- 无标题文档
查看论文信息

论文中文题名:

 庭院式古建筑群火灾模拟与人员疏散研究    

姓名:

 温心宇    

学号:

 19220214066    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 张嬿妮    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-06-05    

论文外文题名:

 Research on Fire Simulation and Evacuation lor='red'>of Ancient Courtyard Buildings    

论文中文关键词:

 庭院式古建筑群 ; 木材燃烧特性 ; 火灾蔓延 ; 数值模拟 ; 人员疏散    

论文外文关键词:

 Courtyard-style ancient buildings ; Wood burning characteristics ; Fire spread ; Evacuation ; Numerical simulation    

论文中文摘要:

庭院式古建筑群作为中国建筑史的重要组成部分,具有其独特的价值。庭院式古建筑群与单体古建筑相比而言具有建筑形式多样、平面整体布局复杂、人员流动量大的特点,由于其廊道相接,建筑相连,一旦起火,极易形成“火烧连营”的局面,不利于建筑群落的自身安全及人员疏散。因此无论从历史文化传承还是从人身安全等方面考虑,针对庭院式古建筑群的消防安全研究都具有很深的现实意义。

以某庭院式古建筑群为研究对象,通过实地调研、文献查阅及现场测量等手段,系统分析了庭院式古建筑群的火灾危险性,测算统计了馆内古建筑群的建筑、材料信息和火灾荷载。采集该古建筑群的木材修缮余料,对其进行木质分析,利用锥形量热仪开展燃烧试验,掌握了木材燃烧过程根据燃烧特性可划分为升温热解、着火、过渡、剧烈燃烧和熄灭五个阶段,确定了含水率、辐射热流强度对木材燃烧特性的影响。

基于火灾动力学理论基础,结合火灾荷载与木材燃烧特征参数,建立了庭院式古建筑群仿真模型,应用火灾动力学模拟软件研究了火源位置和通风条件对其火灾烟气蔓延的影响,掌握了火灾烟气蔓延及温度场、浓度场和速度场变化规律。火灾烟气蔓延规律为:火源附近→壁面纵向蔓延→屋顶横向蔓延→垂直沉降→沿屋檐及走廊蔓延→建筑群起火。火灾发生时,各工况下的高温气流以着火房间及中庭部位为主,因此中庭不宜作为暂时避难场所;基于现场调查、视频拍摄等手段,建立行人特征模型,结合火灾模拟结果,构建庭院式古建筑群人员疏散仿真模型,应用人员疏散模拟软件研究行人数量、疏散指引措施对庭院式古建筑群人员疏散运动规律的影响,疏散过程中,必需安全疏散时间与行人数量呈正相关,设置疏散指引措施能够减少人员反应时间,使行人必需安全疏散时间缩短,促进疏散进程,提高建筑群的疏散能力。

本文以某庭院式古建筑群为研究对象,揭示了庭院式古建筑群的火灾发展蔓延机理,掌握了庭院式古建筑群在紧急情况下的人员疏散运动规律,提出了庭院式古建筑群的火灾防控和人员疏散对策建议。研究结果可为该庭院式古建筑群的火灾预测、防火控制与保护、人员疏散逃生路径设计及疏散方案的优化提供科学有效的理论依据。

论文外文摘要:

Ancient Chinese Courtyard Buildings, as an essential part lor='red'>of Chinese architectural history, has its unique status and value. Compared with Single Ancient Buildings, Ancient Chinese Courtyard Buildings have more architectural styles, sophisticated layouts and large floating population. Based on the above characteristics, there combined with the connection lor='red'>of many corridors between buildings, if a fire broke out in one lor='red'>of these buildings, the whole Ancient Chinese Courtyard Buildings would be wiped out in a day. Therefore, the research on fire safety lor='red'>of the Ancient Chinese Courtyard Buildings has deep-practical significance, whether it’s the perspective lor='red'>of historical and cultural inheritance or personal safety.

This paper systematically analyzes the fire risk lor='red'>of Ancient Chinese Courtyard Buildings by means lor='red'>of spot field investigation and sampling, literature review, which specifically calculates and statistics the building, material information and fire load lor='red'>of Ancient Chinese Courtyard Buildings. First, the wood which is the same as the raw material lor='red'>of the ancient buildings groups is analyzed to get its performance data, and its combustion characteristic is used a cone calorimeter to grasp. So, some experimental results are obtained that combustion process can be divided into: warming pyrolysis, ignition, transition, intense combustion and extinction, and the effects lor='red'>of moisture content and radiation heat flow intensity on the wood were determined.

Based on the theoretical basis lor='red'>of fire dynamics, combined with fire load and wood combustion characteristics parameters, a simulation model lor='red'>of courtyard-type ancient buildings was established, and the fire dynamics simulation slor='red'>oftware was applied to study the impact lor='red'>of fire source location and ventilation conditions on the spread lor='red'>of its fire smoke, and to grasp the fire smoke spread and temperature field, concentration field and velocity field change law. The fire smoke spread law is as follows: near the fire source → wall vertical spread → rolor='red'>of horizontal spread → vertical settlement → spread along the eaves and corridors → building group fire. When the fire occurs, the high temperature airflow under each condition is mainly in the room on fire and the atrium part, so the atrium is not suitable as a temporary refuge; based on site investigation, video shooting and other means, establish pedestrian characteristics model, combined with the results lor='red'>of fire simulation, build a simulation model lor='red'>of evacuation lor='red'>of people in the courtyard type ancient building group, the application lor='red'>of personnel evacuation simulation slor='red'>oftware to study the number lor='red'>of pedestrians, evacuation guidance measures on the evacuation lor='red'>of people in the courtyard type ancient building group In the evacuation process, the necessary safe evacuation time is positively correlated with the number lor='red'>of pedestrians, and the setting lor='red'>of evacuation guidance measures can reduce the response time lor='red'>of personnel, shorten the necessary safe evacuation time lor='red'>of pedestrians, promote the evacuation process, and improve the evacuation capacity lor='red'>of the building complex.

The Ancient Chinese Courtyard Buildings is concerned in this paper as the research object. This paper reveals the fire development and spread mechanism lor='red'>of Ancient Chinese Courtyard Buildings, and grasps the evacuation movement law lor='red'>of it in emergency, then puts forward the fire prevention and control and evacuation countermeasures which is made available for the Ancient Chinese Courtyard Buildings. The research results can provide a scientific and effective theoretical basis for the fire prediction, fire control and protection, evacuation path design and evacuation plan optimization lor='red'>of the Ancient Chinese Courtyard Buildings.

参考文献:

[1]张子杨. 古建筑的防火策略研究[J]. 今日消防, 2021, 6(01):104-105.

[2]潘博. 中国古建筑保护的发展与对策探析[J]. 美与时代(城市版), 2020, (10):6-7.

[3]陈娟娟. 文物古建筑消防安全问题及对策研究[J]. 今日消防, 2020, 5(05):81-82.

[4]ZHOU B, YOSHIOKA H, NOGUCHI T, et al. Experimental Study on Fire Performance of Weathered Cedar[J]. International Journal of Architectural Heritage, 2019, 13(8):1195-1208.

[5]梁变凤. 中国古建筑营造形式及用材的嬗变过程[J]. 山西大学学报(哲学社会科学版), 2011, 34(01):19-22.

[6]古建筑消防管理规则[J]. 中华人民共和国国务院公报, 1984, (07):215-218.

[7]ANSI. 古建筑的防火规范. 美国国家标准学会, 2010.

[8]GB 51017-2014, 古建筑防雷工程技术规范[S].

[9]山西省公安消防总队, 中国人民武装警察部队学院. 文物建筑消防安全管理. 中华人民共和国公安部, 2018:1-16.

[10]综合. 启动全国消防安全大检查 预防文物建筑博物馆火灾——应急管理部消防局部署要求推动工作落实[J]. 安全与健康, 2018, (10):11-12.

[11]闫子卉. 基于砖木结构的文物建筑火灾风险评估[D]. 西安建筑科技大学, 2019.

[12]闻力. 古寺庙的火灾危险性及防控措施探讨[J]. 今日消防, 2020, 5(12):76-77.

[13]蒋彬彬. 文物古建筑防火安全管理措施探讨[J]. 消防界(电子版), 2021, 7(01):112-113.

[14]IBRAHIM M N, IBRAHIM M S, MOHD-DIN A, et al. Fire Risk Assessment of Heritage Building – Perspectives of Regulatory Authority, Restorer and Building Stakeholder[J]. Procedia Engineering, 2011, 20:325-328.

[15]REGUEIRA R, GUAITA M. Numerical simulation of the fire behaviour of timber dovetail connections[J]. Fire Safety Journal, 2018, 96:1-12.

[16]怀超平, 刘芳, 董佩文, 等. 木材热重试验及动力学分析[J]. 消防科学与技术, 2020, 39(06):757-760.

[17]杨守生, 段楠. 木材热解特性研究[J]. 消防技术与产品信息, 2001, (06):38-41.

[18]阎昊鹏, 陆熙娴, 秦特夫. 热重法研究木材热解反应动力学[J]. 木材工业, 1997, (02):13-17.

[19]文丽华, 王树荣, 施海云, 等. 木材热解特性和动力学研究[J]. 消防科学与技术, 2004, (01):2-5.

[20]王慧, 贾娜, 辛颖. 木材的热重分析实验及动力学分析[J]. 消防科学与技术, 2017, 36(09):1209-1212.

[21]宋长忠. 火灾可燃物热解动力学及着火特性研究[D]. 浙江大学, 2006.

[22]沈德魁, 余春江, 方梦祥, 等. 热辐射下常用木材热解的动力学与燃烧特性[J]. 燃烧科学与技术, 2008, (05):446-452.

[23]方梦祥, 宋长忠, 沈德魁, 等. 木材热解与着火特性试验研究[J]. 浙江大学学报(工学版), 2008, (03):511-516.

[24]TOMASSETTI M, CAMPANELLA L, TOMELLINI R. Thermogravimetric analysis of ancient and fresh woods[J]. Thermochimica Acta, 1990, 170:51-65.

[25]张梦宁. 杨木杉木热解(热改性)过程中有机挥发物释放[D]. 浙江农林大学, 2019.

[26]CHEN J, FANG D D, DUAN F. Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fluidized-bed reactor[J]. Applied Energy, 2018, 218:54-65.

[27]CAVALLARO G, GALLITTO A A, LISUZZO L, et al. Comparative study of historical woods from XIX century by thermogravimetry coupled with FTIR spectroscopy[J]. Cellulose, 2019, 26(16):8853-8865.

[28]郭福良. 木结构吊脚楼建筑群火灾蔓延特性研究[D]. 中国矿业大学(北京), 2013.

[29]KIM H-S, KIM S, KIM H-J, et al. Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content[J]. Thermochimica Acta, 2006, 451(1):181-188.

[30]CAVALLARO G, MILIOTO S, PARISI F, et al. Halloysite Nanotubes Loaded with Calcium Hydroxide: Alkaline Fillers for the Deacidification of Waterlogged Archeological Woods[J]. Acs Applied Materials & Interfaces, 2018, 10(32):27355-27364.

[31]TRANVAN L, LEGRAND V, JACQUEMIN F. Thermal decomposition kinetics of balsa wood: Kinetics and degradation mechanisms comparison between dry and moisturized materials[J]. Polymer Degradation and Stability, 2014, 110:208-215.

[32]DAOUK E, VAN DE STEENE L, PAVIET F, et al. Thick wood particle pyrolysis in an oxidative atmosphere[J]. Chemical Engineering Science, 2015, 126:608-615.

[33]王健, 武勇, 刘小燕, 等. 景区典型树种的热解特性及动力学研究[J]. 中国安全生产科学技术, 2019, 15(02):32-38.

[34]高先占. 云南省木结构民居火灾蔓延研究[D]. 昆明理工大学, 2015.

[35]JIN B. FANG J N B. Fire development in residential basement rooms [M]. Fire development in residential basement rooms. 1980.

[36]CORDERO T, RODRíGUEZ-MAROTO J M, RODRíGUEZ-MIRASOL J, et al. On the kinetics of thermal decomposition of wood and wood components[J]. Thermochimica Acta, 1990, 164:135-144.

[37]TIAN D-H, WU X-S, SONG Z-G, et al. Reverse Analysis for Fire Pyrolysis Parameters of Timber Buildings Based on Response Surface Method[J]. Procedia Engineering, 2016, 135:19-24.

[38]KöNIG J. Effective thermal actions and thermal properties of timber members in natural fires[J]. Fire and Materials: An International Journal, 2006, 30(1):51-63.

[39]郭贤. 多参数耦合作用下典型木材表面火蔓延特性研究[D]. 武汉理工大学, 2019.

[40]TUNG S F, SU H C, TZENG C T, et al. Experimental and Numerical Investigation of a Room Fire in a Wooden-Frame Historical Building[J]. International Journal of Architectural Heritage, 2020, 14(1):106-118.

[41]吴玉章, 原田寿郎. 人工林木材燃烧性能的研究[J]. 林业科学, 2004, (02):131-136.

[42]王清文, 张志军, 陈琳, 等 氧浓度对阻燃木材发烟性能的影响[J]. 林业科学, 2006, (12):95-100.

[43]BARTLETT A I, HADDEN R M, HIDALGO J P, et al. Auto-extinction of engineered timber: Application to compartment fires with exposed timber surfaces[J]. Fire Safety Journal, 2017, 91:407-413.

[44]朱强. 古建筑火灾烟气流动模拟与模型实验研究[D]. 重庆大学, 2007.

[45]刘芳, 怀超平, 李竞岌. 木结构古建筑室内火灾发展的数值分析[J]. 科学技术与工程, 2019, 19(09):299-304.

[46]郭福良, 陈鹏, 王晓影, 等. 吊脚楼木结构建筑群火灾蔓延特性研究[J]. 广西城镇建设, 2012, (10):85-90.

[47]任海龙, 高云晖. 古建筑大悲阁火灾蔓延数值模拟[J]. 消防科学与技术, 2007, (06):610-614.

[48]WEINSCHENK C G, OVERHOLT K J, MADRZYKOWSKI D. Simulation of an Attic Fire in a Wood Frame Residential Structure, Chicago, IL[J]. Fire Technology, 2016, 52(6):1629-1658.

[49]孙贵磊, 王璐瑶. 基于PyroSim的古建筑火灾蔓延规律分析[J]. 消防科学与技术, 2016, 35(02):214-218.

[50]李兆男. 木结构古建筑轰燃影响因素的研究[D]. 西华大学, 2017.

[51]王雁楠, 邱洪兴. 基于FDS的古建群落火灾蔓延规律数值分析[J]. 中国安全科学学报, 2014, 24(06):26-32.

[52]王鹏飞. 砖木结构古建筑(群)火灾模拟与风险预测研究[D]. 长安大学, 2018.

[53]李贤斌, 濮凡, 邹丽, 等. 古建筑木板壁结构对室内火蔓延过程影响研究[J]. 中国安全科学学报, 2019, 29(11):45-50.

[54]李思雨. 仿古建筑群人员安全疏散与火灾烟气研究[D]. 北京建筑大学, 2016.

[55]朱剡. 基于STEPS软件的历史地段人员疏散避难仿真模拟研究[D]. 天津大学, 2012.

[56]张泽江,梅秀娟. 古建筑消防[M]. 北京:化学工业出版社, 2010.

[57]高歌. 大型商场火灾人员安全疏散及仿真模拟研究[D]. 中南大学, 2009.

[58]LORD J, MEACHAM B, MOORE A, et al. Guide for evaluating the predictive capabilities of computer egress models[J]. Nist Gcr, 2005, 6:886.

[59]MAGNUSSON S E, FRANTZICH H, HARADA K. Fire safety design based on calculations: Uncertainty analysis and safety verification[J]. Fire Safety Journal, 1996, 27(4):305-334.

[60]SHIELDS T, BOYCE K, SILCOCK G. Towards the characterization of large retail stores[J]. Fire and materials, 1999, 23(6):325-331.

[61]贾秀娟. 基于LEGION仿真技术的地铁站域地下商业空间优化设计研究[D]. 北京交通大学, 2012.

[62]苗志宏, 李智慧. 火灾环境下人员疏散耦合SPH模型及仿真[J]. 系统仿真学报, 2016, 28(02):292-300.

[63]杨阿勇, 赵金城, 华莹, 等. 考虑走廊人流影响的建筑火灾人员疏散研究[J]. 计算机仿真, 2021, 38(01):421-425+490.

[64]刘世松. 高层建筑火灾疏散研究[D]. 北京建筑大学, 2020.

[65]曲毅. 古建筑消防保护现状与防灭火对策研究[D]. 北京:北京工业大学, 2011.

[66]彭培好, 王金锡, 胡振宇,等. 人工桤柏混交林生态系统的能量特征[J]. 应用生态学报, 1998, (02):113-118.

[67]GB/T 1931-2009, 木材含水率测定方法[S].

[68]GB/T 16172-2007, 建筑材料热释放速率试验方法[S].

[69]王树荣, 郑赟, 骆仲泱, 等. 生物质组分热裂解动力学研究[J].浙江大学学报(工学版),2007(04):585-588+602.

[70]钟茂华. 火灾过程动力学特性分析[M]. 北京:科学出版社, 2007.

[71]GB 51251-2017, 建筑防烟排烟系统技术标准[S].

[72]ALBRECHT, C., HOSSER, et al. A Response Surface Methodology for Probabilistic Life Safety Analysis using Advanced Fire Engineering Tools[J]. Fire Safety Science - Proceedings of the 10th International Symposium, 2011, 10:1059-1072.

[73]M H. SFPE Handbook of fire protection engineering[M]. New York:Springer Publishers, 2016.

[74]NFPA 101-2018 Life Safety Code, 2018.

中图分类号:

 TU998.1    

开放日期:

 2022-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式