- 无标题文档
查看论文信息

论文中文题名:

 狭长空间中含水空气幕阻烟性能研究    

姓名:

 黄林远    

学号:

 18220089029    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 刘长春    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-06-03    

论文外文题名:

 Study on the Characteristics of the Smoke Blockage by Air Curtain with Water Mist in Long and Narrow Spaces Fires    

论文中文关键词:

 狭长空间 ; 超细水雾 ; 空气幕 ; 烟气流动 ; 烟气温度    

论文外文关键词:

 long and narrow spaces ; superfine water mist ; air curtain ; smoke spread ; smoke temperature    

论文中文摘要:

伴随着我国社会经济的迅速发展,大量的狭长结构的建筑物进入了人们的视野,这类建筑物在为人们提供便捷生活的同时,也存在着严重的火灾隐患。空气幕作为一种常见的柔性防排烟技术,广泛被应用于商城和地铁站台等建筑物中。空气幕与水雾技术相结合形成的含水空气幕可进一步提升阻烟降温性能,本文针对含水空气幕阻隔消减火灾烟气展开研究。依据相似准则设计并搭建狭长空间试验台,分析含水空气幕的作用下,狭长空间中火灾烟气的流动特性和烟气温度分布规律。

在非密闭式狭长空间中,研究了在空气幕中增添超细水雾对于空气幕阻隔消减火灾烟气的影响。发现在射流风速较小时,空气幕不能够有效的阻隔狭长空间中的火灾烟气,会使得火灾烟气发生下沉,同时导致空间中的烟气层厚度增加。相较纯风空气幕,在含水空气幕的作用下,幕后的火灾烟气温度最大下降8.13%,但是随着射流风速的增加,增加超细水雾后火灾烟气的温度下降程度降低。并且通过理论分析和在纵向通风条件下狭长空间中的烟气温度预测模型,建立了在空气幕作用下非密闭式狭长空间中烟气温度分布的预测模型。

研究了在半密闭式狭长空间中,纯风空气幕和含水空气幕对火灾烟气的阻隔消减效果。发现在空气幕的作用下,随着燃烧时间的增加,火源上游和封堵侧的火灾烟气浓度也有明显的降低。当在空气幕中添加超细水雾后,大量的超细水雾雾滴会吸附大量的火灾烟气颗粒,在狭长空间中发生紊流,导致狭长空间中的能见度降低。空气幕可以较好的降低狭长空间的火灾烟气温度,并且在不同射流风速时,封堵侧的火灾烟气温度相近。同时,基于前人对于狭长空间中的烟气温度分布模型,建立了在空气幕作用下半密闭狭长空间中火灾烟气温度分布的预测模型。

最后,研究了单吹式和底部开口式空气幕在非密闭和半密闭式狭长空间中对火灾烟气的阻隔消减性能。发现在半密闭式狭长空间中,相对于单吹式空气幕,射流风速较小的底部开口式空气幕阻隔火灾烟气的效果并未突显差异,但是随着射流风速的增加,底部开口式空气幕能够在射流风速较大时提升空气幕的阻隔效果。且火灾烟气的温度随着射流风速的增加而降低。当射流风速较大时,在底部开口式空气幕的作用下,火源上游区域火灾烟气温度会有明显的降低。建立了在狭长空间中与火源上游实验数据有较好相关性的火灾烟气温度分布预测模型。

论文的研究结果可为空气幕的参数优化设计提供理论基础和数据支撑,有学术研究和工程应用价值。

论文外文摘要:

With the rapid development of the social economy in our country, a large number of buildings with long and narrow structures have come into people's view. Air curtain, as a common flexible smoke control technology, is widely used in malls, subway stations and other buildings. The air curtain combined with water mist curtain technology can further improve the smoke resistance and temperature reduction performance. This paper studies the fire smoke reduction by air curtain with water mist. Based on the Froude similarity criterion, a long and narrow space test rig was designed and built to analyze the characteristics of fire smoke flow and temperature distribution in the long and narrow space.

In non-sealing long and narrow space, the effect of adding superfine water mist to air curtain on fire smoke suppression was studied. It is found that when the jet velocity is low, the air curtain can not effectively block the fire smoke in the long and narrow space, and it will cause the fire smoke to sink and increase the thickness of the smoke layer in the space. Compared with pure air curtain, under the action of water containing air curtain, the temperature of fire smoke behind the curtain decreased by 8.13%, but with the increase of jet wind speed, the temperature of fire smoke decreased with the increase of superfine water mist. Through theoretical analysis and prediction model of fire smoke temperature in long and narrow space under longitudinal ventilation, the prediction model of flue gas temperature distribution in long and narrow space under the action of air curtain was established.

In semi-sealing long and narrow space, the effects of pure air curtain and water containing air curtain on fire smoke were studied. It is found that with the increase in combustion time, the smoke concentration in the upstream of the fire source and in the plugging side also decreases obviously under the action of air curtain. When the superfine water mist is added to the air curtain, a large number of superfine water mist droplets will absorb lots of fire smoke particles, resulting in turbulence in the narrow space, which reduced the visibility in the narrow space.

Last but not least, the performance of single blowing air curtain and blowing suction air curtain on fire smoke in non-sealing and semi-sealing long and narrow space was studied. It is found that in the semi-sealing narrow space, compared with the single blowing air curtain, the blowing suction air curtain with a lower jet wind speed has no significant difference in blocking fire smoke. However, with the increase of jet velocity, the blowing air curtain can improve the blocking effect of the air curtain. The temperature of fire smoke decreases with the increase of jet velocity. When the jet velocity is high, the smoke temperature in the upstream area of the fire source will decrease obviously under the action of the air curtain. A fire smoke temperature distribution prediction model is established, which has a good correlation with the experimental data upstream of the fire source in a long and narrow space.

The research results of this paper can provide theoretical basis and data support for the air curtain parameter optimization design, and have academic research and engineering application value.

参考文献:

[1] 宋云龙. 特长公路运营隧道纵向通风形式下火灾烟气蔓延规律研究 [D]. 成都: 四川师范大学, 2015.

[2] 姜童辉. 纵向通风对隧道火灾烟气层结构及竖井排烟的影响机制研究 [D]. 合肥:中国科学技术大学, 2017.

[3] 梁强. 狭长空间火灾中细水雾型水幕阻烟性能实验及应用研究 [D]. 北京: 北京工业大学, 2017.

[4] 朱伟. 狭长空间纵向通风条件下细水雾抑制火灾的模拟研究 [D]. 合肥: 中国科学技术大学, 2006.

[5] 陶刚. 地铁区间隧道火灾烟气流动特性研究 [D]. 重庆: 重庆大学, 2011.

[6] 宣章伟. 细水雾作用下狭长空间火灾烟气特性参数变化研究 [D]. 淮南: 安徽理工大学, 2017.

[7] 王海宁, 程哲. 空气幕研究进展 [J]. 有色金属科学与工程, 2011, 2(03): 40-46.

[8] Gannouni S, Maad RB. Numerical study of the effect of blockage on critical velocity and backlayering length in longitudinally ventilated tunnel fires [J]. Tunnelling and Underground Space Technology, 2015, 48: 147-155.

[9] Li YZ, Lei B, Ingason H. Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires [J]. Fire Safety Journal, 2010, 45(6-8): 361-370.

[10] Harish R, Venkatasubbaiah K. Numerical study of water spray interaction with fire plume in dual chambers connected to tall shaft [J]. Fire Safety Journal, 2015, 74: 1-10.

[11] He L, Xu Z, Chen H, et al. Analysis of entrainment phenomenon near mechanical exhaust vent and a prediction model for smoke temperature in tunnel fire [J]. Tunnelling and Underground Space Technology, 2018, 80: 143-150.

[12] Tang F, Zhao Z, Zhao K. Experimental investigation on carriage fires hazards in the longitudinal ventilated tunnels: assessment of the smoke stratification features [J]. Safety Science, 2020, 130: 104901.

[13] Wang F, Wang M. A computational study on effects of fire location on smoke movement in a road tunnel [J]. Tunnelling and Underground Space Technology, 2016, 51: 405-413.

[14] Kurioka H, Oka Y, Satoh H, et al. Fire properties in near field of square fire source with longitudinal ventilation in tunnels [J]. Fire Safety Journal, 2003, 38(4):

[15] Oka Y, Atkinson GT. Control of smoke flow in tunnel fires [J]. Fire Safety Journal, 1995, 25(4): 319-340.

[16] 阳东. 狭长受限空间火灾烟气分层与卷吸特性研究 [D]. 合肥: 中国科学技术大学, 2010.

[17] Zhong W, Lv J, Li Z, et al. A study of bifurcation flow of fire smoke in tunnel with longitudinal ventilation [J]. International Journal of Heat and Mass Transfer, 2013, 67: 829-835.

[18] Ingason H, Lonnermark A. Heat release rates from heavy goods vehicle trailer fires in tunnels [J]. Fire Safety Journal, 2005, 40(7): 646-668.

[19] Lonnermark A, Ingason H. Gas temperatures in heavy goods vehicle fires in tunnels [J]. Fire Safety Journal, 2005, 40(6): 506-527.

[20] Li YZ, Lei B, Ingason H. The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires [J]. Fire Safety Journal, 2011, 46(4): 204-210.

[21] Ma X, Luo H, Fang T, et al. Maximum smoke temperature in the longitudinally ventilated tunnel fire: influence of the separating distance between two sources [J]. Tunnelling and Underground Space Technology, 2021, 107: 103674.

[22] Lei P, Chen C, Zhang Y, et al. Experimental study on temperature profile in a branched tunnel fire under natural ventilation considering different fire locations [J]. International Journal of Thermal Sciences, 2021, 159: 106631.

[23] Gong L, Jiang L, Li S, et al. Theoretical and experimental study on longitudinal smoke temperature distribution in tunnel fires [J]. International Journal of Thermal Sciences, 2016, 102: 319-328.

[24] Yao Y, He K, Peng M, et al. Maximum gas temperature rise beneath the ceiling in a portals-sealed tunnel fire [J]. Tunnelling and Underground Space Technology, 2018, 80: 10-15.

[25] Zhang Y, Xing S, Chen R, et al. Experimental study on maximum temperature beneath tunnel ceiling under the condition of double fire sources [J]. Tunnelling and Underground Space Technology, 2020, 106: 103624.

[26] Huang Y, Li Y, Dong B, et al. Numerical investigation on the maximum ceiling temperature and longitudinal decay in a sealing tunnel fire [J]. Tunnelling and Underground Space Technology, 2018, 72: 120-130.

[27] Hu L, Huo R, Peng W, et al. On the maximum smoke temperature under the ceiling in tunnel fires [J]. Tunnelling and Underground Space Technology, 2005, 21(6): 650-655.

[28] Hu L, Chen L, Tang W. A global model on temperature profile of buoyant ceiling gas flow in a channel with combining mass and heat loss due to ceiling extraction and longitudinal forced air flow [J]. International Journal of Heat and Mass Transfer, 2014, 79: 885-892.

[29] Tanaka F, Majima S, Kato M, et al. Performance validation of a hybrid ventilation strategy comprising longitudinal and point ventilation by a fire experiment using a model-scale tunnel [J]. Fire Safety Journal, 2015, 71: 287-298.

[30] 纪杰. 地铁站火灾烟气流动及通风控制模式研究 [D]. 合肥: 中国科学技术大学, 2008.

[31] Chen L, Hu L, Zhang X, et al. Thermal buoyant smoke back-layering flow length in a longitudinal ventilated tunnel with ceiling extraction at difference distance from heat source [J]. Applied Thermal Engineering, 2015, 78: 129-135.

[32] Mei F, Tang F, Ling X, et al. Evolution characteristics of fire smoke layer thickness in a mechanical ventilation tunnel with multiple point extraction [J]. Applied Thermal Engineering, 2017, 111: 248-256.

[33] Tang F, Cao Z, Palacios A, et al. A study on the maximum temperature of ceiling jet induced by rectangular-source fires in a tunnel using ceiling smoke extraction [J]. International Journal of Thermal Sciences, 2018, 127: 329-334.

[34] Li H, Chen X, Shu C, et al. Experimental and numerical investigation of the influence of laterally sprayed water mist on a methane-air jet flame [J]. Chemical Engineering Journal, 2019, 356: 554-569.

[35] 刘全义, 伊笑莹, 吕志豪, 等. 细水雾灭火有效性研究进展 [J]. 科学技术与工程, 2019, 19(22): 11-19.

[36] 陆嘉, 廖光煊, 黄咸家, 等. 细水雾作用下气体射流火焰熄灭的临界条件 [J]. 燃烧科学与技术, 2011, 17(05): 414-418.

[37] 刘长春, 马砺, 邓军, 等. 细水雾底部喷射对甲烷射流火焰影响实验研究 [J]. 科技通报, 2018, 34(10): 205-9.

[38] 马砺, 杨元博, 刘长春, 等. 细水雾作用下柴油与酒精火火焰强化对比研究 [J]. 消防科学与技术, 2018, 37(03): 337-341.

[39] 袁婷. 细水雾作用下射流火焰形态及稳定性研究 [D]. 西安: 西安科技大学, 2017.

[40] Wang Z, Wang X, Huang Y, et al. Experimental study on fire smoke control using water mist curtain in channel [J]. Journal of Hazardous Materials, 2018, 342: 231-241.

[41] Li Q, Tang Z, Fang Z, et al. Experimental study of the effectiveness of a water mist segment system in blocking fire-induced smoke and heat in mid-scale tunnel tests [J]. Tunnelling and Underground Space Technology, 2019, 88: 237-249.

[42] 高扬, 廖鑫. 消防水幕对有害气体阻隔效果的试验研究 [J]. 中国安全科学学报, 2011, 21(05): 77-82.

[43] 周洋, 林准, 张笑男, 等. 地铁站细水雾幕挡烟效果的数值模拟研究 [J]. 中国安全生产科学技术, 2016, 12(08): 75-80.

[44] 李媛. 细水雾幕抑制火灾烟气蔓延的实验研究 [D]. 合肥: 中国科学技术大学, 2014.

[45] 李媛, 王喜世, 蓝美娟, 等. 细水雾幕抑制火灾烟气的实验研究 [J]. 燃烧科学与技术, 2014, 20(03): 263-926.

[46] 董惠, 邹高万, 郜冶. 激光测量水幕阻隔烟气全尺寸火灾实验设计与研究 [J]. 哈尔滨工程大学学报, 2002, 5: 80-83.

[47] 孟子龙, 范秀山, 梁天水, 等. 细水雾幕优化及挡烟有效性模拟研究 [J]. 消防科学与技术, 2016, 35(12): 1708-1710.

[48] Blanchard E, Boulet P, Fromy P, et al. Experimental and numerical study of the interaction between water mist and fire in an intermediate test tunnel [J]. Fire Technology, 2014, 50(3): 565-587.

[49] Pan L, Lo SM, Liao G, et al. Experimental study of smoke control in subway station for tunnel area fire by water mist system [J]. Procedia Engineering, 2011, 11: 335-342.

[50] Jin X, Zhang L, Li X, et al. Structural features and smoke resistance of water mist curtain of upper spray nozzle [J]. International Journal of Heat and Technology, 2020, 38(3): 758-766.

[51] Sun J, Fang Z, Tang Z, et al. Experimental study of the effectiveness of a water system in blocking fire-induced smoke and heat in reduced-scale tunnel tests [J]. Tunnelling and Underground Space Technology, 2016, 56: 34-44.

[52] Parent G, Boulet P, Morlon R, et al. Radiation attenuation and opacity in smoke and water sprays [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 197: 60-67.

[53] Mehaddi R, Collin A, Boulet P, et al. Use of a water mist for smoke confinement and radiation shielding in case of fire during tunnel construction [J]. International Journal of Thermal Sciences, 2020, 148: 106156.

[54] 李安桂, 成劲光, 高然. 基于超细水雾作用下的地铁站台空间火灾烟气温度特性 [J]. 西安建筑科技大学学报(自然科学版), 2019, 51(03): 426-431.

[55] 刘柳, 李琪, 方正. 隧道细水雾段阻烟隔热效果相关特性研究 [J]. 消防科学与技术, 2018, 37(09): 1206-1210.

[56] Yang P, Shi C, Gong Z, et al. Numerical study on water curtain system for fire evacuation in a long and narrow tunnel under construction [J]. Tunnelling and Underground Space Technology, 2019, 83: 195-219.

[57] Liang Q, Li Y, Li J, et al. Numerical studies on the smoke control by water mist screens with transverse ventilation in tunnel fires [J]. Tunnelling and Underground Space Technology, 2017, 64: 177-183.

[58] 孙祥. 地铁区间隧道联络通道防烟空气幕研究 [D]. 重庆: 重庆大学, 2018.

[59] 吴振坤. 地铁车站敞开楼梯空气幕防火防烟分隔技术研究 [D]. 合肥: 中国科学技术大学, 2015.

[60] 肖玉清. 矿用空气幕阻隔风流及烟气的数值模拟研究 [D]. 赣州: 江西理工大学, 2015.

[61] Viegas J, Cruz H. Air curtains combined with smoke exhaust for smoke control in case of fire: full-size experiments [J]. Fire Technology, 2019, 55: 211-232.

[62] Viegas J. Saltwater experiments with air curtains for smoke control in the event of fire [J]. Journal of Building Engineering, 2016, 8: 243-248.

[63] Safarzadeh M, Heidarinejad G, Pasdarshahri H. Air curtain to control smoke and fire spread in a ventilated multi-floor building [J]. International Journal of Thermal Sciences, 2021, 159: 106612.

[64] Gupta S, Pavageau M, Elicer-Cort SJ. Cellular confinement of tunnel sections between two air curtains [J]. Building and Environment, 2006, 42(9): 3352-3365.

[65] Felis F, Pavageau M, Elicer-Cort S, et al. Simultaneous measurements of temperature and velocity fluctuations in a double stream-twin jet air curtain for heat confinement in case of tunnel fire [J]. International Communications in Heat and Mass Transfer, 2010, 37(9): 1191-1196.

[66] Guyonnaud L, Solliec C, Virel M, et al. Design of air curtains used for area confinement in tunnels [J]. Experiments in Fluids, 2000, 28(4): 377-384.

[67] 何嘉鹏, 王东方, 王健, 等. 高层建筑防烟空气幕设计参数的数学模型 [J]. 应用科学学报, 1999, 3: 371-376.

[68] 何嘉鹏, 王东方, 唐晓亮, 等. 高层建筑火灾防烟空气幕的实验研究 [J]. 中国安全科学学报, 2002, 6: 40-43+94.

[69] Yu L, Liu F, Beji T, et al. Experimental study of the effectiveness of air curtains of variable width and injection angle to block fire-induced smoke in a tunnel configuration [J]. International Journal of Thermal Sciences, 2018, 134: 13-26.

[70] 张培红, 刘岩, 宋波. 空气幕的不同送风角度对深埋地铁火灾烟气控制数值分析 [J]. 中国安全生产科学技术, 2009, 5(1): 21-26.

[71] Lin Q, Zhang L, Han X. Influence of setting position of tunnel air curtain on smoke prevention effect [J]. IOP Conference Series: Earth and Environmental Science, 2019, 218(1): 012114.

[72] 应志刚. 基于空气幕和挡烟垂壁的地铁站烟气控制 [J]. 消防科学与技术, 2012, 31(05): 475-477.

[73] Gao R, Li A, Lei W, et al. Study of a proposed tunnel evacuation passageway formed by opposite-double air curtain ventilation [J]. Safety Science, 2012, 50(7): 1549-1557.

[74] Gao D, Li T, Mei X, et al. Effectiveness of smoke confinement of air curtain in tunnel fire [J]. Fire Technology, 2020, 56:2283-2314

[75] 周吉伟. 建筑火灾中空气幕挡烟的有效性研究 [D]. 合肥: 中国科学技术大学, 2007.

[76] 周吉伟, 霍然, 胡隆华. 狭长通道内风幕挡烟效果的数值分析 [J]. 安全与环境学报, 2005, 4: 117-9.

[77] Ji J, Zhong W, Huo R, et al. Critical conditions for fire-induced smoke confinement by air curtain in long channels [C]. ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences, San Francisco, 2009: 19-23.

[78] 黄仁武. 地铁车站空气幕挡烟的应用研究 [D]. 重庆: 重庆大学, 2016.

[79] Luo N, Li A, Gao R, et al. An experiment and simulation of smoke confinement and exhaust efficiency utilizing a modified opposite double-jet air curtain [J]. Safety Science, 2013, 55: 17-25.

[80] Hu L, Zhou J, Huo R, et al. Confinement of fire-induced smoke and carbon monoxide transportation by air curtain in channels [J]. Journal of hazardous materials, 2008, 156(1-3): 327-334.

[81] Ciocanea A, Dragomirescu A. Modular ventilation with twin air curtains for reducing dispersed pollution [J]. Tunnelling and Underground Space Technology, 2013, 37: 180-198.

[82] Luo N, Li A, Leng B, et al. Smoke confinement with multi-stream air curtain at stairwell entrance [J]. Procedia Engineering, 2017, 205: 337-344.

[83] Hu L, Kuang C, Zhong X, et al. An experimental study on burning rate and flame tilt of optical-thin heptane pool fires in cross flows [J]. Proceedings of the Combustion Institute, 2017, 36(2): 3089-3096.

[84] Ping P, He X, Kong D, et al. An experimental investigation of burning rate and flame tilt of the boilover fire under cross air flows [J]. Applied Thermal Engineering, 2018, 133: 501-511.

[85] Wang Q, Wang S, Liu H, et al. Characterization of ceiling smoke temperature profile and maximum temperature rise induced by double fires in a natural ventilation tunnel [J]. Tunnelling and Underground Space Technology, 2020, 96: 103233.

[86] Chen C, Nie Y, Zhang Y, et al. Experimental investigation on the influence of ramp slope on fire behaviors in a bifurcated tunnel [J]. Tunnelling and Underground Space Technology, 2020, 104: 103522.

[87] Luo N, Li A, Gao R, et al. An experiment and simulation of smoke confinement utilizing an air curtain [J]. Safety Science, 2013, 59: 10-18.

[88] Ferrero F, Munoz M, Kozanoglu B, et al. Experimental study of thin-layer boilover in large-scale pool fires [J]. Journal of Hazardous Materials, 2006, 137(3): 1293-1302.

[89] 易亮, 霍然, 张靖岩, 等. 柴油油池火功率特性 [J]. 燃烧科学与技术, 2006, (02): 164-168.

[90] Razeghi S, Safarzadeh M, Pasdarshahri H. Evaluation of air curtain and emergency exhaust system for smoke confinement of an enclosure [J]. Journal of Building Engineering, 2021, 33: 101650.

[91] Wang S, Jin L, Ou S, et al. Experimental air curtain solution for refuge alternatives in underground mines [J]. Tunnelling and Underground Space Technology, 2017, 68: 74-81.

[92] Wang J, Nie Q, Fang Z, et al. CFD Simulations of the interaction of the water mist zone and tunnel fire smoke in reduced-scale experiments [J]. Procedia Engineering, 2018, 211: 726-735.

[93] 龚伟, 游伟. 地铁车站火灾烟气蔓延数值模拟分析 [J]. 消防科学与技术, 2010, 29(04): 294-296.

[94] 展望, 蒋军成, 孙智灏, 等. 细水雾对地铁火灾烟气抑制的数值模拟 [J]. 建筑科学, 2014, 30(7): 103-106+24.

[95] Mcgrattan K, Hostikka S, Mcdermott R, et al. Fire dynamics simulator user’s guide [J]. NIST special publication, 2013, 1019(6).

[96] Zhang W, Hamer A, Klassen M, et al. Turbulence statistics in a fire room model by large eddy simulation [J]. Fire Safety Journal, 2002, 37(8): 721-752.

[97] Alpert RL. Calculation of response time of ceiling-mounted fire detectors [J]. Fire Technology, 1972, 8(3): 181-195.

[98] Bailey J, Forney G, Tatem P, et al. Development and validation of corridor flow submodel for CFAST [J]. Journal of Fire Protection Engineering, 2002, 12(3): 139-161.

[99] 胡隆华. 隧道火灾烟气蔓延的热物理特性研究 [D]. 合肥: 中国科学技术大学, 2006.

[100] 王明年, 郭晓晗, 于丽, 等. 空气幕对城际铁路地下车站火灾烟气控制数值分析 [J]. 中国安全生产科学技术, 2019, 15(09): 63-69.

中图分类号:

 X932    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式