- 无标题文档
查看论文信息

论文中文题名:

 基于时序InSAR技术的中阳县滑坡灾害易发性评价    

姓名:

 张航    

学号:

 20210226050    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 InSAR数据处理及应用    

第一导师姓名:

 原喜屯    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Evaluation of landslide hazard susceptibility in Zhongyang County based on time-series InSAR technology    

论文中文关键词:

 SBAS-InSAR ; 易发性评价 ; 滑坡 ; 信息量模型 ; 组合赋权法    

论文外文关键词:

 SBAS-InSAR ; Ease of occurrence evaluation ; Landslide ; Information Volume Model ; combination weighting method    

论文中文摘要:

中阳县地处晋西黄土高原,地质资源的频繁开采和工程活动导致县区内滑坡、地面塌陷等地质灾害频发,严重威胁着当地居民的生产生活和经济的发展。因此,针对该区域开展滑坡灾害易发性评价,对防灾减灾具有重要意义。

合成孔径雷达干涉测量(Interferometric Synthetic Aperture Rader,InSAR)技术作为新型微波遥感对地观测技术,可以监测到地表微弱的形变,在滑坡、地震和地面塌陷等地质灾害的普查和监测方面发挥着重要的作用。本文以中阳县为研究区,利用小基线集干涉测量技术(SBAS-InSAR)提取滑坡形变点,在此基础上利用组合赋权信息量模型对研究区进行滑坡易发性评价,以提高评价结果的精准度,使评价结果更准确地反映实际情况。

本论文主要工作及研究成果如下:

(1)以2018年2月到2020年10月的Sentinel-1A升轨影像为数据集,利用SBAS-InSAR技术得到了中阳县地表沿雷达视线向形变速率。由于雷达视线方向形变与实际地形条件不符,将形变速率由雷达视线向转换为沿最大坡向。结合地质条件获取滑坡形变点,其分布特征符合中阳县实际情况。

(2)根据中阳县地质条件,构建滑坡易发性评价体系。选取高程、坡度、坡向、曲率、距水系距离、距道路距离、植被覆盖度、年降雨量、土地利用类型、土壤类型共10个指标因子并通过相关性分析。由组合赋权信息量模型评价结果可知,中阳县西部地区是滑坡灾害分布的聚集区,同时县境内东部、东南部道路和水系沿线为滑坡灾害聚集区。

(3)利用筛选后的SBAS年形变速率对滑坡易发性评价结果进行完善与验证,得到优化后的中阳县滑坡灾害易发性评价结果。将筛选后的滑坡形变点与优化后的评价结果叠加分析,表明形变点的分布与高和极高易发性分级区域的分布具有较高的一致性,表明年形变速率因子可提高滑坡易发性评价精度。

综上所述,本研究基于SBAS-InSAR技术对中阳县滑坡灾害易发性综合评价,研究结果表明中阳县区域高和极高易发性区域主要集中分布在西部地区,而东部地区较为稳定。以上研究结果为中阳县滑坡灾害的预防和治理提供理论依据,同时对中阳县当地居民生产生活以及地方经济的发展也具有重要的现实意义。

论文外文摘要:

Zhongyang County is located on the Loess Plateau in western Shanxi Province, and the frequent exploitation of geological resources and engineering activities have led to the frequent occurrence of geological disasters such as landslides and ground subsidence in the county, which seriously threaten the production and life of local residents and the development of the economy. Therefore, it is important to carry out landslide hazard susceptibility evaluation for the region to prevent and reduce disasters.

Interferometric Synthetic Aperture Radar (InSAR) technology, as a new microwave remote sensing earth observation technology, can monitor weak surface deformation and plays an important role in the census and monitoring of geological hazards such as landslides, earthquakes and ground subsidence. In this paper, taking Zhongyang County as the study area, the small baseline set interferometry (SBAS-InSAR) technique is used to extract landslide deformation points, and on this basis, a combined weighted information quantity model is used to evaluate the landslide susceptibility of the study area in order to improve the accuracy of the evaluation results and make the evaluation results reflect the actual situation more accurately.The main work and findings of this thesis are as follows:

(1) Using the Sentinel-1A uplink images from February 2018 to October 2020 as the dataset, the deformation rate of the ground surface along the radar line of sight direction in Zhongyang County was obtained using SBAS-InSAR technique. Since the deformation in radar line of sight direction does not match with the actual topographic conditions, the deformation rate was converted from radar line of sight direction to along the maximum slope direction. The distribution characteristics of the landslide deformation points are consistent with the actual situation in Zhongyang County.

 (2) According to the geological conditions of Zhongyang County, the evaluation system of landslide susceptibility was constructed. A total of 10 index factors, including elevation, slope, slope direction, curvature, distance from water system, distance from road, vegetation cover, annual rainfall, land use type and soil type, are selected and analyzed by correlation. From the evaluation results of the combined weighted information model, it can be seen that the western part of Zhongyang County is the gathering area of landslide disaster distribution, while the eastern and southeastern parts of the county along the road and water system are the gathering areas of landslide disaster.

(3) The annual deformation rate of the screened SBAS was used to refine and verify the landslide susceptibility evaluation results, and the optimized landslide susceptibility evaluation results of Zhongyang County were obtained. The overlay analysis of the screened landslide deformation points and the optimized evaluation results shows that the distribution of deformation points has a high consistency with the distribution of high and very high susceptibility classification areas, indicating that the annual deformation rate factor can improve the accuracy of landslide susceptibility evaluation.

In summary, this study is a comprehensive evaluation of landslide hazard susceptibility in Zhongyang County based on SBAS-InSAR technology, and the results show that the regional high and very high susceptibility areas in Zhongyang County are mainly located in the western region, while the eastern region is more stable. The above research results provide a theoretical basis for the prevention and management of landslide hazards in Zhongyang County, and also have important practical significance for the production and life of local residents and the development of local economy in Zhongyang County.

参考文献:

[1] 郭立宇. 自然地理学应用案例[M]. 徐州: 中国矿业大学出版社, 2018.

[2] 张鹏飞. 基于时序InSAR技术的山区煤矿开采沉陷监测研究[D]. 中国矿业大学, 2014.

[3] 杨俊凯. 面向矿区大梯度形变监测的SAR信息提取方法研究[D]. 中国矿业大学, 2016.

[4] 刘国祥, 陈强, 罗小军, 等. 永久散射体雷达干涉理论与方法[M]. 北京: 科学出版社, 2012.

[5] 赵银兵, 陈利顶, 孙然好, 倪忠云, 别小娟. 地质灾害易发性评价方法对比研究: 以京津冀地区为例[J]. 环境生态学, 2020, 2(04): 27-38+50.

[6] 廖明生, 林珲. 雷达干涉测量——原理与信号处理基础[M]. 北京. 测绘出版社, 2003.

[7] Graham L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6): 763-768.

[8] Achache J, Fruneau B, Delacourt C. Applicability of SAR Interferometry for Monitoring of Landslides[J]. Ers Applications, 1996, 383(383): 165.

[9] Fruneau B, Achache J. Detection of the Saint-Etienne-de-Tinee landslide using SAR interferometry and modelling[C]// International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 1996, 3(33): 125A.

[10] Mora O, Mallorqui J J, Broquetas A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J]. IEEE Transactions on Geoscience&Remote Sensing, 2003, 41(10): 2243-2253.

[11] Tarchi D, Casagli N, Fanti R, et al. Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy[J]. Engineering geology, 2003, 68(1-2): 15-30.

[12] Anderson S A, Surdahl R, Young B. InSAR evaluation of landslides and alternative transportation routes[M]// Geotechnical Engineering for Transportation Projects. 2004: 2038-2047.

[13] Singhroy V, Ohkura H, Molch K, et al. Monitoring landslides and volcanic deformation from InSAR techniques[J]. Proceedings of ISPRS Congresses, 2004, 35(7): 570-573.

[14] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Trans. Geosci. Remote Sensing, 2001, 39, 8-20.

[15] Ferretti A, Fumagalli A, Novali F, et al. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3460-3470.

[16] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactionson Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.

[17] Calabro M D, Schmidt D A, Roering J J. An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F2).

[18] Rauff KO, Abir I A, Perissin D . Characterisation of Landslide using InSARTechnique and Electrical Resistivity Method at Paya Terubong, Malaysia[J]. Journal of the Indian Society of Remote Sensing, 2020, 48(8).

[19] Novellino A , Cesarano M , Cappelletti P , et al. Slow-moving landslide risk assessment combining Machine Learning and InSAR techniques[J]. Catena, 2021, 203(5): 105317.

[20] Choe B H, Blais-Stevens A, Samsonov S, et al. Sentinel-1 and RADARSAT Constellation Mission InSAR Assessment of Slope Movements in the Southern Interior of British Columbia, Canada[J]. Remote Sensing, 2021, 13(19): 3999.

[21] Soltanieh A, Macciotta R. Updated understanding of the Ripley landslide kinematics using satellite InSAR[J]. Geosciences, 2022, 12(8): 298.

[22] 李德仁, 周月琴, 马洪超. 卫星雷达干涉测量原理与应用[J]. 测绘科学, 2000(01):9-12+1.

[23] 张洁, 胡光道, 罗宁波. INSAR技术在滑坡监测中的应用研究[J]. 工程地球物理学报, 2004(02): 147-153

[24] 范景辉, 邱阔天, 夏耶, 等. 三峡库区范家坪滑坡地表形变InSAR监测与综合分析[J]. 地质通报, 2017, 36(09): 1665-1673.

[25] 姚鑫, 张永双 ,李凌婧, 等. 青藏高原鲜水河活动断裂带蠕变斜坡地质灾害InSAR识别研究[J]. 地质学报, 2017, 91(08): 1694-1705.

[26] 敖萌, 张勤, 赵超英, 刘广全. 改进的CR-In SAR技术用于四川甲居滑坡形变监测[J]. 武汉大学学报(信息科学版), 2017, 42(03): 377-383.

[27] 张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2039-2049.

[28] 朱宽兴. 岷江上游叠溪至飞虹段潜在滑坡InSAR早期判识与地表形变研究[D]. 吉林大学, 2021.

[29] 朱同同, 史绪国, 周超, 等. 利用2016—2020年Sentinel-1数据监测与分析三峡库区树坪滑坡稳定性[J]. 武汉大学学报(信息科学版), 2021, 46(10):1560-1568.

[30] 刘沛源, 常鸣, 武彬彬, 等. 基于SBAS-InSAR技术的成汶高速汶川段滑坡易发区选线研究[J]. 地球科学, 2022, 47(06): 2048-2057.

[31] 刘星洪, 姚鑫, 杨波, 等. 川西高原活动性滑坡识别与空间分布特征研究[J]. 地质力学学报, 2023, 29(01): 111-126.

[32] Carrara A, Merenda L. Landslide inventory in northern Calabria, southern Italy[J]. Geological Society of America Bulletin, 1976, 87(8): 1153-1162.

[33] Martin Cross. Landslide susceptibility mapping using the Matrix Assessment Approach: a Derbyshire case study[J]. Geological Society London Engineering Geology Special Publications, 1998, 15(1): 247-261.

[34] Guzzetti F, Ardizzone F, Cardinali M, et al. Landslide volumes and landslide mobilization rates in Umbria, central Italy[J]. Earth and Planetary Science Letters, 2009, 279(3-4): 222-229.

[35] Demir G . GIS-based landslide susceptibility mapping for a part of the North Anatolian Fault Zone between Readiye and Koyulhisar (Turkey)[J]. CATENA, 183.

[36] Arabameri A, Saha S, Roy J, et al. Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran[J]. Remote Sensing, 2020, 12(3): 475.

[37] Abija F A, Nwosu J I, Ifedotun A I, et al. Landslide susceptibility assessment of Calabar, Nigeria using Geotechnical[J]. Remote Sensing and Multi-Criteria Decision Analysis: Implications for urban planning and development. Journal of Earth Sciences & Environmental Studies, 2019, 4(6): 774-788.

[38] Ngo P T T, Panahi M, Khosravi K, et al. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran[J]. Geoscience Frontiers, 2021, 12(2): 505-519.

[39] Luísa Vieira Lucchese, Oliveira G G D, Pedrollo O C. Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks[J]. Catena, 2021, 198: 105067.

[40] Ullah K, Wang Y, Fang Z, et al. Multi-hazard susceptibility mapping based on Convolutional Neural Networks[J]. Geoscience Frontiers, 2022, 13(5): 101425.

[41] Desalegn H, Mulu A, Damtew B. Landslide susceptibility evaluation in the Chemoga watershed, upper Blue Nile, Ethiopia[J]. Natural Hazards, 2022, 113(2): 1391-1417.

[42] 唐川, 周钜, 朱静. 云南崩塌滑坡危险度分区的模糊综合分析法[J]. 水土保持学报, 1994(04): 48-54.

[43] 王哲, 易发成, 陈廷方. 基于模糊综合评判的绵阳市地质灾害易发性评价[J]. 科技导报, 2012, 30(31): 53-60.

[44] 郭子正, 殷坤龙, 黄发明, 等. 基于滑坡分类和加权频率比模型的滑坡易发性评价[J]. 岩石力学与工程学报, 2019, 38(02): 287-300.

[45] 郭子正, 殷坤龙, 付圣, 等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学, 2019, 44(12): 4299-4312.

[46] 田述军, 张珊珊, 唐青松, 等. 基于不同评价单元的滑坡易发性评价对比研究[J]. 自然灾害学报, 2019, 28(06): 137-145.

[47] 张玘恺, 凌斯祥, 李晓宁, 等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报, 2020, 39(08): 1595-1610.

[48] 黄立鑫, 郝君明, 李旺平, 周兆叶, 贾佩钱. 基于RBF神经网络-信息量耦合模型的滑坡易发性评价——以甘肃岷县为例[J]. 中国地质灾害与防治学报, 2021, 32(06): 116-126.

[49] 罗路广, 裴向军, 崔圣华, 等. 九寨沟地震滑坡易发性评价因子组合选取研究[J]. 岩石力学与工程学报, 2021, 40(11): 2306-2319.

[50] 王世宝, 庄建琦, 郑佳, 牟家琦, 王野, 付玉婷. 基于深度学习的CZ铁路康定—理塘段滑坡易发性评价[J]. 工程地质学报, 2022, 30(03): 908-919.

[51] 刘纪平, 梁恩婕, 徐胜华, 等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报, 2022, 51(10): 2034-2045.

[52] 张越, 宋炜炜. 基于BP神经网络和决策树的昆明市东川区滑坡空间易发性评价[J]. 国土与自然资源研究, 2023, No. 203(02): 67-70.

[53] 王涛, 段鹏. 山西省中阳县地质灾害特征及区划研究[J]. 地质与资源, 2016, 25(05): 487-493.

[54] 李勇, 吴仁哲, 段金亮, 邓雄伟. Surface Deformation Monitoring in Dongying City Based on SBAS-InSAR[J]. 测绘科学技术, 2021, 09(02).

[55] 赵喜江, 王斌, 张在岩. 基于SBAS-InSAR技术的鹤岗矿区地表沉降监测与分析[J]. 黑龙江科技大学学报, 2019, 29(01): 66-70.

[56] 王志华, 姜辉, 鲍捷. SBAS技术在矿区地面沉降监测中的应用[J]. 资源导刊(信息化测绘), 2018

[57] Colesanti C, Wasowski J. Investigating landslides with space-borne Synthetic Aperture Radar(SAR)interferometry[J]. Engineering Geology, 2006, 88(3).

[58] 李梦华, 张路, 董杰, 等. 四川茂县岷江河谷区段滑坡隐患雷达遥感识别与形变监测[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1529-1537.

[59] Herrera G, Gutiérrez F, García-Davalillo J C, et al. Multi-sensor advanced D-InSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees)[J]. Remote Sensing of Environment, 2013, 128: 31-43.

[60] 刘杰, 武震, 张慧文, 等. 基于长时间尺度下滑坡易发性评价研究——以甘肃省永靖县为例[J]. 地震工程学报, 2022, 44(06): 1384-1396.

[61] 黄立鑫, 郝君明, 李旺平, 等. 基于RBF神经网络-信息量耦合模型的滑坡易发性评价——以甘肃岷县为例[J]. 中国地质灾害与防治学报, 2021, 32(06): 116-126.

[62] 仉文岗, 何昱苇, 王鲁琦, 等. 基于水系分区的滑坡易发性机器学习分析方法——以重庆市奉节县为例[J/OL]. 地球科学: 1-18[2023-04-10].

[63] Li Y, Wang X, Mao H. Influence of human activity on landslide susceptibility development in the Three Gorges area[J]. Natural Hazards, 2020, 104: 2115-2151.

[64] Tian G, Guo Z, Li S. Optimization of tawa landslide treatment scheme based on the AHP –

fuzzy comprehensive evaluation method[C]// IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020, 598(1): 012032.

[65] Nourani V, Pradhan B, Ghaffari H, et al. Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models[J]. Natural hazards, 2014, 71: 523-547.

[66] Mao Z, Yang M, Bourrier F, et al. Evaluation of root reinforcement models using numerical modelling approaches[J]. Plant and soil, 2014, 381: 249-270.

[67] 吴常润, 赵冬梅, 刘澄静, 等. 基于GIS和信息量模型的陇川县滑坡易发性评价[J]. 西北地质, 2020, 53(02): 308-320.

[68] 李星, 杨赛, 李远耀, 等. 面向区域滑坡易发性精细化评价的改进斜坡单元法[J/OL]. 地质科技通报: 1-12[2023-03-02].

[69] 汤国安, 刘学军, 房亮, 罗明良. DEM及数字地形分析中尺度问题研究综述[J]. 武汉大学学报(信息科学版), 2006(12): 1059-1066.

[70] 周子涵, 杨海林, 钟延江. 基于组合赋权法的红河县地质灾害危险性评价[J]. 化工矿物与加工, 2022, 51(04): 35-40+55.

[71] 张驰, 叶长盛. 基于GIS-AHP的南昌市“双评价”研究[J]. 城市建筑空间, 2022, 29(07): 80-83.

[72] 周苏华, 付宇航, 徐智文, 等. 基于主客观赋权法的福建省地质灾害易发性评价[J/OL]. 安全与环境学报: 1-12[2023-02-17].

[73] 席酉民, 汪应洛, 陶谦坎. 决策指标的估价方法及权的探讨[J]. 系统工程理论与实践, 1986(03): 12-16.

[74] 曹文霞. 基于组合赋权法的交口县地质灾害易发性评价研究[D]. 太原理工大学, 2021.

[75] 张晨, 王清, 陈剑平, 等. 金沙江流域泥石流的组合赋权法危险度评价[J]. 岩土力学, 2011, 32: 831-836.

[76] 高秉海, 何毅, 张立峰, 等. 顾及InSAR形变的CNN滑坡易发性动态评估——以刘家峡水库区域为例[J]. 岩石力学与工程学报, 2023, 42(02): 450-465.

[77] Devara M, Tiwari A, Dwivedi R. Landslide susceptibility mapping using MT-InSAR and AHP enabled GIS-based multi-criteria decision analysis[J]. Geomatics, Natural Hazards and Risk, 2021, 12(1): 675-693.

[78] 周萍, 邓辉, 张文江, 等. 基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例[J]. 地理科学, 2022, 42(09): 1665-1675.

[79] Yang Y, Zhang W. Assessment of Landslide Susceptibility Based on Weighted Information Value Model in Pingshan County[J]. Open Access Library Journal, 2021, 8(12): 1-14

中图分类号:

 P237    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式