the interpretable prediction of glucocorticoid receptor antagonists using a multi-step stacking strategy[J]. BMC bioinformatics, 2025, 26(1): 117.

[273]Ouala S, Hidaoui O, Lachkar Z. A Novel Global Gridded Ocean Oxygen Product Derived from a Neural Network Emulator and in-situ observations[J]. EGUsphere, 2025: 1-23.

[274]Abdulrahman A A M. Enhancing Cyber Threat Detection in Tweets Using Diffusion Models and Convolutional Neural Networks[J]. 2025.

中图分类号:

 X921    

开放日期:

 2029-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式