题名: | 跨季节储热中复合相变充填体 热行为研究 |
作者: | |
学号: | 21203053004 |
保密级别: | 保密(2年后开放) |
语种: | chi |
学科代码: | 0814 |
学科: | 工学 - 土木工程 |
学生类型: | 硕士 |
学位: | 工学硕士 |
学位年度: | 2024 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 可再生能源利用与能量转化技术 |
导师姓名: | |
导师单位: | |
提交日期: | 2024-06-23 |
答辩日期: | 2024-06-07 |
外文题名: | Study on thermal behavior of composite phase change filling body in seasonal heat storage |
关键词: | |
外文关键词: | Filling body ; Phase change materials ; Solar energy ; Heat transfer performance ; Heat leakage |
摘要: |
随着矿山开采形成的采空区、巷道等地下空间日益增多,地下空间资源的开发利用已经成为国家的发展方向,同时太阳能以及附近工厂余热也属于资源开发的范畴。为了实现地下空间和太阳能资源的协同开发利用,本文提出对地下空间进行充填并以其作为跨季节热储库的新方法。通过对地下矿井空间进行充填,可有效的遏制地表塌陷,保护地下水资源。向充填体内添加相变材料并通过换热流体将太阳能储存在充填体内,有利于提高充填体的蓄热性能,同时实现太阳能的跨季节储存。 本文通过充填体蓄热/释热实验研究换热流体运行参数、充填体初始温度、蓄热/释热时间比等对换热性能的影响。实验研究发现充填体初始温度降低和蓄热温度增加,有利于充填体的换热性能的提升。当初始温度从55℃降低到25℃,蓄热量增幅为141%,释热量降幅为10.6%。当蓄热温度由70℃增加到90℃时,蓄热/释热量增幅分别为68.3%、25.9%。蓄热/释热时间比2:1(蓄热总时间为400min),当蓄热时间为200min时,蓄热量可以达到总蓄热量的80%。 通过模拟研究在实际尺寸充填体中保温材料厚度、充填体初始温度以及相变材料比例对充填体热性能以及热泄漏的影响。研究发现:相变材料比例以及充填体初始温度对充填体换热性能影响较大;释热量、相变材料液相率以及能效系数随着充填体初始温度的增大而增大,而蓄热量以及热损失量随着初始温度的增加而降低。当充填体采取保温措施后,释热量增幅为36.58%-41.45%,能效系数由59.55%增加到84.46%以上。相变材料比例为20%的充填体相比于常规充填体,蓄热量由56.64×106kJ增加到85.27×106kJ,释热量由48.54×106kJ增加到68.2×106kJ,增幅分别为50.5%、40.5%。 本研究结果为实现地下空间利用以及跨季节储热提供了理论参考,为充填体跨季节储热中换热参数的选择提供了基础数据。 |
外文摘要: |
With the development of the mine, the underground space such as goaf and roadway formed in the mining process is gradually enlarging. Therefore, the utilization of underground space has become the direction of the country. At the same time, solar energy and factory waste heat also belong to the category of resource development. Aiming at the utilization of underground mine space and the seasonal storage of solar energy, this paper proposes a new method to fill the underground space and use it as a cross-seasonal thermal reservoir. Filling the underground mine space can effectively curb surface subsidence and protect groundwater resources. Adding composite phase change materials to the filling body and storing solar energy in the filling body through heat transfer fluid is beneficial to improve the heat transfer performance of the filling body and realize the cross-seasonal storage of solar energy. In this paper, the influence of heat transfer fluid, initial temperature of filling body, heat storage / release time ratio and other parameters on heat storage / release performance was studied by heat storage/release experiment of filling body. The experimental study found that the decrease of the initial temperature of the filling body and the increase of the heat storage temperature are beneficial to the improvement of the heat transfer performance of the filling body. The heat storage capacity increases by 141 % and the heat release capacity decreases by 10.6 % when the initial temperature decreases from 55 °C to 25 °C. The heat storage / release capacity increases by 68.3 % and 25.9 % when the heat storage temperature increases from 70 °C to 90 °C. The heat storage / release time ratio is 2:1 (the total heat storage time is 400min), the heat storage can reach 80 % of the total heat storage capacity when the heat storage capacity time is 200min. The effects of the thickness of the insulation material, the initial temperature of the filling body and the addition ratio of the CPCM on the thermal performance and thermal leakage of the filling body in the actual size filling body were studied by simulation. It is found that the addition ratio of PCM and the initial temperature of the filling body have a great influence on the heat transfer performance. The heat release capacity and energy efficiency coefficient increase with the increase of the initial temperature of the filling body, while the heat storage capacity and heat loss capacity decrease with the increase of the initial temperature. After adding thermal insulation materials around the filling body, the heat release capacity increases by 36.58 %-41.45 %, and the energy efficiency coefficient increases from 59.55 % to more than 84.46 %. Compared with the conventional filling body, the heat storage capacity of the filling body with 20 % PCM increases from 56.64 × 106 kJ to 85.27 × 106 kJ,and the heat release capacity increases from 48.54 × 106 kJ to 68.2 × 106 kJ ,with an increase of 50.5 % and 40.5 % respectively. The results of this study provide a theoretical reference for the utilization of underground space and seasonal heat storage, and provide basic data for the selection of heat transfer parameters in seasonal heat storage of filling body. |
参考文献: |
[1] 常远, 王要武. 我国城市住宅全生命期能源消耗分析[J]. 工程管理学报, 2010, 24(4): 393-397. [2] 刘琪 ,苏伟, 张瑞瑛. 深部矿井煤炭-地热协同开采系统研究[J].煤炭科学技术:1-10. [3] 王淑民, 崔文瑞, 王吉坤. 新形势下绿色矿山建设问题及建议研究[J]. 煤炭加工与综合利用, 2024(1): 95-98. [4] 吴季洪. 我国充填开采技术发展现状与展望[J]. 山西焦煤科技, 2022, 46(1): 7-11. [5] 谢和平, 高明忠, 刘见中. 煤矿地下空间容量估算及开发利用研究[J].煤炭学报,2018,43(06):1487-1503. [8] 刘浪, 方治余, 张波. 矿山充填技术的演进历程与基本类别[J].金属矿山,2021(03):1-10. [9] 孙希奎. 矿山绿色充填开采发展现状及展望[J]. 煤炭科学技术, 2020, 48(9): 48-55. [10] 刘浪, 辛杰, 张波. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报, 2018(1811-1820). [11] 李红伟, 赵显江. 煤矿绿色充填开采技术应用[J]. 中国高新科技, 2023(15): 115-117. [12] 李冰晶. 深部煤矿井下绿色充填开采技术研究[J]. 内蒙古煤炭经济, 2023(22): 42-44. [22] Wieliczka and Bochnia Royal Salt Mines - Gallery [EB]. UNESCO World Heritage Centre 2024-02-26. [23] 霍冉. 基于“生态型土地整治+”理念的废弃矿井开发利用[J]. 中国土地, 2017(7): 38-40. [24] 刘桂莲. 煤矿采空区地质灾害类型分析及治理措施[J]. 西部探矿工程, 2024, 36(1): 3-6. [25] 程海勇, 吴爱祥, 吴顺川. 金属矿山固废充填研究现状与发展趋势[J]. 工程科学学报, 2022, 44(1): 11-25. [26] 王美, 刘浪, 张波. 矿山载/蓄冷功能性充填基础理论[J]. 煤炭学报, 2020, 45(4): 1336-1347. [27] 张波, 薛攀源, 刘浪. 深部充填矿井的矿床-地热协同开采方法探索[J]. 煤炭学报, 2021, 46(9): 2824-2837. [28] 刘浪, 辛杰, 张波. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报, 2018, 43(7): 1811-1820. [49] 林坤平, 张寅平. 电加热相变材料蓄热地板采暖的热性能模拟[J]. 太阳能学报, 2003(5): 633-637. [50] 周传辉. 利用相变蓄热材料进行地板辐射采暖的方法[J]. 建筑热能通风空调, 2002(1): 42-43. [51] 张群力, 狄洪发, 林坤平. 相变材料蓄能式低温热水采暖地板热性能模拟[J]. 工程热物理学报, 2006(4): 641-643. [52] 王芳, 郑茂余, 李忠建. 相变材料在太阳能-地源热泵系统中的应用[J]. 太阳能学报, 2006(12): 1231-1234. [53] 韩宗伟, 王一茹, 依米提阿不来提. 太阳能热泵相变蓄热供暖系统参数影响研究[J]. 太阳能学报, 2015, 36(8): 2028-2035. [55] 夏湘. 尾砂基蓄热充填材料制备及热-力性能研究[D]. 西安科技大学, 2021. [68] 钱七虎.能源地下结构与工程——助力“双碳”目标,赋能绿色城市[J].深圳大学学报(理工版),2022,39(01):1-2. [70] The ITW solar heating system: an oldtimer fully in action [EB]. ScienceDirect 2023-03-09. [73] 朱家玲, 赵静, 张伟. 太阳能-土壤源耦合蓄热特性及潜力分析[J]. 太阳能学报, 2011, 32(3): 390-394. [74] 刘雪玲, 朱家玲, 刘立伟. 热泵耦合含水层储能技术研究[J]. 太阳能学报, 2009, 30(8): 1023-1027. [75] 张伟,朱家玲,胡涛.太阳能与土壤源耦合供暖系统的实验研究[J].太阳能学报,2011,32(04):496-500. [76] 魏亚志, 周国庆, 刘卓典. 渗流作用下地源热泵系统跨季节土壤蓄热特性[J]. 暖通空调, 2011, 41(3): 143-147+12. [77] 刘杰, 万鹏, 郭健翔. 太阳能-土壤源热泵联合供暖系统优化研究[J]. 热科学与技术, 2019, 18(2): 155-162. |
中图分类号: | TK529 |
开放日期: | 2026-06-28 |