论文中文题名: |
面向6G的智能超表面位置部署优化研究
|
姓名: |
刘贤贤
|
学号: |
20207040024
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
081001
|
学科名称: |
工学 - 信息与通信工程 - 通信与信息系统
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
通信与信息工程学院
|
专业: |
信息与通信工程
|
研究方向: |
无线通信
|
第一导师姓名: |
庞立华
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-14
|
论文答辩日期: |
2023-06-02
|
论文外文题名: |
Research on Reconfigurable Intelligent Surface Position Deployment Optimization for 6G
|
论文中文关键词: |
智能超表面 ; 位置部署 ; 多基站多用户 ; 关联策略 ; 遗传算法
|
论文外文关键词: |
RIS ; Position deployment ; Multi-BS multi-UE ; Association strategy ; Genetic algorithm
|
论文中文摘要: |
︿
高速增长的网络数据流量和海量的用户设备等需求要求第五代移动通信(The 5th Generation Mobile Communication,5G)提供更高容量的通信环境。虽然毫米波(Millimeter Wave,mmWave)通信和超密集网络(Ultra-Dense Network,UDN)等技术被提出解决以上问题,但这些技术在多基站场景中实现大规模覆盖时面临信号传播易被遮挡和硬件成本过高等问题。因此在未来第六代移动通信网络(The 6th Generation Mobile Communication ,6G )中,部署多个低成本的智能超表面(Reconfigurable Intelligent Surface,RIS)将成为有效的解决方案。而在实际多基站多用户场景中合理设计多RIS的部署位置,不仅可以进一步降低硬件支出和减少覆盖盲区,还能够为用户提供更高效的通信服务。因此,本文针对实际多基站多用户场景中信号传播易被遮挡的问题,对多RIS的部署位置进行优化设计,以提高用户平均接收功率与系统容量。
首先,针对实际通信网络中信号传播易受障碍物遮挡的问题,本文在多基站多用户且有障碍物的通信系统中基于自由空间传播模型以最大化用户平均接收功率为目标提出了一种多RIS位置部署优化方法。该系统中多用户基于最小路径损耗关联基站或RIS,在此基础上建立以多用户平均接收功率为目标的优化模型。由于部署优化问题解空间较大,提出基于遗传算法(Genetic Algorithm,GA)设计多RIS部署方 案,并利用最佳个体的马尔可夫链分析算法的收敛性。数值仿真结果表明在每个RIS的单元数为200时所提RIS部署方案在所考虑的发射功率范围内与无RIS辅助的通信方案相比,用户平均接收功率提高了53.97%。
其次,在多RIS辅助多基站多用户且有障碍物的通信系统中,由于时变信道影响多RIS部署的稳定性,本文基于统计信道状态信息,设计多RIS位置部署与被动波束赋形,以最大化系统遍历容量。该系统中多用户基于最小路径损耗与基站或RIS建立通信关联,在此基础上基于关联策略建立信道模型,并将系统遍历容量作为优化指标设计多RIS位置部署与被动波束赋形。由于遍历容量含有期望,确切表达式难以获得,因此推导出遍历容量易于处理的上界,再以交替优化的方式设计被动波束赋形与多RIS位置部署。数值仿真结果显示所提RIS部署方案在所考虑的反射单元数目范围内的系统遍历容量分别是 RIS部署在基站侧方案、部署在用户侧方案、BS-RIS-UE固定关联方案、RIS基于障碍物随机部署方案和利用齐次泊松点过程(Homogeneous Poisson Point Processes,HPPP)建模RIS位置方案的107.77%、114.25%、123.92%、133.35%和 142.63%。这表明在资源受限的情况下,可以通过优化RIS部署位置来提高通信系统性能。
﹀
|
论文外文摘要: |
︿
The 5th Generation Mobile Communication (5G) is required to provide a higher capacity communication environment due to the high growth of network data traffic and the huge number of user devices. While technologies such as Millimeter Wave (mmWave) communications and Ultra-Dense Network (UDN) have been proposed to address these issues, they face problems of signal propagation blockage and high hardware costs when achieving large scale coverage in multi-BS scenarios. Therefore, the deployment of multiple low-cost Reconfigurable Intelligent Surfaces (RIS) will be an effective solution in the future 6th Generation Mobile Communication (6G) network. The deployment of multi-RIS in a multi-BS multi-UE scenario can not only further reduce hardware expenditure and coverage blind spots, but also provide more efficient communication services to users. Therefore, this paper addresses the problem that signal propagation is easily blocked in actual multi-BS multi-UE scenario, and optimizes the design of the deployment positions of multi-RIS to improve the average user received power and system capacity.
First, to address the problem that signal propagation is easily blocked by obstacles in real communication networks, this paper proposes a multi-RIS positions deployment optimization method based on a free-space propagation model with the objective of maximizing the average received power of users in a multi-BS multi-UE communication system with obstacles. The multi-UE in this system is based on the minimum path loss associated BS or RIS, on the basis of which an optimization model is developed with the objective of the average received power of the multi-UE. Due to the large solution space of the deployment optimization problem, the Genetic Algorithm (GA) based multi-RIS deployment scheme is proposed and the convergence of the algorithm is analyzed using Markov chains of the best individuals. The numerical simulation results show that when the number of units in each RIS is 200, the proposed RIS deployment scheme improves the average user received power by 53.97% compared to the communication scheme without RIS assistance within the considered transmission power range.
Secondly, in a multi-RIS-assisted multi-BS multi UE communication system with obstacles, as the time-varying channel affects the stability of multi-RIS deployment, this paper designs multi-RIS positions deployment with passive beamforming based on statistical channel state information to maximize the system ergodic capacity. In this system, multi-UE establish communication association with the BS or RIS based on minimum path loss, based on this association strategy to establish a channel model, and use the system ergodic capacity as an optimization index to design multi-RIS positions deployment and passive beamforming. Since the ergodic capacity contains expectations and exact expressions are difficult to obtain, an upper bound on the ergodic capacity is derived that is easy to handle, and then the passive beamforming and multi-RIS positions deployment are designed in an alternating optimization manner. The numerical simulation results show that the system ergodic capacity of the proposed RIS deployment scheme within the range of the number of reflection units considered is 107.77%, 114.25%, 123.92%, 133.35% and 142.63% of the RIS position scheme of the RIS deployment scheme deployed on the side of the BS, the scheme deployed on the UE side, the BS-RIS-UE fixed association scheme, the RIS random deployment scheme based on obstacles, and the scheme using homogeneous Poisson Point Processes (HPPP) to model the RIS position. This indicates that in resource constrained situations, communication system performance can be improved by optimizing the deployment position of RIS.
﹀
|
参考文献: |
︿
[1]Barnett T, Jain S, Andra U, et al. Cisco visual networking index (vni) complete forecast update, 2017–2022[J]. Americas/EMEAR Cisco Knowledge Network (CKN) Presentation, 2018: 1-30. [2]Zuo J, Liu Y, Qin Z, et al. Resource allocation in intelligent reflecting surface assisted NOMA systems[J]. IEEE Transactions on Communications, 2020, 68(11): 7170-7183. [3]Wu Q, Zhang R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE communications magazine, 2019, 58(1): 106-112. [4]Basar E, Di Renzo M, De Rosny J, et al. Wireless communications through reconfigurable intelligent surfaces[J]. IEEE access, 2019, 7: 116753-116773. [5]Liang Y C, Long R, Zhang Q, et al. Large intelligent surface/antennas (LISA): Making reflective radios smart[J]. Journal of Communications and Information Networks, 2019, 4(2): 40-50. [6]Özdogan Ö, Björnson E, Larsson E G. Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling[J]. IEEE Wireless Communications Letters, 2019, 9(5): 581-585. [7]崔铁军, 金石, 章嘉懿, 赵亚军, 袁弋非, 孙欢等,智能超表面技术研究报告[R],IMT-2030(6G)推进组, 2021. [8]Zeng S, Zhang H, Di B, et al. Reconfigurable intelligent surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization[J]. IEEE Communications Letters, 2020, 25(1): 269-273. [9]Wu Q, Zhang R. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[J]. IEEE Transactions on Communications, 2019, 68(3): 1838-1851. [10]Wu Q, Zhang R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394-5409. [11]Ma S, Shen W, Gao X, et al. Robust channel estimation for RIS-Aided millimeter-wave system with RIS blockage[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5621-5626. [12]Zhang S, Zhang R. Capacity characterization for intelligent reflecting surface aided MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1823-1838. [13]Abeywickrama S, Zhang R, Wu Q, et al. Intelligent reflecting surface: Practical phase shift model and beamforming optimization[J]. IEEE Transactions on Communications, 2020, 68(9): 5849-5863. [14]Zhao M M, Wu Q, Zhao M J, et al. Two-timescale beamforming optimization for intelligent reflecting surface enhanced wireless network[C]//2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2020: 1-5. [15]Wang Z, Liu L, Cui S. Channel estimation for intelligent reflecting surface assisted multiuser communications[C]//2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2020: 1-6. [16]Zheng B, Zhang R. Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization[J]. IEEE Wireless Communications Letters, 2019, 9(4): 518-522. [17]Nadeem Q U A, Kammoun A, Chaaban A, et al. Asymptotic analysis of large intelligent surface assisted MIMO communication[J]. Arxiv, 2019, 2019. [18]Mao S, Chu X, Wu Q, et al. Intelligent reflecting surface enhanced D2D cooperative computing[J]. IEEE Wireless Communications Letters, 2021, 10(7): 1419-1423. [19]Pan C, Ren H, Wang K, et al. Multicell MIMO communications relying on intelligent reflecting surfaces[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5218-5233. [20]Guo H, Liang Y C, Chen J, et al. Weighted sum-rate maximization for intelligent reflecting surface enhanced wireless networks[C]//2019 IEEE Global Communications Conference (GLOBECOM). IEEE, 2019: 1-6. [21]Cai C, Yang H, Yuan X, et al. Reconfigurable intelligent surface assisted D2D underlay communications: A two-timescale optimization design[J]. Journal of Communications and Information Networks, 2020, 5(4): 369-380. [22]Yang Y, Zhang S, Zhang R. IRS-enhanced OFDMA: Joint resource allocation and passive beamforming optimization[J]. IEEE Wireless Communications Letters, 2020, 9(6): 760-764. [23]You C, Zheng B, Zhang R. Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2604-2620. [24]Han Y, Zhang S, Duan L, et al. Cooperative double-IRS aided communication: Beamforming design and power scaling[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1206-1210. [25]Xiu Y, Sun W, Wu J, et al. Sum-rate maximization in distributed intelligent reflecting surfaces-aided mmwave communications[C]//2021 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2021: 1-6. [26]Yu X, Xu D, Sun Y, et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2637-2652. [27]Nemati M, Park J, Choi J. RIS-assisted coverage enhancement in millimeter-wave cellular networks[J]. IEEE Access, 2020, 8: 188171-188185. [28]Noh T, Choi J. Cell-Free MIMO Systems Powered by Intelligent Reflecting Surfaces[J]. IEEE Communications Letters, 2022, 26(5): 1076-1080. [29]Kishk M A, Alouini M S. Exploiting randomly located blockages for large-scale deployment of intelligent surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 39(4): 1043-1056. [30]Lyu J, Zhang R. Hybrid active/passive wireless network aided by intelligent reflecting surface: System modeling and performance analysis[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7196-7212. [31]Tang W, Li X, Dai J Y, et al. Wireless communications with programmable metasurface: Transceiver design and experimental results[J]. China Communications, 2019, 16(5): 46-61. [32]Tang W, Dai J Y, Chen M, et al. Programmable metasurface‐based RF chain‐free 8PSK wireless transmitter[J]. Electronics letters, 2019, 55(7): 417-420. [33]Tang W, Chen M Z, Dai J Y, et al. Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design[J]. IEEE Wireless Communications, 2020, 27(2): 180-187. [34]Tang W, Chen M Z, Chen X, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2020, 20(1): 421-439. [35]Dai L, Wang B, Wang M, et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results[J]. IEEE access, 2020, 8: 45913-45923. [36]Zhao J, Yang X, Dai J Y, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National science review, 2019, 6(2): 231-238. [37]Dai J Y, Tang W K, Zhao J, et al. Wireless communications through a simplified architecture based on time‐domain digital coding metasurface[J]. Advanced materials technologies, 2019, 4(7): 1900044. [38]Tang W, Dai J Y, Chen M Z, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[J]. IEEE journal on selected areas in communications, 2020, 38(11): 2683-2699. [39]Wang Z, Tan L, Yin H, et al. A received power model for reconfigurable intelligent surface and measurement-based validations[C]//2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2021: 561-565. [40]Pei X, Yin H, Tan L, et al. RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials[J]. IEEE Transactions on Communications, 2021, 69(12): 8627-8640. [41]Trichopoulos G C, Theofanopoulos P, Kashyap B, et al. Design and evaluation of reconfigurable intelligent surfaces in real-world environment[J]. IEEE Open Journal of the Communications Society, 2022, 3: 462-474. [42]C114 通信网. 中兴通讯联合中国电信完成业界首个5G高频外场智能超表面技术验证测试[EB]. 2021. [43]SRRC. NTT DoCoMo, Metawave test 5G mobile system in Tokyo[EB]. 2018. [44]Arun V, Balakrishnan H. RFocus: Practical beamforming for small devices[J]. arXiv preprint arXiv:1905.05130, 2019. [45]Dunna M, Zhang C, Sievenpiper D, et al. ScatterMIMO: Enabling virtual MIMO with smart surfaces[C]//Proceedings of the 26th Annual International Conference on Mobile Computing and Networking. 2020: 1-14. [46]K. Ntontin et al., "Reconfigurable Intelligent Surface Optimal Placement in Millimeter-Wave Networks," IEEE Open Journal of the Communications Society, 2021, 2: 704-718. [47]Lu H, Zeng Y, Jin S, et al. Aerial intelligent reflecting surface: Joint placement and passive beamforming design with 3D beam flattening[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4128-4143. [48]Zheng B, You C, Zhang R. Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4513-4526. [49]He J, Yu K, Shi Y. Coordinated passive beamforming for distributed intelligent reflecting surfaces network[C]//2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). IEEE, 2020: 1-5. [50]Gao Y, Xu J, Xu W, et al. Distributed IRS with statistical passive beamforming for MISO communications[J]. IEEE Wireless Communications Letters, 2020, 10(2): 221-225. [51]Yang L, Yang Y, da Costa D B, et al. Outage probability and capacity scaling law of multiple RIS-aided networks[J]. IEEE Wireless Communications Letters, 2020, 10(2): 256-260. [52]Kudathanthirige D, Gunasinghe D, Amarasuriya G. Performance analysis of intelligent reflective surfaces for wireless communication[C]//ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020: 1-6. [53]Li X, Fang J, Gao F, et al. Joint active and passive beamforming for intelligent reflecting surface-assisted massive MIMO systems[J]. arXiv preprint arXiv:1912.00728, 2019. [54]Chen Z, Tang J, Du X, et al. Joint location and channel error optimization for beamforming design for multi-RIS assisted MIMO system[C]//2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2022: 181-185. [55]Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. science, 2011, 334(6054): 333-337. [56]Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: science & applications, 2014, 3(10): e218-e218. [57]Müller A, Kammoun A, Björnson E, et al. Efficient linear precoding for massive MIMO systems using truncated polynomial expansion[C]//2014 IEEE 8th sensor array and multichannel signal processing workshop (SAM). IEEE, 2014: 273-276. [58]Yu X, Xu D, Schober R. MISO wireless communication systems via intelligent reflecting surfaces[C]//2019 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2019: 735-740. [59]Wang H M, Bai J, Dong L. Intelligent reflecting surfaces assisted secure transmission without eavesdropper's CSI[J]. IEEE Signal Processing Letters, 2020, 27: 1300-1304. [60]Wu Q, Zhang R. Beamforming optimization for intelligent reflecting surface with discrete phase shifts[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019: 7830-7833. [61]Wu Q, Zhang R. Intelligent reflecting surface enhanced wireless network: Joint active and passive beamforming design[C]//2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 2018: 1-6. [62]Guo H, Liang Y C, Chen J, et al. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks[J]. IEEE transactions on wireless communications, 2020, 19(5): 3064-3076.
﹀
|
中图分类号: |
TN92
|
开放日期: |
2023-06-16
|