题名: |
纳米SiO2改性复合凝胶泡沫抑制煤自燃特性及阻化机理研究
|
作者: |
张建华
|
学号: |
18120089020
|
保密级别: |
保密(2年后开放)
|
语种: |
chi
|
学科代码: |
083700
|
学科: |
工学 - 安全科学与工程
|
学生类型: |
博士
|
学位: |
工学博士
|
学位年度: |
2024
|
学校: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
煤火灾害防治
|
导师姓名: |
文虎
|
导师单位: |
西安科技大学
|
第二导师姓名: |
何学秋
|
提交日期: |
2024-06-21
|
答辩日期: |
2024-06-04
|
外文题名: |
Study on the Characteristics and Inhibition Mechanism of Nano SiO2 Modified Composite Gel-foam to Inhibit Coal Spontaneous Combustion
|
关键词: |
煤自燃 ; 防灭火 ; 凝胶泡沫 ; 改性复合 ; 活性基团 ; 阻化机理
|
外文关键词: |
Coal spontaneous combustion ; Fire prevention ; Gel foam ; Modified composite ; Active groups ; Inhibition mechanism
|
摘要: |
︿
随着煤开采强度和深度的增加,煤的赋存和开采条件愈加复杂,采空区煤自燃灾害的防控难度不断增大,注入高效安全的防控材料是控制采空区遗煤自燃的重要技术策略。本文基于凝胶泡沫防灭火材料的高效保水能力、出色成胶特性和优异的堆积渗流扩散特性,融合煤自燃防控新技术和纳米灭火新材料的优势特点,通过改性复合的方法制备一种新型纳米SiO2改性复合凝胶泡沫,提升材料的渗流扩散、覆盖阻化、固化堵漏等工艺性能。围绕纳米SiO2改性复合凝胶泡沫对煤自燃抑制作用,构建基于深度学习的材料配比预测优化模型,探究材料的优选与制备方法。开展改性复合凝胶泡沫材料的宏观抑制性能系列对比测试实验,搭建采空区模拟测试平台考察验证防煤自燃效果。结合现代测试分析技术手段,采用量子化学计算模拟方法,从分子反应的层面解析材料防煤自燃的微观机理,阐释纳米改性复合凝胶泡沫抑制煤自燃的作用机制。
获得了纳米SiO2改性复合凝胶泡沫材料的主要组分组成、关键组分改性及制备方法。结合防灭火材料阻化性能要求与现场生产环境的工艺需求,研究改性提效材料优选与配比优化策略,优选纳米SiO2颗粒、膨润土改性TBHQ抗氧化剂,实现物理化学阻化剂与凝胶泡沫的改性复合。采用插层嫁接的方法改性关键化学组分以提高材料的阻化性能和热稳定性,添加纳米SiO2颗粒增强凝胶泡沫网络骨架结构,提升了凝胶泡沫的整体阻化效能。膨润土改性TBHQ的化学改性策略,将抗氧化剂的失水率突变临界点从80℃提升至120℃,有效提升了材料的热稳定性。提出了一种基于深度卷积神经网络的材料浓度配比的预测优化方法。通过单因素实验法筛选出的单一组分最佳浓度,利用多因素响应面分析法获取关键组分的最优配比,基于深度卷积神经网络算法构建材料浓度配比预测优化CNN模型。将多因素条件下响应面分析因素组合的实验结果作为样本集,对比训练集和验证集的预测结果,评估模型的有效性与准确性。经过连续300次迭代训练得到优化后的材料浓度配比为:胶凝剂3.0%,交联剂0.2%wt,发泡剂0.2%wt,稳泡剂0.49%wt,纳米颗粒3.0%wt,阻化剂2.9%wt,预测优化的浓度配比与多因素响应面法优化结果的误差控制在[0.1%wt,1%wt]之间,从理论和实验两个维度预测优化所选材料配比的合理性。
研究阐释了纳米改性复合凝胶泡沫在抑制煤自燃过程中的宏观阻化性能与作用机制。通过应力黏度、封堵阻力、失水率等参数的对比测试,探究改性复合凝胶泡沫的流变扩散、封堵隔氧、热稳定性等宏观阻化性能,研究流变特性对煤体空间覆盖堆积性能的影响规律,揭示了材料封堵性能的时空变化对阻断煤自燃的作用机制。实验获得了长焰煤氧化反应阶段划分的特征温度点:53℃、145℃、231℃、268℃、408℃、562℃、767℃。改性复合强化了材料在低温氧化阶段的阻化性能,特别是在煤自燃吸氧增重阶段(T2-T4)展示出更加突出的阻化效果,特征点温度分别提高了6%、11%和26%。纳米改性复合凝胶泡沫流变行为表现是一种屈服假塑性流体,流变特性通过拟合本构方程τ=0.67+10.48γ0.38来描述,流变性质因泡沫化过程显著改变,屈服力从73.08Pa减少至0.67Pa,而稠度系数从157.86显著降低至10.48,固定的剪切速率下的黏度仅为普通凝胶的1/12。探讨纳米改性复合凝胶泡沫在封堵隔氧性能方面的有效性,添加2% wt 纳米改性复合凝胶泡沫的阻化煤样,漏风阻力能够显著提升至2.0kPa。开展纳米改性复合凝胶泡沫制防治遗煤自燃的采空区原位模拟验证实验,170℃时CO阻化率可达72.11%,阻化效果是普通凝胶泡沫的6倍、MgCl2浆液的3倍。
阐明了纳米SiO2改性复合凝胶泡沫防煤自燃宏观性能与抑制煤自燃微观机理之间的关系。运用电子自旋共振波谱ESR与原位红外光谱FTIR检测技术,对比阻化前后煤样活性基团分布演化规律,分析了材料阻断煤氧链式反应进程的作用机制。长焰煤的活性基团包括-CH3, -CH2、-COOH、-OH、-CH和Ar-C-O等,其中含氧官能团中占比最大,芳香烃结构的谱峰较为尖锐,改性复合凝胶泡沫在初期温度50℃~90℃范围对减缓自由基浓度增长的作用尤为显著。构建长焰煤分子简单模型化合物,开展活性基团的氧化链式反应传播路径的模拟分析,阐明活性基团反应路径和化学作用机制。发现长焰煤分子活性基团链式反应沿着直线型、交叉循环型路径进行,活化能小于40kJ/mol的脂肪烃-CH官能团率先发生反应,反复自我活化煤分子内其他官能团加速氧化反应。改性抗氧化剂通过氢离子消除自由基,中断煤氧复合反应的传播路径,通过羟基-OH与煤分子内部的-COO-等活性官能团之间的相互作用,遏制含氧官能团羧基-COO-引发的链式反应进程,膨润土释放的Na+和Ca2+与煤分子中的活性基团形成稳定的结构化合物,削弱基团的反应活性,降低煤氧复合反应的可能性。阐释了改性复合凝胶泡沫抑制煤自燃物理化学作用方式共同参与的协同作用机制,物理层面上空间覆盖和封堵隔氧的特性,化学层面上清除活性基团、形成稳定化合物的抗氧化特性,实现了协同阻止煤体自燃的效果。新材料的研制开发和阻化机理的研究,对我国煤炭绿色安全高效开采具有重要的现实意义。
﹀
|
外文摘要: |
︿
With the increasing intensity and depth of coal seam mining, the conditions for coal seam occurrence and mining have become increasingly complex.The difficulty of preventing and controlling coal spontaneous combustion disasters in goaf has increased dramatically. Injecting efficient and safe prevention and control materials into goaf is an important technical strategy to control residual coal spontaneous combustion. This paper, based on the high water retention capacity, excellent gelation characteristics, and outstanding accumulation and seepage diffusion properties of gel foam fire extinguishing materials, integrates the advantages of new technologies for coal spontaneous combustion prevention and control and new nanomaterials for fire extinguishing. A new type of nano-SiO2 modified composite gel foam is prepared by modification and compounding methods to enhance the material’s seepage diffusion performance, persistent coverage and inhibition, and rapid solidification and plugging process performance. Focusing on the inhibitory effect of nano-SiO2 modified composite gel foam on coal spontaneous combustion, a material ratio prediction optimization model based on deep learning is constructed to explore the material selection and preparation methods. A series of comparative tests on the macroscopic inhibitory performance of the modified composite gel foam materials are carried out, and a goaf simulation testing platform is built to examine and verify the effect of preventing coal spontaneous combustion. Quantum chemical simulation calculation methods are used in conjunction with modern testing and analysis techniques to analyze the microscopic mechanism of the material’s prevention of coal spontaneous combustion from the molecular reaction level, elucidating the action mechanism of nano-modified composite gel foam in inhibiting coal spontaneous combustion.
The main component composition, key component modification, and preparation methods of nano-SiO2 modified composite gel foam materials have been obtained. Combining the requirements of fire extinguishing material inhibition performance and the process needs of the on-site production environment, the material selection and ratio optimization strategies for the modification and efficiency improvement of the modified composite gel foam are studied to realize the modification and compounding of physical and chemical inhibitors with gel foam, with the selection of Nano-SiO2 particles and bentonite-modified TBHQ antioxidants. The key chemical components are modified by intercalation grafting to improve the material’s inhibition performance and thermal stability, and nano-SiO2 particles are added to enhance the network skeleton structure of the gel foam, improving the inhibition efficiency of the gel foam. The chemical modification strategy of bentonite-modified TBHQ shifts the critical point of the antioxidant’s dehydration rate from 80°C to 120°C, effectively enhancing the material’s thermal stability.
A prediction optimization method for the concentration ratio of nano-modified composite gel foam materials based on deep convolutional neural networks is proposed. The single component type and optimal concentration are screened out by the single-factor experimental method, and the optimal ratio of six components is obtained using the multifactorial response surface analysis method. A prediction optimization CNN model is constructed based on the deep convolutional neural network algorithm. The experimental results of the response surface analysis factor combinations under multifactorial conditions are used as the sample set. The prediction results of the training set and validation set are compared to evaluate the model’s effectiveness and accuracy. After 300 consecutive iterations of training, the optimized material concentration ratio is obtained: coagulant 3.0%, cross-linking agent 0.2%wt, foaming agent 0.2%wt, foam stabilizer 0.49%wt, nano-particles 3.0%wt, inhibitor 2.9%wt. The prediction-optimized concentration ratio has an error range of [0.1%wt,1%wt] compared to the optimization results of the multifactorial response surface method, predicting the rationality of the selected material ratio from both theoretical and experimental dimensions.
The macro-action mechanism of nano-modified composite gel foam in inhibiting the process of coal spontaneous combustion is elucidated. Through comparative tests of parameters such as stress viscosity, plugging resistance, and dehydration rate, the rheological dispersion performance, plugging and oxygen-blocking ability, inhibition effect, and thermal stability of the modified composite gel foam are explored. The influence of the material’s rheological properties on the spatial coverage and accumulation performance of the coal body is studied, revealing the mechanics of the temporal and spatial changes in plugging performance on blocking coal spontaneous combustion. The characteristic temperature points of the oxidation reaction stages of long-flame coal are obtained: 53°C, 145°C, 231°C, 268°C, 408°C, 562°C, 767°C. The modified composite enhances the inhibition performance during the low-temperature oxidation stage, especially during the coal spontaneous combustion oxygen absorption weight gain stage (T2-T4), showing more prominent inhibition effects, with the characteristic point temperatures increasing by 6%, 11%, and 26%, respectively. It is revealed that the rheological behavior of nano-modified composite gel foam is a yield pseudoplastic fluid, and its rheological properties can be described by fitting the constitutive equation τ=0.67+10.48γ0.38. The rheological properties change significantly due to the foaming process, with the yield strength reducing from 73.08Pa to 0.67Pa, and the consistency coefficient significantly lowering from 157.86 to 10.48. The viscosity under a fixed shear rate is only 1/12 of that of ordinary gel. The effectiveness of nano-modified composite gel foam in plugging and oxygen-blocking performance is discussed. The wind leakage resistance of the coal sample with 2% wt nano-modified composite gel foam added can be significantly increased to 2.0kPa. An in-situ simulation experiment of nano-modified composite gel foam for preventing and treating residual coal spontaneous combustion in goaf areas is carried out. At 170°C, the CO inhibition rate can reach 72.11%, which is six times that of ordinary gel foam and three times that of MgCl2 slurry.
The relationship between the macroscopic performance of nano-SiO2 modified composite gel foam in preventing coal spontaneous combustion and the microscopic mechanism of inhibiting coal spontaneous combustion is clarified. Using electron spin resonance (ESR) and fourier transform infrared spectroscopy (FTIR) detection techniques, the distribution changes of active groups in coal samples before and after inhibition are compared and analyzed, and the mechanism of action in blocking the coal oxygen chain reaction process is analyzed. The active groups of long-flame coal include -CH3, -CH2, -COOH, -OH, -CH, and Ar-C-O, among which oxygen-containing functional groups have the largest proportion, and the spectral peaks of aromatic structures are relatively sharp. The modified composite gel foam has a particularly significant effect on slowing the increase in free radical concentration in the initial temperature range of 50°C to 90°C. It is found that the chain reactions of active groups in long-flame coal molecules proceed along linear and cross-cyclic paths. The fatty hydrocarbon -CH functional groups with activation energy less than 40kJ/mol react first, repeatedly self-activating other functional groups within the coal molecules to accelerate the oxidation reaction. The oxidation chain reaction propagation path of active groups is simulated and analyzed using model compound experiments combined with quantum chemical calculation simulations, clarifying the reaction path and chemical mechanism of active groups. The modified antioxidant interrupts the propagation path of the coal oxygen composite reaction by removing free radicals with hydrogen ions. Through the interaction between the hydroxyl -OH and the -COO- and other active functional groups inside the coal molecule, the chain reaction process initiated by the carboxyl -COO- containing oxygen functional groups is inhibited. The Na+ and Ca2+ ions released by bentonite form stable structural compounds with the active groups in the coal molecules, eliminating the reactivity of the active groups and reducing the possibility of coal oxidation reactions. The synergistic action mechanism of the modified composite gel foam in inhibiting coal spontaneous combustion is elucidated, involving the physical characteristics of spatial coverage and oxygen-blocking on the physical level, and the antioxidant characteristics of clearing active groups and forming stable compounds on the chemical level, achieving the synergistic effect of preventing coal body spontaneous combustion. The research results provide data and experience for the precise prevention and control of coal spontaneous combustion disasters and have significant practical significance for the green, safe, and efficient mining of China’s coal.
﹀
|
参考文献: |
︿
[1]王德明.煤氧化动力学理论及应用[M].北京:科学出版社,2012. [2]Qi X, Xue H, Xin H, et al. Reaction pathways of hydroxyl groups duringcoal spontaneous combustion[J].Canadian Journal of Chemistry, 2016.94(5): 494-500. [3]Zhu H, Cheng M, Xu J, et al. Nitrogen migration and transformation from ammonia to char during ammonia-coal/char co-pyrolysis[J]. International Journal of Hydrogen Energy, 2024, 49: 137-148. [4]王福生,张朝阳,刘向群,等. 金属离子螯合剂抑制煤自燃试验研究[J]. 煤炭科学技术,2023,51(S1): 132−140. [5]Gao Y, Lei H, Yin X, et al. Study of the change laws of free radicals and functional groups during coal oxidation[J]. ACS omega, 2023, 8(7): 7102-7110. [6]Li J, Li Z,Yang Y, et al. Experimental study on the effect of mechanochemistry on coal spontaneous combustion [J].Powder Technology,2018,339(2):102-110. [7]周佩玲,袁飞,赵鹏霞.动态采空区非线性氧化升温相似试验研究[J]. 中国安全科学学报, 2020, 30(11): 95-100. [8]Song J, Deng J, Zhao J, et al. Comparative analysis of exothermic behaviour of fresh and weathered coal during low-temperature oxidation[J].Fuel,2021,5(7):119-227. [9]Huang X, Xu Y Wang Y, et al. Are ionic liquids suitable for suppressing coal spontaneous combustion[J].ACS Omega, 2021,6(10):6681-6690. [10]Gao F, Jia Z, Bai Q, et al. Characteristics and mechanism of Glutathione in inhibiting coal spontaneous combustion[J]. Fuel, 2023, 352: 129006. [11]徐精彩,薛韩玲,文虎,等.煤氧复合热效应的影响因素分析[J].中国安全科学学报2001,11(2): 31-35. [12]欧盛南,刘建国,金龙哲,等.CO2与 N2对筒仓混煤低温自燃与爆炸的抑制作用[J].中国矿业大学学报,2020,49(2):387-394. [13]陈雅,蒋仲安,谭聪.基于危机征兆的煤矿内因火灾预测模型的研究[J].矿业安全与环保,2015,42(1):56-59. [14]杜翠凤,卢俊杰,王远.综放面采空区注氮防火的数值模拟与参数确定[J].煤,2014,23(12):4-6. [15]唐一博,李增华,杨永良,等.煤自燃模型化合物苯甲醚和苯甲醇的低温氧化[J].煤炭学报2012,37(12):2048-2052. [16]秦波涛,王德明,李增华,等.以活化能的观点研究煤炭自燃机理[J].中国安全科学学报,2005(1):14-16. [17]程远平,李增华.煤炭低温吸氧过程及其热效应[J].中国矿业大学学报,1999(4):10-13. [18]Pan R, Wang X, Chao J, et al. Analysis of the coal spontaneous combustion risk space evolution in the goaf under ventilation and extraction coupling[J]. Combustion Science and Technology, 2022: 1-19. [19]沈冰洁,黄婕,曹银平,等.低温氧化过程中煤的宏观特性与微观结构变化[J].华东理工大学学报(自然科学版),2020(2):1-9. [20]李青蔚.煤贫氧氧化热动力过程基础研究[D].西安:西安科技大学,2018. [21]Guo Y, Qiao L, Deng C, et al. Study on the catalysis of copper-based compounds on coal spontaneous combustion and its mechanism[J]. Combustion Science and Technology, 2023: 1-16. [22]Sun L, Li C, Xu Z, et al. Mitigating Risks in Coal Mining: Simulation-Based Strategy for Oxidation Zone Control Using Inorganic Paste Backfill at the Working Face Corners[J]. Applied Sciences, 2023, 13(24): 13216. [23]张军委.防治煤自燃的新型凝胶泡沫材料实验研究[D].徐州:中国矿业大学,2017. [24]李方磊.防治煤自燃的新型稠化胶体特性研究[D].徐州:中国矿业大学,2017. [25]Ren W, Guo Q, Wang Z. Application of foam-gel technology for suppressing coal spontaneous combustion in coal mines [J]. NaturalHazards,2016,84(2):1207-1218. [26]Wang G, Yan G Zhang X, et al. Research and development of foamed gel for controlling the spontaneous combustion of coal in coal mine[J].Journal of Loss Prevention in the Process Industries, 2016,44(2):474-486. [27]胡相明.矿用充填堵漏风新型复合泡沫的研制[D].徐州:中国矿业大学,2013. [28]Lu Wei,Zhang Xuedong,Yuan Yang,et al. Study on the characteristics and mechanism of a new type of antioxidant gel foam for coal spontaneous combustion prevention[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,628. [29]Leilin Zhang, Biming Shi, Botao Qin, et al. Characteristics of foamed gel for coal spontaneous combustion prevention and control[J]. Combustion Science and Technology,2017,189(6). [30]Xi Z, Li D, Feng Z. Characteristics of polymorphic foam for inhibiting spontaneous coal combustion[J].Fuel,2017,206(4):334-341. [31]Zhang L, Wu W, Wei J, et al. Preparation of foamed gel for preventing spontaneous combustion of coal[J]. Fuel, 2021,300:121024. [32]张嬿妮,侯云超,刘博,等.卤盐载体无机盐阻化煤自燃的机理及性能[J].工程科学学报,2021,43(10):1295-1303. [33]钟演,杨胜强,胡新成,信亚男.物化协同阻化剂的制备与性能实验研究[J].煤矿安全,2017,48(07):44-48. [34]刘吉波.煤炭的阻燃机理分析和氯化盐类汽雾阻化剂的应用[J].华北科技学院学报,2002(2):8-10. [35]Liodakis S,Tsoukala M. Environmental benefits of using magnesium carbonate minerals as new wildfire retardants instead of commercially available, phosphate-based compounds [J]. Environmental Geochemistry and Health,2010,32(5): 391-9. [36]常绪华,王德明,时国庆.采空区高硫煤自燃阻化技术试验分析[J].中南大学学报(自然科学版),2013,44(5):2118-2123. [37]叶正亮,李金亮,陆伟,等.化学阻化剂对高硫煤的阻化实验研究[J].煤矿安全,2011,42(11):12-14. [38]Qin B, Dou G Zhong X. Effect of stannous chloride on low-temperature oxidation reaction of coal [J]. Fuel Processing Technology, 2018,176(2):59-63 [39]李毅恒.稀土类水滑石的煤自燃阻化机理研究[D].西安:西安科技大学,2018. [40]刘晓星.虾青素与5种天然抗氧化剂的抗氧化活性比较研究[D].邯郸:河北工程大学,2018. [41]王烽. 绿色环保型复合阻化剂抑制煤自燃实验研究[D].徐州:中国矿业大学,2018. [42]Enrique Cuevas-Suárez Carlos,Aldrighi Münchow Eliseu,Gonçalves Schwarzbold Christian,et al. Effect of naturally derived antioxidants as polymerization inhibitors on experimental adhesive resins[J]. Journal of Photochemistry & Photobiology, A: Chemistry,2023,436. [43]白子明. 防治煤自燃的微胶囊化复合阻化剂研究[D].徐州:中国矿业大学,2019. [44]姜峰,孙雯倩,李珍宝,梁瑞,李雷,梁秋悦.复合阻化剂抑制煤自燃过程的阶段阻化特性[J].煤炭科学技术,2022,50(10):68-75. [45]Feipeng Lou,Wei Yan,Weihong Guo,et al. Preparation and properties of ceramifiable flame-retarded silicone rubber composites[J]. Journal of Thermal Analysis and Calorimetry,2017,130(2). [46]Huang Z, Yan L, Zhang Y, et al. Research on a new composite hydrogelinhibitor of tea polyphenols modified with polypropylene and mixed withhalloysite nanotubes [J]. Fuel, 2019,12(2):245-253. [47]Arriaga L R, Drenckhan W, Salonen A, et al. On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants[J]. Soft Matter, 2012, 8(43): 11085-11097. [48]Sun Q, Li Z, Wang J, et al. Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 471: 54-64. [49]Horozov T S. Foams and foam films stabilised by solid particles[J]. Current Opinion in Colloid & Interface Science, 2008, 13(3): 134-140. [50]Binks B P, Horozov T S. Aqueous foams stabilized solely by silica nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44(24): 3722-3. [51]Garrett P R, Wicks S P, Fowles E. The effect of high volume fractions of latex particles on foaming and antifoam action in surfactant solutions[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282: 307-328 [52]Zhou R, Dou X, Lang X, et al. Foaming ability and stability of silica nanoparticle-based triple-phase foam for oil fire extinguishing: experimental[J]. Soft Materials, 2018, 16(4): 327-338. [53]Zhou R, Lang X, Zhang X, et al. Thermal stability and insulation characteristics of three- phase fire-fighting foam exposed to radiant heating[J]. Process Safety and Environmental Protection. 2021, 146:360-368. [54]唐宝华. 强化油品抗烧三相泡沫灭火剂开发及性能研究[D].天津:河北工业大学, 2016. [55]Fu G, Jiang J, Wei D, et al. The study of the stability of aqueous three-phase fire-resistant foam in typical liquidus hydrocarbons[J]. Journal of Dispersion Science and Technology, 2019, 40(8): 1075-1084. [56]Vinogradov A V, Kuprin D, Abduragimov I, et al. Silica foams for fire prevention and firefighting[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 294-301. [57]Ward, Logan, Wolverton, Chris. Atomistic calculations and materials informatics: A review[J]. Current Opinion in Solid State & Materials Science. 2017. [58]董容智. 基于深度学习的合金材料性能预测与逆向设计研究[D].贵阳:贵州大学,2021. [59]闫海,邓忠民.基于深度学习的短纤维增强聚氨酯复合材料性能预测[J].复合材料学报,2019,36(06):1413-1420. [60]Ma Wei,Cheng Feng,Xu Yihao,Wen Qinlong, et al.Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy.[J].Advanced materials,2019,31(35). [61]李长通. 基于深度学习的力学超材料形态优化及力学性能研究[D].贵阳:东南大学,2021. [62]Zeng Qingliang,Zhao Zeang,Lei Hongshuai,Wang Panding.A deep learning approach for inverse design of gradient mechanical metamaterials[J]. International Journal of Mechanical Sciences,2023,240. [63]成博,弓站朋,邓俊楷,等.针刺C/C复合材料拉伸强度预测的深度学习模型[J].固体火箭技术,2022,45(06):851-859. [64]彭凡,邹司农,任毅如.基于深度学习的复合材料螺栓连接失效预测[J].机械强度,2023,45(02):447-453. [65]Zhang Chonghui,Xie Jiarui,Shanian Ali,Kibsey Mitch,Zhao Yaoyao Fiona. A hybrid deep learning approach for the design of 2D low porosity auxetic metamaterials[J]. Engineering Applications of artificial Intelligence,2023,123(PB). [66]文成.基于机器学习的高熵合金成分设计与性能优化[D].北京:北京科技大学,2022. [67]吕志超. 基于机器学习的新型铁基非晶合金成分设计和性能优化[D].北京:北京科技大学,2022. [68]徐文晶. 机器学习在二维纳米材料性能预测中的应用[D].长春:长春师范大学,2022. [69]黄吉远. 基于深度学习的纳米结构颜色和相位的研究[D].秦皇岛:燕山大学,2022. [70]Min R, Chen X, Wang L, et al. Study and application of reasonable parameters for hydraulic punching of layer penetration boreholes in Chang Coal Mine[J]. Energy Science & Engineering, 2023, 11(9): 3020-3032. [71]Pan R, Wang X, Chao J, et al. Analysis of the coal spontaneous combustion risk space evolution in the goaf under ventilation and extraction coupling[J]. Combustion Science and Technology, 2022: 1-19. [72]张英华,梁铜柱,崔景昆.高水材料在“三软”煤层注水、防尘、封孔技术中的应用研究[J].煤炭学报,2003(1):46-49. [73]Wang J, Zhang Y, Wang J, et al. Study on the chemical inhibition mechanism of DBHA on free radical reaction during spontaneous combustion of coal[J]. Energy & Fuels, 2020, 34(5): 6355-6366. [74]Zhilin Z, Gao K, Guo X, et al. Mechanistic study of the inhibition of active radicals in coal by catechin[J]. Combustion Science and Technology, 2021, 193(11): 1931-1948. [75]Gongling Z, Bing L, Yancheng G. Effect of rosemary extract and tbhq on the stability of radish seed oil[J]. J. Chem. Soc. Pak, 2016, 38(04): 631. [76]Qi Y, Gong T, Zhao P,et al. Hydroxytyrosyl oleate is a promising safe additive to inhibit the oxidation of olive oil[J].Food Control,2023,109895. [77]Zhao G, Bing L, Guo Y. Effect of rosemary extract and tbhq on the stability of radish seed oil[J]. Journal of the Chemical Society of Pakistan,2016,38(4): 631-637. [78]Huang Z, Yu R, Ding H, et al. Preparation and properties of tea polyphenol nanofoamed gel for preventing coal spontaneous combustion[J]. Energy, 2023, 284: 128533. [79]Huang Z, Liu X, Gao Y, et al. Experimental study on the compound system of proanthocyanidin and polyethylene glycol to prevent coal spontaneous combustion[J]. Fuel, 2019, 254: 115610. [80]Guo S, Yan Z, Yuan S, et al. Inhibitory effect and mechanism of l-ascorbic acid combined with tea polyphenols on coal spontaneous combustion[J]. Energy, 2021, 229: 120651. [81]Li J, Bi Y, Yang H, et al. Antioxidative properties and interconversion of tert-butylhydroquinone and tert-butylquinone in soybean oils[J]. Journal of agricultural and food chemistry, 2017, 65(48): 10598-10603. [82]Chao H,Shibin N,Zegong L, et al.A Novel Highly Stable Biomass Gel Foam Based on Double Cross-Linked Structure for Inhibiting Coal Spontaneous Combustion[J]. Energies, 2022,15 (14) :5207-5207. [83]Cheng H, Zhao H, Ji D, et al. Evolution of mining stress field and the control technology of stress relief gas in close distance coal seam[J]. Energy Exploration & Exploitation, 2022, 40(6): 1573-1588. [84]Zhang Z, Chen W, Wang H. The optimization proposal of adding antioxidant TBHQ into biodiesel[J]. Petroleum Science and Technology, 2022, 40(5): 626-639. [85]王品,王海娟,牛国庆,等.不同钠盐改性膨润土的制备及表征[J].当代化工,2020, 49(05):773-776. [86]宋海明,张宝述,彭同江,等.溶液插层法制备聚合物/粘土纳米复合材料的研究进展[J].中国粉体技术,2007(03):44-48. [87]Zhang L, Qin B, Shi B, et al. The fire extinguishing performances of foamed gel in coal mine[J]. Natural Hazards, 2016, 81: 1957-1969. [88]M.Mishra and M.Srivastava, A view of artificial Neural Network[C]. 2014 International Conference on Advances in Engineering & Technology Research , Unnao, 2014: 1-3. [89]C.Chen,X.Li and B. Zhang, Research on image retrieval based on the convolutional neural network[C]. 2017 10th International Congress on Image and Signal Processing, Bio-Medical Engineering and Informatics (CISP-BMEI), Shanghai, 2017: 1-5. [90]Glorot X, Bordes A, Bengio Y. Deep Sparse Rectifier Neural Networks[C]. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2011:315-323. [91]Brown P F. Class-based n-gram models of natural language[J]. Computational Linguistics,1992, 18(4):467-479. [92]曲之琳, 胡晓飞. 基于改进激活函数的卷积神经网络研究[J]. 计算机技术与发展, 2017, 027(12):77-80. [93]任进军, 王宁. 人工神经网络中损失函数的研究[J].甘肃高师学报, 2018, 23(02): 65-67. [94]Yang J, Zhao J. A novel parallel merge neural network with streams of spiking neural network and artificial neural network[J]. Information Sciences, 2023, 642: 119034. [95]仝卫国, 李敏霞, 张一可.深度学习优化算法研究[J]. 计算机科学, 2018, 45(11): 165-169. [96]孙志军, 薛磊, 许阳明,等.深度学习研究综述[J]. 计算机应用研究,2012,29(8): 2806-2810. [97]Zhang Y, Wu B, Liu S H, et al. Thermal kinetics of nitrogen inhibiting spontaneous combustion of secondary oxidation coal and extinguishing effects[J]. Fuel, 2020, 278: 118223. [98]Wang J, Wang F, Zhong X, et al. Experimental study on the Inhibitory effect of organic phosphonic acid compound on coal spontaneous combustion[J]. Combustion Science and Technology, 2023: 1-16. [99]Zhou C, Tang Y. A novel sodium carboxymethyl ellulose/aluminium citrate gel for extinguishing spontaneous fire in coal mines[J]. Fire and Materials, 2018, 42(7): 760-769. [100]王涛,鲁义,施式亮,等.漏风裂隙内无机固化泡沫浆液扩散特性研究[J].中国安全科学学报,2019,29(10):24-30. [101]Wang Q, Lu X, Ma C, et al. Comparative study of the kinetic characteristics of coal spontaneous combustion[J].Journal of Thermal Analysis and Calorimetry,2023, 148(10): 4463-4476. [102]Lu W, Zhang X, Yuan Y, et al. Study on the characteristics and mechanism of a new type of antioxidant gel foam for coal spontaneous combustion prevention[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127254. [103]张松宁.矿井火灾束管监测及灌浆防灭火技术应用[J].江西煤炭科技, 2021(01) :157-159. [104]张茜,吴明跃,胡相明.催化剂对聚氨酯/水玻璃灌浆材料力学性能的影响[J].矿业研究与开发,2019,39(10):31-36. [105]徐禄均,孔庆忠,王杰.智能型黄泥灌浆系统水土比调节优化[J].机械工程与自动化,2015(05):165-166. [106]甘立.矿井防灭火地面灌浆站控制系统研究[D].徐州:中国矿业大学,2014. [107]Xi,Xian, Shi Quanlin. Study of the preparation and extinguishment characteristic of the novel high-water-retaining foam for controlling spontaneous combustion of coal[J]. Fuel, 2021, 288: 119354. [108]Qixin L ,Changlong L ,Yuan L , et al.Preparation of dual network semi-solidified gelled-foam for sealing gas channeling in fractured-vuggy reservoirs[J].Journal of Petroleum Science and Engineering,2022,216. [109]于水军,赵红,孟国栋,等.一种新型泡沫凝胶成胶时间及灭火特性的实验研究[J].火灾科学,2013,22(04):219-225. [110]何绍群,柏永青,林吉生,等.巨型表面活性剂强化泡沫封堵性能研究[J].科学技术与工程,2020,20(26):10764-10770. [111]位爱竹.煤炭自燃自由基反应机理的实验研究[D].徐州:中国矿业大学,2008. [112]唐一博.基于模型化合物的煤表面活性基团低温氧化研究[D].徐州:中国矿业大学,2014. [113]李金虎.基于活性位点产生和氧化的热侵煤体煤自燃特性及抑制途径研究[D].北京:中国矿业大学,2020. [114]金永飞,李清政,刘荫.煤自燃特征参数与自由基变化特性研究[J].煤炭技术, 2022,41(07): 101-104. [115]邓军,周佳敏,白祖锦,等.瓦斯对煤低温氧化过程微观结构及热反应性的影响研究[J].煤炭科学技术,2023,51(01):304-312. [116]尤飞,皇甫文豪,王振华,等.基于热重分析的煤升温氧化及煤氧复合特性分析[J].安全与环境学报,2018,18(04):1312-1315. [117]任万兴,郭庆,左兵召,等.泡沫凝胶防治煤炭自燃的特性与机理[J].煤炭学报, 2015,40(S2): 401-406. [118]Wang Y,Han X,Cui S, et al.Study on the mechanism of iron-rich coal gasification slag on NO conversion in high temperature flue gas of cement kiln[J].Fuel,2023,332(P2). [119]Wei F,Liao J,Chang L, et al.Transformation of functional groups during lignite heat-treatment and its effects on moisture re-adsorption properties[J].Fuel Processing Technology,2019,192210-219. [120]S A,M P, et al.Investigating pore-opening in hydrogel foams at the scale of free-standing thin films[J]. Macromolecular rapid communications, 2022,43(17): e2200189-e2200189. [121]肖旸,叶星星,刘昆华,等.二次氧化煤自燃过程关键官能团的转变规律[J].煤炭学报,2021,46(S2):989-1000. [122]贾廷贵,殷悦,曲国娜,等.羟基对煤中桥键活性官能团氧化反应特性的影响[J].安全与环境学报,2023,23(10):3575-3583. [123]李宗翔,张明乾,杨志斌,等.FTIR和XRD在断层构造煤结构分析中的应用[J].光谱学与光谱分析,2023,43(02):657-664. [124]Saisai L,Daping X ,Zhenhong C,et al.Experimental study on the change of coal structure and microbial community structure during supercritical-CO[formula omitted]-H[formula omitted] O-microorganisms-coal interaction process[J].Environmental Technology Innovation,2023,30. [125]Zhang S, Fan G, Jiang S, et al. Dual-hazard control mechanism of burst-prone and spontaneous combustion coalface considering effect of retreat speed[J]. Energy Reports, 2021, 7: 278-288. [126]Le L,Chaoyu H,Ruicong Z, et al.Study on the mechanism of free radical scavenger TEMPO blocking in coal oxidation chain reaction[J].Fuel,2023,331(P2). [127]杨漪,邓军,等.煤氧化特性的STA-FTIR实验研究[J].煤炭学报,2018, 43(04): 1031-1040. [128]Debehets J,Homm P,Menghini M, et al.Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs[J].Applied Surface Science,2018,440386-395. [129]Anoosheh A,Anzhela G,E R P, et al.Label-free sub-micrometer 3D imaging of ciprofloxacin in native-state biofilms with cryo-time-of-flight secondary ion mass spectrometry.[J].Analytical and bioanalytical chemistry,2023,415(5):991-999. [130]Giovanni N,Federico M L.Computational LEED: computational thinking strategies and Visual Programming Languages to support environmental design and LEED credits achievement[J].Energy Buildings,2023,278 [131]Alexandre F,Nicholas M,Anna P, et al.Using in situ electron energy-loss spectroscopy (EELS) and X-ray fluorescence microscopy (XFM) to characterize Co-Pt nanoparticles[J].Microscopy and Microanalysis,2021,27(S1):2108-2109. [132]Kexin Q,Junjie C,Changhai O.A new mixture differential cryptanalysis on round-reduced aes[J]. Mathematics,2022,10(24):4736-4736. [133]Wanfeng Z,Xiaoping X,Yanqiang Z, et al.A novel sample preparation method for ultra-high vacuum (UHV) secondary ion mass spectrometry (SIMS) analysis[J]. Journal of Analytical Atomic Spectrometry,2018,33(9):1559-1563. [134]Francesco A,Claudia G,Marta R, et al.A Round Robin Test on the dynamic simulation and the LEED protocol evaluation of a green building[J].Sustainable Cities and Society,2022,78. [135]Abel B,Jaco HT,Isabel P,et al.Spatially resolved band gap and dielectric function in two-dimensional materials from electron energy loss spectroscopy[J].The journal of physical chemistry. A,2022,126(7). [136]Xiaoqi Y ,Alfred L ,Huajie T , et al.Synchrotron-based near ambient-pressure X-ray photoelectron spectroscopy and electrochemical studies of passivation behavior of N- and V-containing martensitic stainless steel[J].Corrosion Science,2023,214 [137]张素伟,姚雅萱,高慧芳,等.X射线光电子能谱技术在材料表面分析中的应用[J].计量科学与技术,2021,(01):40-44. [138]Jiaming W,Yumeng W,Xin L, et al.Comparison on the effectiveness of Fourier transform infrared (FTIR) and attenuated total reflection Fourier transform infrared (ATR-FT-IR) in characterizing plastics biodegradation by insect larvae[J].The Science of the total environment,2022,839156289-156289. [139]PLC,Amico EMD,MKMW,et al.Characterization of fourier transform infrared,cavity ring-down spectroscopy, and optical feedback cavity-enhanced absorption spectroscopy instruments for the analysis of ammonia in biogas and biomethane[J]. Analytical chemistry,2022,94(44). [140]郝长胜,袁迎春,贾廷贵等.不同变质程度煤的化学结构红外光谱研究[J].煤矿安全,2022,53(11):15-22. [141]Guo Y, Li J, Li S, et al. Dual-polarized optical sensing of microstructure fiber with pentagonal-lattice based on surface plasmon resonance in the near-IR spectrum[J]. Optik, 2020, 202: 163671. [142]Zhen A,Xiuming J,Guoqiang X, et al.A simple and practical method for determining iodine values of oils and fats by the FTIR spectrometer with an infrared quartz cuvette[J].Analytical Methods,2017,9(24):3669-3674. [143]Mahesh P,Biswadip G,Rao NVP, et al.A new ground-based FTIR spectrometer reference site at Shadnagar (India) and preliminary columnar retrievals of CH4 and N2O[J].International Journal of Remote Sensing,2017,38(14):4033-4046. [144]张钧祥,宋维宾,孙玉宁,等.新型高分子泡沫堵漏材料试验研究及工程应用[J].煤炭学报,2018,43(S1):158-166. [145]仲晓星.煤自燃倾向性的氧化动力学测试方法研究[D].徐州:中国矿业大学,2008. [146]唐一博,王俊峰,薛生,等.密闭火区内惰性环境下烟煤自燃特性变化[J].煤炭学报,2016,41(02):439-443. [147]钱春香, 张霄, 伊海赫.微生物提升钢渣胶凝材料安定性和强度的作用及机理[J].硅酸盐通报, 2020, 39(8): 2363-2371. [148]李金亮,陆伟,赵志涛,等.含氧中间产物变化规律及其在煤低温氧化过程中的作用[J].安全与环境学报,2022,22(05):2435-2444. [149]许红英,苗梦露,陈鹏.复合阻化剂抑制煤自燃的红外光谱实验研究[J].矿业安全与环保,2019,46(04):40-44. [150]张迎新,杨康,等.矿井防灭火材料的研究进展及发展趋势[J].煤矿安全,2023,54(10): 82-91. [151]Xue D, Hu X, Liang Y, et al. A study on the characteristics of a novel inorganic solidified foam for the prevention and control of the spontaneous combustion of coal[J]. Construction and Building Materials, 2022, 347: 128516. [152]Wang T, Fan H, Yang W, et al. Stabilization mechanism of fly ash three-phase foam and its sealing capacity on fractured reservoirs[J]. Fuel, 2020, 264: 116832. [153]Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. 2015: 1-11. [154]Wang Z, Chen B, Zhang Y, et al. Research on dual pressure relief and outburst prevention model for deep floor rock roadways[J]. Arabian Journal of Geosciences, 2021, 14: 1-12. [155]赵建会,张辛亥.矿用灌浆注胶防灭火材料流动性能的实验研究[J].煤炭学报,2015,40(02):383-388. [156]贾廷贵,殷悦,曲国娜等.羟基对煤中桥键活性官能团氧化反应特性的影响[J].安全与环境学报,2023,23(10):3575-3583. [157]何欣, 卢祥国, 刘进祥,等.复合凝胶成胶机理分析及封堵效果评价[J].石油化工, 2020, 49(2): 170-176. [158]郭志国.惰性气体抑制煤自燃氧化升温机理的实验研究[D].北京:中国矿业大学(北京),2017. [159]关欣杰.采空区开放式注液态CO2防灭火技术研究[D].西安:西安科技大学,2016. [160]Wang D, Zhang P, Zhang Y, et al. Distribution characteristic and migration mechanism of toxic gases in goafs during close-distance coal seam mining: A case study of sha** coal mine[J]. Acs Omega, 2022, 7(8): 7403-7413. [161]张九零,周心权,昌伟伟,等.注惰对封闭火区可燃性气体运移规律影响的研究[J].煤矿安全,2009,40(09):1-5. [162]Zhao P, An X, Li S, et al. Study on the pseudo-slope length effect of buried pipe extraction in fully mechanized caving area on gas migration law in goaf[J]. Sustainability, 2023, 15(8): 6628. [163]周福宝,王德明,张玉良,等.含氮气三相泡沫的固氮及惰化特性[J].中国矿业大学学报,2006(01):11-14. [164]王博.阻化防火技术在煤矿中的应用探究[J].内蒙古煤炭经济,2020(15):118-119. [165]马超.高倍微胶囊阻化剂泡沫防灭火技术在煤矿的应用[J].煤矿安全,2010,41(09):48-50. [166]李小玉,邵帅.防治煤自燃的新型复合阻化剂研究及应用[J].辽宁工程技术大学学报(自然科学版),2017,36(03):267-271. [167]王婕,张玉龙,王俊峰,等.无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J].煤炭学报,2020,45(12):4132-4143. [168]杨漪.基于氧化特性的煤自燃阻化剂机理及性能研究[D].西安:西安科技大学,2015. [169]姬玉成. 抗氧化凝胶泡沫防遗煤自燃机理研究[D]. 北京: 北京科技大学, 2022. [170]薛梦华. SiO2纳米颗粒对泡沫灭火剂稳泡性能影响研究[D]. 西安:西安科技大学, 2022. [171]Zhang J H, Zhang W H, Wen H, et al. Study on the inhibition characteristics of coal spontaneous combustion by silica gel foam[J].ACS Omega, 2023, 211:149-159.
﹀
|
中图分类号: |
TD752.2
|
开放日期: |
2026-06-24
|