- 无标题文档
查看论文信息

论文中文题名:

 黄陵矿区深埋综放面顺槽围岩变形规律与支护技术    

姓名:

 陈首佳    

学号:

 18204209058    

保密级别:

 内部    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 矿山岩体力学与支护    

第一导师姓名:

 任建喜    

第一导师单位:

 西安科技大学    

第二导师姓名:

 曹振    

论文提交日期:

 2021-06-21    

论文答辩日期:

 2021-05-29    

论文外文题名:

 Study on deformation law and support technology of roadway surrounding rock of deep buried fully mechanized top coal caving face in Huangling mining area    

论文中文关键词:

 深埋 ; 顺槽围岩 ; 裂隙煤岩 ; 核磁共振 ; 数值模拟 ; 顶板松动爆破 ; 支护    

论文外文关键词:

 Deep buried fully mechanized top coal caving face ; Surrounding rock of the channel ; Laboratory test ; Numerical simulation ; Roof strike loosening blasting ; Support    

论文中文摘要:

开展黄陵矿区深埋综放面顺槽围岩变形规律及其支护技术研究对保证该矿区综放面顺槽安全掘进和回采具有重要价值。本文以黄陵矿区某煤矿4206综放面顺槽支护工程为依托,采用理论分析、宏细观室内试验、数值模拟及现场试验相结合的方法开展研究工作。主要内容与结论是:

(1)理论分析表明,影响黄陵矿区深埋综放面顺槽围变形破坏的主要因素包括:埋深、断面形状与面积、煤岩特性、相邻已采工作面的矿压显现特性、顶板覆岩结构、本工作面矿压显现特性等。

(2)完成了辅以声发射实时监测的不同围压下不同裂隙倾角煤岩三轴压缩试验,研究了煤岩变形破坏机理。结果表明:裂隙对煤岩三轴压缩强度影响显著,裂隙煤岩比完整煤岩的塑性破坏特征更显著;裂隙煤岩在较高围压下环向变形增加显著,较高围压时裂隙煤岩相比于完整煤岩扩容程度加大;裂隙煤岩破裂模式受围压和裂隙倾角影响,呈现直剪破坏和斜剪破坏的复合破坏模式;4-2煤层煤岩富含裂隙,裂隙是导致深埋顺槽围岩产生大变形的重要原因之一。

(3)完成了煤岩三轴压缩前后的核磁共振细观试验,得到了不同裂隙倾角煤岩三轴压缩破坏后T2谱分布。结果表明,煤岩孔隙孔径主要分布在0.01~0.1μm,占总孔径的比例超过50%,在1~10μm范围内孔隙孔径分布较少。表明裂隙煤岩相比于完整煤岩,含有预制裂隙的煤岩大孔径的孔隙所占比例较多,说明预制裂隙过程对煤岩有一定的初始损伤。三轴压缩破坏后,小孔径孔隙所占比例有所下降,大孔径孔隙所占比例上升。随着围压的增加,破坏后试件大孔径孔隙所占比例增加。相比于裂隙煤岩,完整煤岩破坏后试件内部大孔径孔隙所占比例较小。随着裂隙倾角的增加,试件破坏后大孔径孔隙所占比例增加。

(4)基于“强支强卸”的支护理念,运用考虑裂隙作用和围岩松动圈的自然平衡拱理论完成了4206综放面顺槽支护参数设计和沿顺槽走向的顶板松动爆破卸压设计。采用离散元数值模拟方法对沿顺槽走向顶板松动爆破机理进行了研究,结果表明:沿顺槽走向顶板松动爆破后煤柱应力集中现象得到缓解,顺槽所处围岩应力环境明显改善。建议对受二次动压的顺槽,对采空侧进行卸压,对于非二次动压顺槽,在实体煤侧卸压。

(5)完成了4206综放面矿压规律监测方案设计和现场测试工作。监测结果表明,沿顺槽走向顶板松动爆破后综放面周期来压步距减小,周期来压步距从36.13m降低为19.93m,周期来压释放微震能量降低,日平均微震能量由1241850焦耳降低为820171焦耳。顺槽围岩所处应力环境得到改善,顺槽稳定性较好,顺槽支护参数合理有效。

论文外文摘要:

It is of great value to carry out the research on the deformation law and support technology of the surrounding rock of the gateway in the fully mechanized top coal caving face in Huangling mining area, so as to ensure the safe construction and mining of the gateway in the fully mechanized top coal caving face. In this paper, a coal mine in Huangling 4206 fully mechanized top coal caving face gateway as the research object, using theoretical analysis, laboratory test, numerical simulation and field industrial test analysis combined method to carry out deep buried fully mechanized top coal caving face gateway rock deformation law and support technology research. The main contents and conclusions are as follows:

(1) The theoretical analysis shows that the main factors affecting the deformation and failure of the roadway surrounding of deep buried fully mechanized top coal caving face in Huangling mining area include: buried depth, cross-section area of the roadway, characteristics of coal and rock, strata behavior characteristics of adjacent working faces, roof overburden structure, dynamic load disturbance, etc.

(2) The triaxial compression test and acoustic emission real-time monitoring of coal under different confining pressures and fracture dip angles are completed, and the deformation and failure mechanism of coal and rock is studied. The results show that the fracture has a significant effect on the triaxial compression strength of coal and rock, and the fractured coal and rock enter the plastic stage earlier in the triaxial compression test, which leads to the decrease of the elastic modulus of coal and rock; The lateral deformation of fractured coal and rock increases significantly under higher confining pressure, which indicates that the capacity of expansion and deformation of fractured coal and rock is stronger than that of intact coal and rock under higher confining pressure; The fracture mode of fractured coal and rock is affected by confining pressure and fracture dip angle, which shows a composite failure mode of direct shear failure and oblique shear failure; 4-2 coal seam is weak and has good dilatancy, which is an important reason for the large deformation of the surrounding rock.

(3) The nuclear magnetic resonance (NMR) meso-test before and after triaxial compression of coal was completed, and the T2 spectrum distribution of coal and rock under triaxial compression with different fracture angles was obtained. The results show that the pore size of coal rocks is mainly distributed in the range of 0.01~0.1μm, accounting for more than 50% of the total pore size, and the pore size distribution is less in the range of 1~10μm. Compared with the intact coal rock, the large pore size of the coal rock with prefabricated crack accounts for a larger proportion, which indicates that the prefabricated crack process has some initial damage to the coal rock. After the failure of triaxial compression, the proportion of small pore size decreases while that of large pore size increases. With the increase of confining pressure, the proportion of large pore size increases after failure. Compared with cracked coal rock, the proportion of large pore pores in the specimen after intact coal rock failure is smaller. With the increase of fracture inclination Angle, the proportion of large pore increases..

(4) Based on the support concept of "strong support and strong unloading", using the natural equilibrium arch theory considering the crack effect and surrounding rock loose circle, the design of support parameters of 4206 fully mechanized top coal caving face and blasting pressure relief design of roof loose along the direction of the gateway are completed. Discrete element numerical simulation method is used to study the blasting mechanism of strike loose roof. The results show that: after the blasting of strike loose roof, the stress concentration of coal pillar is relieved, and the stress environment of surrounding rock in the gateway is obviously improved.

The monitoring scheme design and field test of 4206 fully mechanized top coal caving face are completed. The results of mine pressure monitoring show that the weighting step of fully mechanized top coal caving face is reduced after the strike roof loosening blasting, the periodic weighting step is reduced from 36.13m to 19.93m, the microseismic energy released by periodic weighting is reduced, and the daily average microseismic energy is reduced from 1241850J to 820171J. The stress environment is improved, the stability is good, and the support parameters are reasonable and effective.

参考文献:

[1]陈海龙,刘军.浅析中国目前煤炭行业的形势及发展前景[J].能源与节能,2016(06):2-3+33.

[2]中华人民共和国国家统计局.原煤生产恢复性增长产业布局调整中优化[N].中华人民共和国国家统计局网,2018-03-19.

[3]尹伟华.2018年能源消费形势分析与2019年展望[J]. 中国物价,2019(02): 9-12.

[4]李路恒.朱集西矿千米深井沿空掘巷围岩控制技术研究[D].中国矿业大学,2019.

[5]我们是如何进行顶板管理的[J].冶金安全:1976(04):23-27.

[6]胡玉银.大埋深软岩巷道围岩变形破坏力学机制分析[J].水文地质工程地质,1994(06):4-6.

[7]Zou Zongshan,et al. The Plastic Zone of Tunnel Surrounding Rock under Unequal Stress in Two Directions Based on the Unified Strength Theory.Mathematical Problems in Engineering2021.(2021).

[8]徐付军.巷道围岩变形破坏特征及支护方案研究[J].能源与环保,2021,43(02):167-170+174.

[9]Yu Y,et al.Deformation Mechanism and Stability Control of Roadway Surrounding Rock with Compound Roof: Research and Applications[J].Energies,2020,13.

[10]王惠风,宋立兵.基于离散元的层状岩体巷道围岩变形破坏规律研究[J].煤矿安全,2020,51(12):56-62.

[11]郭晓菲,郭林峰,马念杰,等.巷道围岩蝶形破坏理论的适用性分析[J].中国矿业大学学报,2020,49(04):646-653+660.

[12]李向阳,韩立军,宗义江.深埋软岩顺槽破坏机理与控制技术研究[J].矿冶工程,2012,32(06):21-25.

[13]张向东,李庆文,黄开勇,等.采动影响下大跨度煤巷耦合支护技术研究与应用[J].岩石力学与工程学报,2014,33(1):60-68.

[14]Ming-yang Ren.Experimental Study on Rock-Support Interaction in Deep Tunnel Under Complex Geological Conditions. Geotechnical and Geological Engineering.prepublish(2021).

[15]王汉鹏,李术才,李为腾,等.深部厚煤层回采顺槽围岩破坏机制及支护优化[J].采矿与安全工程学报,2012,29(5):631-636.

[16]王宏伟,姜耀东,赵毅鑫,等.长壁综放面冲击失稳能量释放激增机制研究[J].岩石力学与工程学报,2013,32(11):2250-2257.

[17]廖鹏.东庞矿综放面沿空掘巷围岩控制技术研究[D].中国矿业大学,2019.

[18]Jia C Y,Wang H L,Sun X Z,et al.Similar Material Simulation Test of Overlying Strata Characteristics of Isolated Working Face Mining with Thick-Hard Strata[J].Geotechnical and Geological Engineering,2020,38(3):1-12.

[19]曹安业,朱亮亮,李付臣,等.厚硬岩层下综放面开采“T”型覆岩结构与动压演化特征[J].煤炭学报,2014,39(02):328-335.

[20]Zhongping Guo,Hengze Yang,Wenwu Xie,et al.Analysis of Rock Burst Risk of Roadway in Lower Seam “Knife Handle” Type Isolated Working Face[J].Geotechnical and Geological Engineering,2019,37(3).

[21]白璐,董飞,郭利军,等.综放面回采巷道围岩变形机理研究[J].煤炭与化工,2018,41(02):47-49+52.

[22]魏红.综放面内错尾巷加强支护技术研究[D].太原理工大学,2015.

[23]王志强,徐春虎,王鹏,等.综放面顶底板应力传递规律数值模拟研究[J].矿业科学学报,2020,5(01):67-75.

[24]谢建军,刘志明.孤岛型边角煤工作面矿压显现规律及防治对策[J].煤炭技术,2021,40(02):67-71.

[25]张茂微,鲁健.综放面过上覆采空区采场及顶板应力演化规律研究[J].煤炭工程,2020,52(12):108-112.

[26]郭忠华.综放面巷道钻孔卸压机理及关键参数确定[J].太原理工大学学报,2020,51(06):906-911.

[27]周舟.厚煤层综放面小煤柱回采巷道围岩控制技术研究[D].太原理工大学,2014

[28]程利兴,姜鹏飞,杨建威,等.深井综放面巷道围岩采动应力分区演化特征[J/OL].岩土力学,2020.

[29]国外研究煤和瓦斯突出近况[J].川煤科技,1973(Z1):43-59.

[30]吴美林.松动爆破应用的浅析[J].煤矿安全,1983(02):16-20.

[31]K.B.科森列夫,王根川.岩体松动爆破卸压的应用[J].河南煤炭,1984(01):57-59.

[32]康红普.岩巷卸压法的研究与应用[J].煤炭科学技术,1994(05):14-16+62.

[33]窦林名,何烨,张卫东.孤岛工作面冲击矿压危险及其控制[J].岩石力学与工程学报,2003(11):1866-1869.

[34]何满潮,高玉兵,杨军,等.厚煤层快速回采顶板走向松动爆破无煤柱自成巷工程试验[J].岩土力学,2018,39(01):254-264.

[35]何满潮,高玉兵,杨军,等.无煤柱自成巷聚能切缝技术及其对围岩应力演化的影响研究[J].岩石力学与工程学报,2017,36(06):1314-1325.

[36]何满潮,陈上元,郭志飚,等.顶板走向松动爆破沿空留巷围岩结构控制及其工程应用[J].中国矿业大学学报,2017,46(05):959-969.

[37]何满潮,郭鹏飞,王炯,王浩.禾二矿浅埋破碎顶板顶板走向松动爆破成巷试验研究[J].岩土工程学报,2018,40(03):391-398.

[38] Manchao He,Pengfei Guo,Shangyuan Chen. et al.Supporting Technology of Roadside in Gob-side Entry in 110 Longwall Mining Method.MATERIALS SCIENCE,ENERGY TECHNOLOGY,AND POWER ENGINEERING.2017.

[39]Manchao He,Yubing Gao,Jun Yang,et al.An Innovative Approach for Gob-Side Entry Retaining in Thick Coal Seam Longwall Mining[J].Energies,2017,10(11).

[40]Dai C,Sui H,Ma C.Study on the Vibration Effect of Short Footage Blasting Load on Surrounding Rock-Support Structure of Tunnel[J].Shock and Vibration,2020,2020(6):1-15.

[41]李丽伟.综采顶板走向松动爆破沿空留巷无煤柱开采技术硏究[D].河北邯郸:河北工程大学,2017.

[42]Manchao He,Xingen Ma,Bin Yu.Analysis of Strata Behavior Process Characteristics of Gob-Side Entry Retaining with Roof Cutting and Pressure Releasing Based on Composite Roof Structure[J].Shock and Vibration,2019,2019:1-12.

[43]Xiaojie Yang,Chaowen Hu,Manchao He,Xingen Ma,et al. Study on Presplitting Blasting the Roof Strata of Adjacent Roadway to Control Roadway Deformation[J]. Shock and Vibration,2019,2019:1-16.

[44]Xiaojie Yang,Eryu Wang,Xingen Ma,et al.A Case Study on Optimization and Control Techniques for Entry Stability in Non-Pillar Longwall Mining[J]. Energies,2019,12(3):391.

[45]Xingen Ma,Manchao He,Dongqiao Liu,et al.Study on Mechanical Properties of Roof Rocks with Different Cutting Inclinations[J].Geotechnical and Geological Engineering,2019,37(4):2397-4206.

[46]Xingen Ma,Manchao He,Jing Guo,et al.Entry Deformation Law in the Full Life Cycle Under Entry Retaining with Roof Cutting[J].Geotechnical and Geological Engineering, 2019,37(5):4365-4379.

[47]Zhao Jun,Zhang Tan,Tang Zhi Cheng.Experimental Study on Mechanical Properties of Deep Buried Granite under Different Confining Pressures. Advances in Civil Engineering 2020.

[48]徐军,曹其嘉,孟宁康.浅孔爆破在沿空留巷顶板走向松动爆破中的应用研究[J].数学的实践与认识,2018-48(20):256-261.

[49]张书军,徐学锋.深孔爆破切顶卸压控制沿空掘巷围岩变形技术研究[J].煤炭工程,2018,50(03):57-59+62.

[50]何东旭.深部环境下坚硬顶板预裂爆破弱化机理研究[D].江苏徐州:中国矿业大学,2015.

[51]王凯.采场顶板弱化前后回采巷道矿压显现规律研究[D].淮南:安徽理工大学,2017.

[52]任兴.综放综放面覆岩破断规律及采场围岩控制技术研究[J].煤炭工程,2020,52(S1):133-138.

[53]于斌,刘长友,杨敬轩,刘锦荣.坚硬厚层顶板的破断失稳及其控制研究[J].中国矿业大学学报,2013,42(03):342-348.

[54]刘德军,左建平,刘海雁,等.我国煤矿巷道支护理论及技术的现状与发展趋势[J].矿业科学学报,2020,5(01):22-33.

[55]于学馥,乔端.轴变论和围岩稳定轴比三规律[J].有色金属,1981(03):8-15.

[56]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报,1994(01):21-32.

[57]陆家梁.软岩巷道支护技术[M].长春:吉林科学技术出版社,1995.

[58]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000(03):342-345.

[59]赵志强,马念杰,刘洪涛,郭晓菲.巷道蝶形破坏理论及其应用前景[J].中国矿业大学学报,2018,47(05):969-978.

[60]马念杰,李季,赵志强.圆形巷道围岩偏应力场及塑性区分布规律研究[J].中国矿业大学学报,2015,44(02):206-213.

[61]Jingsheng Tong.Research on Application of Multi-factor Surrounding Rock Pressure Calculation Theory in Engineering.KSCE Journal of Civil Engineering .prepublish (2021).

[62]Shi Jianjun,et al.Simulate on Support Technology of Deep Mining[J].Geotechnical and Geological Engineering,2021(S1):1-6.

[63]张云峰,张飞腾,张永强,李冲.托顶煤巷道全锚索支护参数匹配性研究[J].矿业研究与开发,2021,41(02):104-108.

[64]曹松,姜丰伟,李景松.深部高地压井巷顶板支护技术研究[J].煤炭技术,2021,40(02):21-24.

[65]常立宗,苏学贵,杜献杰,等.高应力区巷道支护结构采动破坏特征研究[J/OL].工矿自动化:1-8[2021-03-15].

[66]韩贵雷,韩立军,王延宁等.厚层复合石灰岩顶板垮落特性试验研究[J].采矿与安全工程学报,2007(01):60-64.

[67]王作棠,辛林,付振坤,等.较坚硬火成岩老顶损伤垮落步距的计算预测[J].煤炭工程2010(07):58-60.

[68]范丽.综放面回风顺槽支护技术研究[J].采矿技术,2020,20(03):63-65.

[69]谢生荣,谢国强,何尚森,等.深部软岩巷道锚喷注强化承压拱支护机理及其应用[J].煤炭学报,2014,39(03):404-409.

[70]王卫军,袁超,余伟健,等.深部高应力巷道围岩预留变形控制技术[J].煤炭学报,2016,41(09):2156-2164.

[71]赵志伟,王卫军,袁越,等.深部软岩巷道围岩变形破坏的相似模拟试验[J].矿业工程研究,2018,33(02):1-6.

[72]赵浩,邵珠振.深井大倾角极软煤层巷道支护技术实践[J].现代矿业,2020,36(10):220-222.

[73]唐治,潘一山,王凯兴.冲击地压顺槽围岩支护作用动力学分析[J].岩土工程学报,2015,37(8):1532-1538.

[74]陈尚本,闫泉峰,张修峰.冲击地压煤巷锚杆支护技术应用[J].煤炭科学技术,2000,(7):22-24+0.

[75]赵博生,范德源.综放工作面下顺槽顶板超前支护技术优化设计研究[J].煤炭技术,202140(01):39-4.

[76]康红普,王金华,等.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007:73-75.

[77]杨晓杰,侯定贵,康欢欢,张民,等.切顶卸压自动成巷的离散元数值模拟[J].金属矿山,2016(07):94-98.

中图分类号:

 TD353    

开放日期:

 2022-09-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式