论文中文题名: | 基于深度学习的CT图像肺结节检测与分类算法研究 |
姓名: | |
学号: | 19208207035 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085211 |
学科名称: | 工学 - 工程 - 计算机技术 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 图像处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-06 |
论文外文题名: | Research on CT Image Lung Nodule Detection and Classification Algorithm Based on Deep Learning |
论文中文关键词: | 肺结节检测 ; 深度学习 ; Faster R-CNN ; 注意力机制 ; 残差网络 |
论文外文关键词: | Lung nodule detection ; Deep learning ; Faster R-CNN ; Attention mechanism ; Residual network |
论文中文摘要: |
肺癌是目前全球发病率和死亡率最高的癌症。肺结节是早期肺癌最主要、最常见的表现形式,准确检测肺结节对于前期肺癌的治疗有着十分关键的作用。目前医生主要靠CT扫描技术来诊断肺结节,但是由于肺部CT数量较多且肺癌早期的肺结节较小,医生仅靠肉眼进行分析与诊治,需要花费巨大的精力,而且极易出现漏诊或误诊等情况。针对目前存在的问题,本文研究了基于3D卷积神经网络的肺结节检测与分类算法,主要的研究内容如下: (1)针对肺结节特征提取困难的问题,提出融合残差注意力网络的Faster R-CNN算法对候选结节进行检测。注意力机制可以通过抑制图像的无关特征将注意力集中在目标结节区域,提高特征提取能力。残差网络可以有效适应各种深度的网络,避免网络深度增加致使梯度退化的现象。通过结合残差注意力网络与Faster R-CNN,有效提高了肺结节的检测能力。实验结果表明该算法敏感度达到了96.5%,准确率达到了94.3%。 (2)为了进一步减少候选结节中假阳性的数量,提出了基于GC-ResNet的3D CNN算法。该算法融合了基于残差模块的GCNet,通过对全局上下文建模获取更多特征信息,提升了小尺寸结节的检测分类性能,达到减少假阳性的目的。此外引入DR Loss函数解决了训练数据类别不平衡的问题。实验结果表明该模型的CPM值达到了90.2%,验证了该算法在分类任务的有效性。 (3)结合本文提出的肺结节检测与分类算法,搭建了B/S架构的肺癌辅助检测系统。该系统实现了患者信息录入、患者病例查看、肺结节的自动检测等功能。最后对该系统进行了功能测试和性能测试。测试结果表明,该系统的各项功能及性能基本满足设计需求,对于临床肺结节检测具有一定的应用价值。 |
论文外文摘要: |
Lung cancer is currently the cancer with the highest incidence and mortality rate worldwide. Lung nodules are the most important and common manifestations of early lung cancer, and accurate detection of lung nodules plays a very critical role in the treatment of early lung cancer. Currently, doctors mainly rely on CT scan technology to diagnose lung nodules, but due to the large number of lung CTs and the small size of lung nodules in the early stage of lung cancer, doctors rely only on the naked eye to analyze and diagnose, which requires great efforts and is very prone to miss or misdiagnosis. To address the current problems, this paper investigates the lung nodule detection and classification algorithm based on 3D convolutional neural network, and the main research contents are as follows. (1) Aiming at the difficulty of extracting pulmonary nodule features, this paper proposes a Faster R-CNN algorithm for the detection of candidate nodules by fusing residual attention networks. The attention mechanism can concentrate attention on the target nodule region by suppressing the unrelated features of the image, improve the feature extraction ability, and the residual network can effectively adapt to the network of various depths, avoiding the phenomenon of gradient degradation caused by the increase of network depth. By combining the residual attention network with Faster R-CNN, the detection ability of pulmonary nodules is effectively improved. Experimental results show that the sensitivity of the algorithm reaches 96.5% and the accuracy rate reaches 94.3%. (2) In order to further reduce the number of false positives in candidate nodules, this paper proposes a GC-ResNet based 3D CNN algorithm. The algorithm integrates GCNet based on residual module, obtains more feature information by modeling the global context, improves the detection and classification performance of small size nodules, and achieves the purpose of reducing false positives. In addition, the Dr Loss function is introduced to solve the problem of unbalanced training data categories. Experimental results show that the CPM value of the model reaches 90.2%, which verifies the effectiveness of the algorithm in the classification task. (3) Combining the lung nodule detection and classification algorithm proposed in this paper, an auxiliary lung cancer detection system with B/S architecture is built. The system realizes the functions of patient information entry, patient case view, and automatic detection of lung nodules. Finally, functional and performance tests are conducted on the system. The test results show that the functions and performance of the system basically meet the design requirements, and it has certain application value for clinical lung nodule detection. |
参考文献: |
[4]Minna J D, Roth J A, Gazdar A F. Focus on lung cancer[J]. Cancer Cell, 2002, 1(1): 49-52. [9]Alberg A J, Samet J M. Epidemiology of lung cancer[J]. Chest, 2003, 123(1): 21S-49S. [16]魏颖, 郭薇, 孙月芳, 等. 基于局部灰度最大和改进Mahalanobis距离分类的肺结节检测算法[J]. 中国图象图形学报, 2008, 2008(09): 1720-1726. [33]苗光, 李朝锋. 二维和三维卷积神经网络相结合的CT图像肺结节检测方法[J]. 激光与光电子学进展, 2018, 55(05): 135-143. [41]高慧明, 赵涓涓, 刘继华, 等. 多尺度卷积神经网络用于肺结节假阳性降低[J]. 计算机工程与设计, 2019, 40(9): 2718-2724. [42]吴保荣, 强彦, 王三虎, 等. 融合多维度卷积神经网络的肺结节分类方法[J]. 计算机工程与应用, 2019, 24:171-177. [52]Lung nodule analysis 2016[EB/OL]. https://luna16.grand-challenge.org, 2016. |
中图分类号: | TP391 |
开放日期: | 2022-06-22 |