- 无标题文档
查看论文信息

题名:

 葡萄糖生成煤大分子基本单元呋喃环的催化反应及机理研究    

作者:

 程焕全    

学号:

 19103077015    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 0819    

学科:

 工学 - 矿业工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 煤炭转化理论    

导师姓名:

 彭龙贵    

导师单位:

 西安科技大学    

提交日期:

 2025-01-02    

答辩日期:

 2024-12-04    

外文题名:

 Study on the Catalytic Reaction and Mechanism of Furan Ring Formation as a Fundamental Unit in Coal Macromolecules from Glucose    

关键词:

 植物成煤 ; 氢转移 ; 呋喃环 ; 葡萄糖异构化 ; 催化反应 ; 5-羟甲基糠醛    

外文关键词:

 Plant coalification ; Hydrogen transfer ; Furan ring ; Glucose isomerization ; Catalytic reaction ; 5-HMF    

摘要:

植物成煤过程复杂多变,从分子层面解释煤的地质成因,尤其是煤大分子结构的形成机理尚不明了。本论文构建金属原子、金属氧化物和金属有机骨架三种葡萄糖异构化生成呋喃环的催化反应体系,采用计算与实验表征相结合的方法,以反应动力学与热力学理论为基础,研究了葡萄糖异构化反应中影响氢转移选择性的关键因素,得出了催化反应体系对葡萄糖异构化生成具有典型呋喃结构的5-羟甲基糠醛(5-HMF)选择性、优先性与必然性的发展规律。主要研究结论如下:

(1)针对煤大分子形成中葡萄糖到呋喃环反应这一关键步,提出使用葡萄糖异构化的氢转移和碳转移反应作为研究主线,采用密度泛函计算(DFT)研究了49种金属原子催化剂对该反应的影响。分别从异构化反应自由能、能垒及反应选择性角度比较了金属原子的催化效果,提出了葡萄糖分子空间构象描述符,通过调控反应位点处电子结构和电子云分布,从而建立了描述符与反应能垒、反应选择性间的响应关系,实现了对葡萄糖异构化反应的微观调控。结果表明,碱金属原子催化作用下葡萄糖异构化反应的热力学倾向性较优,但针对氢转移和碳转移的反应选择性不足;金属Nb原子催化作用下,葡萄糖异构化反应热力学和动力学均较差;贵金属原子和过渡金属原子催化作用下,对氢转移和碳转移具有一定的反应选择性,促进了5-HMF的生成。

(2)结合植物成煤过程的复杂地质环境和实际状况,进一步研究了葡萄糖异构化反应氢转移的优先性。采用了36种金属氧化物催化剂对葡萄糖异构化进行催化反应,结合X射线衍射分析(XRD)、X射线光电子能谱技术(XPS)、扫描电子显微镜(SEM)的表征结果,分别从反应自由能、反应能垒的热、动力学理论和电荷分布、分子轨道角度等维度,研究了葡萄糖异构化反应中金属氧化物影响氢转移选择性的关键因素,深入阐述了金属氧化物催化体系下葡萄糖异构化生成5-HMF的选择性与优先性。结果发现,以In2O3、Bi2O3、Al2O3、HfO2、PdO、PtO2、ZrO2、Cr2O3、Ga2O3、IrO2、Fe2O3和VO2为代表的金属氧化物对葡萄糖催化转化为5-HMF的浓度均随反应时间呈上升趋势。其中,VO2催化葡萄糖异构化效果优于其它金属氧化物,生成5-HMF的浓度达0.26 mg/mL,反应后催化剂的表面形貌卷曲须状变为片状结构、晶格氧增多而表面空位氧减少,这是VO2催化葡萄糖异构化效果优于其它金属氧化物的主要原因。计算结果表明,金属氧化物催化异构化反应的氢转移能垒基本位于14-16 kcal/mol之间,其通过调控葡萄糖分子空间构象和电子结构,改变了氢转移受体(碳转移供体)原子处电荷分布,影响了异构化反应能垒,促进氢转移的发生。电子云在反应位点处富集或在葡萄糖分子上均匀分布均有利于异构化反应的发生,促进了5-HMF的生成。

(3)为进一步研究金属原子在其它原子和空间的协同作用下对葡萄糖异构化反应的影响,构建了四种金属有机骨架MOFs催化剂和两种封堵型MOFs-PANI催化剂作用下的葡萄糖异构化反应体系。结合XRD、傅里叶变换红外光谱仪(FT-IR)、SEM、透射电子显微镜(TEM)、比表面积(BET)的表征结果,从反应自由能、能垒的热、动力学理论和空间构象描述符、电荷分布等维度,提取了葡萄糖异构化反应中不同结构的金属有机骨架催化剂对氢转移选择性影响的关键参数,深入研究了金属原子在其它原子和空间耦合作用下,葡萄糖异构化生成5-HMF的必然性。结果表明,所制备的MOF-808(Zr)、MIL-100(Fe)、MIL-53(Al)、UiO-66(Zr)四种MOFs晶型较好、孔结构完整。利用PANI封堵前后的MOFs催化剂对葡萄糖异构化反应效果进行对比,证明了MOFs内表面对催化反应的贡献较大。相较于外表面催化作用,UiO-66(Zr)内表面催化作用的碳转移能垒高达600 kcal/mol,致使碳转移反应几乎不发生,揭示了葡萄糖通过氢转移路径转化为5-HMF的必然性。

外文摘要:

The process of coal formation from plants is complex and variable, and the molecular-level explanation of the geological origin of coal, particularly the formation mechanism of coal macromolecular structures, remains unclear. This paper establishes three catalytic reaction systems for glucose isomerization to form furan rings, involving metal atoms, metal oxides, and metal-organic frameworks (MOFs). Combining computational and experimental characterization, the study investigates key factors influencing hydrogen transfer selectivity in glucose isomerization based on reaction kinetics and thermodynamics. It identifies trends in the selectivity, preference, and inevitability of catalytic systems for glucose isomerization to form 5-hydroxymethylfurfural (5-HMF), which has a typical furan structure. The main research findings are as follows:

(1) For the key step of glucose-to-furan ring transformation in coal macromolecule formation, the study proposes using hydrogen transfer and carbon transfer reactions in glucose isomerization as the main research focus. Density functional theory (DFT) calculations were conducted to examine the effects of 49 different metal atom catalysts on the reaction. The catalytic effects of metal atoms were compared in terms of isomerization reaction free energy, energy barriers, and reaction selectivity. A molecular spatial conformation descriptor for glucose was proposed, establishing a relationship between the descriptor, reaction energy barriers, and selectivity by regulating the electronic structure and electron cloud distribution at the reaction site. The results indicate that alkali metal catalysts show better thermodynamic tendency for glucose isomerization but lack selectivity for hydrogen and carbon transfer. Under the catalysis of metal Nb atoms, both the thermodynamics and kinetics of glucose isomerization are suboptimal. Precious metal and transition metal atoms exhibit certain selectivity for hydrogen and carbon transfer, promoting 5-HMF formation.

(2) Considering the complex geological environment and practical conditions of the coal formation process, further studies were conducted on the preference for hydrogen transfer in glucose isomerization reactions. Using 36 metal oxide catalysts for glucose isomerization, combined with XRD, XPS, and SEM characterization results, key factors influencing hydrogen transfer selectivity were explored from multiple perspectives, including reaction free energy, thermal and kinetic energy barriers, charge distribution, and molecular orbitals. The study elaborated on the selectivity and preference of glucose isomerization to form 5-HMF in metal oxide catalytic systems. The results show that metal oxides such as In2O3, Bi2O3, Al2O3, HfO2, PdO, PtO2, ZrO2, Cr2O3, Ga2O3, IrO2, Fe2O3, and VO2 exhibit an increasing trend in the concentration of 5-HMF formed over time. Among them, VO2 performs better than other metal oxides, achieving a 5-HMF concentration of 0.26 mg/mL. After the reaction, the catalyst's surface morphology changes from curly fibrous to sheet-like structures, with increased lattice oxygen and decreased surface vacancy oxygen, which explains the superior catalytic performance of VO2. Computational results indicate that the hydrogen transfer energy barriers for metal oxide-catalyzed isomerization reactions are mostly between 14-16 kcal/mol. By modulating the spatial conformation and electronic structure of glucose molecules, the charge distribution at hydrogen transfer acceptor (carbon transfer donor) atoms is altered, influencing the isomerization reaction energy barriers and facilitating hydrogen transfer. Enrichment of electron clouds at the reaction site or uniform distribution on glucose molecules promotes isomerization and 5-HMF formation.

(3) In order to further investigate the effect of metal atoms on the glucose isomerisation reaction under the synergistic effect of other atoms and space, the glucose isomerisation reaction system under the effect of four metal-organic skeleton MOFs catalysts and two blocking MOFs-PANI catalysts was constructed. Combined with the characterization results of XRD, FT-IR, SEM, TEM, and BET, the key parameters of the influence of metal-organic skeleton catalysts with different structures on the hydrogen transfer selectivity in the glucose isomerization reaction have been extracted from the dimensions of the reaction free energies, the heat of the energy barriers, kinetic theories, and the spatial conformational descriptors, and the charge distributions, which have provided in-depth investigations into the effects of the metal atoms in the glucose under the effect of the other atoms and spatial couplings. isomerisation to generate 5-HMF inevitably. The results showed that the four MOFs prepared, MOF-808(Zr), MIL-100(Fe), MIL-53(Al), and UiO-66(Zr), had better crystalline shape and complete pore structure. Comparison of the effect of the glucose isomerisation reaction using MOFs catalysts before and after PANI blocking demonstrated that the inner surface of MOFs contributed more to the catalytic reaction. Compared with the catalytic effect of the outer surface, the carbon transfer energy barrier of the catalytic effect of the inner surface of UiO-66(Zr) was as high as 600 kcal/mol, and the carbon-transfer-causing reaction almost did not take place, which revealed the inevitability of the conversion of glucose to 5-HMF through the hydrogen transfer pathway.

参考文献:

[1] 袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019, 44(08): 2277-2284.

[2] 杨英明, 孙建东, 李全生. 我国能源结构优化研究现状及展望[J]. 煤炭工程, 2019, 51(02): 149-153.

[3] 白玉, 古全德, 王首同. 浅谈成煤过程,不同煤级的煤及其各自的用途[J]. 中国科技博览, 2010, 36: 1.

[4] 久利马里耶夫 A M, 戈 R C, 格拉顿 T R. 煤化学理论基础[M]. 北京: 化学工业出版社, 2020.

[5] Ozsel, B K, Ozturk, D, Nis, B. One-pot hydrothermal conversion of different residues to value-added chemicals usıng new acidic carbonaceous catalyst[J]. Bioresource Technology, 2019, 289: 121627.

[6] Wang, S, Eberhardt, T L, Pan, H, et al. Efficient dehydration of fructose into 5-HMF using a weakly-acidic catalyst prepared from a lignin-derived mesoporous carbon[J]. Fuel, 2022, 316: 123255.

[7] Duan J R, Ji J. Mechanism insight into α-D-galactopyranose conversion to 5-hydroxymethyl furfural by combining Py-GC–MS experiments and theoretical calculations[J]. Chemical Engineering Journal, 2024, 498:155724.

[8] Lu C X, Hu B Q, Li L Z, et al. Conversion of biomass-derived carbohydrates into 5-hydroxymethylfurfural over sulfonated zirconium/tin mixed-metal metal–organic frameworks in deep eutectic solvents-water based biphasic system[J]. Journal of Industrial and Engineering Chemistry, 2024, 137: 364-375.

[9] Nomoura T, Minami E, Kawamoto H. Furan and benzene ring formation in cellulose char: the roles of 5-HMF and reducing ends[J]. RSC advances, 2024, 14(30): 21544-21552.

[10] Tao J, Pan Y C, Zhou H Y, et al. Catalytic systems for 5-hydroxymethylfurfural preparation from different biomass feedstocks: A review[J]. Catalysts, 2024, 14(1): 14010030.

[11] 张树胜. 河北蔚县煤田下花园组成煤植物初探[J]. 中国煤炭地质, 2009, 21(07): 12-24.

[12] 李和万. 循环冷加载作用下煤样结构损伤实验研究[D]. 阜新: 辽宁工程技术大学, 2017.

[13] Shinn J H. From coal to single-stage and two-stage products: A reactive model of coal structure[J]. Fuel, 1984, 63(9): 1187-1196.

[14] O'sullivan A C. Cellulose: the structure slowly unravels[J]. Cellulose, 1997, 4(3): 173-207.

[15] Luo C, Wang S, Liu H C. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angewandte Chemie International Edition, 2007, 46(40): 7636-7639.

[16] Himmel M E, Ding S Y, Johnson D K, et al. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production[J]. Science, 2007, 315(5813): 804-807.

[17] Kumar D, Singh B, Korstad J. Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 654-671.

[18] 周庆国. 木质纤维素类生物质热解转化为液体燃料的自由基反应机理研究与定向调控[D]. 杭州: 浙江大学, 2024.

[19] Hansen N M L, Plackett D. Sustainable films and coatings from hemicelluloses: A review [J]. Biomacromolecules, 2008, 9(6): 1493-1505.

[20] 王婷. 柑橘果胶低聚糖的酶法制备及生物活性研究[D]. 南京:南京林业大学, 2023.

[21] Singhal S, Swami Hulle N R. Citrus pectins: Structural properties, extraction methods, modifications and applications in food systems – A review[J]. Applied Food Research, 2022, 2(2): 100215.

[22] 乔玲. 煤中金属化合物对煤自燃的催化机理及其惰化改性研究[D]. 阜新:辽宁工程技术大学, 2020.

[23] Bouska, Vladimir. Geochemistry of coal [M]. Netherlands: Geochemistry of coal, 1981.

[24] Valkovic V V. Trace elements in coal[J]. CRC Press, 1983, 7: 25-31.

[25] Ketris M P, Yudovich Y E. Estimations of clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78(2): 135-148.

[26] Tewalt S J, Belkin H E, Sanfilipo J R, et al. The world coal quality inventory: A status report[J]. International Journal of Coal Geology, 2005, 63(1): 190-194.

[27] 黎彤. 地壳元素丰度的若干统计特征[J]. 地质与勘探, 1992, 10: 3-9.

[28] 唐修义, 黄文辉. 煤中微量元素及其研究意义[J]. 中国煤田地质, 2002, 1: 2-5.

[29] 丁睿. 丁集矿煤中伴生元素分布及其环境意义[D]. 合肥:中国科学技术大学, 2009.

[30] 李霄, 赵利信, 王瑞雪, 等. 浅谈煤中元素的研究方向及意义[J]. 科技与企业, 2014, 10: 329-330.

[31] Dai S, Ren D, Chou C L, et al. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94: 3-21.

[32] 白向飞. 中国煤中微量元素分布赋存特征及其迁移规律试验研究[D]. 北京: 煤炭科学研究总院, 2003.

[33] Finkelman R, Aruscavage P J. Concentration of some platinum-group metals in coal[J]. International Journal of Coal Geology, 1981, 1(2): 95-99.

[34] Finkelman R B. Modes of occurrence of potentially hazardous elements in coal: levels of confidence[J]. Fuel Processing Technology, 1994, 39(1-3): 21-34.

[35] 赵峰华. 煤中有害微量元素分布赋存机制及燃煤产物淋滤实验研究[D]. 北京: 中国矿业大学(北京), 1997.

[36] 代世峰, 任德贻, 唐跃刚.煤中常量元素的赋存特征与研究意义[J].煤田地质与勘探,2005,(02):1-5.

[37] 程伟, 杨瑞东, 张覃, 等. 毕节地区晚二叠世煤中微量元素的分布赋存规律及控因分析[J]. 煤炭学报, 2013, 38(1): 103-113.

[38] 张健雅, 秦身钧, 杨晶晶, 等. 煤中微量元素逐级化学提取实验及赋存状态研究[J]. 实验技术与管理, 2012, 29(09): 63-66.

[39] 张建强, 张恒利, 杜金龙, 等. 内蒙古白音华煤田煤中微量元素分布特征[J]. 煤炭学报, 2016, 41(02): 310-315.

[40] 余学海, 孙平, 张军营, 等. 神府煤矿物组合特性及微量元素分布特性定量研究[J]. 煤炭学报, 2015, 40(11): 2683-2689.

[41] 梁虎珍, 曾凡桂, 相建华, 等. 伊敏褐煤中微量元素的地球化学特征及其无机-有机亲和性分析[J]. 燃料化学学报, 2013, 41(10): 1173-1183.

[42] 王蕾. 中国煤中硒的分布、赋存状态和环境地球化学研究[D]. 合肥:中国科学技术大学, 2012.

[43] 刘大锐, 高桂梅, 池君洲, 等. 准格尔煤田黑岱沟露天矿煤中稀土及微量元素的分配规律[J]. 地质学报, 2018, 92(11): 2368-2375.

[44] 任德贻. 煤的微量元素地球化学(精)[M]. 北京: 科学出版社, 2006.

[45] 张双全. 煤化学第4版[M]. 徐州: 中国矿业大学出版社, 2015.

[46] 张玉贞. 煤炭生成过程对煤炭质量的影响[J]. 科技创新导报, 2010, 33: 81-82.

[47] 王军. 贵州省可乐向斜煤层气富集地质特征及有利区预测[D]. 北京:中国地质大学(北京), 2019.

[48] 陈彦君. 沁水盆地南部煤层气富集主控因素及富集区块优选[D]. 武汉:长江大学, 2013.

[49] 魏文文. 鄂尔多斯盆地塔巴庙地区大22井区上古生界砂岩成岩作用的控制因素 [D]. 成都:成都理工大学, 2011.

[50] Mathews J P, Chaffee A L. The molecular representations of coal – A review[J]. Fuel, 2012, 96: 1-14.

[51] Given P H, Peover M E. Some contributions of polarography in dimethylformamide to the study of the structure of coals[M]. Longmuir I S. Advances in Polarography. Pergamon. 1960: 965-973.

[52] Wiser W H. Conversion of bituminous coal to liquids and gases: chemistry and representative processes[J]. Springer Netherlands, 1984, 6: 30-35.

[53] Wender, Irving. Catalytic synthesis of chemicals from coal[J]. Catalysis Reviews, 1976, 14(1): 97-129.

[54] Solomon P R. Coal structure and thermal decomposition[M]. Connecticut: Coal Structure and Thermal Decomposition, 1981.

[55] Spiro C L. Space-filling models for coal: a molecular description of coal plasticity[J]. Fuel, 1981, 60(12): 1121-1126.

[56] M eyers R A. Coal handbook[M]. United States: Marcel Dekker, Incorporated,New York, NY, 1981.

[57] Carlson, G. A. Computer simulation of the molecular structure of bituminous coal[J]. Energy & Fuels, 1992, 6(6): 771-778.

[58] Philip C V, Anthony R G, Cui Z-D. Structure and liquefaction reactions of texas lignite[M]. The Chemistry of Low-Rank Coals. American Chemical Society. 1984: 287-302.

[59] Wolfrum E A. Correlations between petrographical properties, chemical structure, and technological behavior of rhenish brown coal[M]. United States: The Chemistry of Low-Rank Coals. American Chemical Society. 1984.

[60] Shinn J H. Visualization of complex hydrocarbon reaction systems[J]. Fuel and Energy Abstracts, 1996, 9: 510-515.

[61] 苏小平. 预处理神东煤的结构-热解特性及芳烃的高附加值利用研究[D]. 西安:西北大学, 2020.

[62] Feng L, Zhao G, Zhao Y, et al. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data[J]. Fuel, 2017, 203(1): 924-931.

[63] 刘洁. 褐煤中易分离/热解组分的解析及褐煤大分子结构模型的构建[D]. 北京:中国矿业大学, 2020.

[64] 李焕同, 朱志蓉, 乔军伟, 等. 陕北侏罗纪富镜煤和富惰煤分子结构的FTIR, XPS和13CNMR表征[J]. 光谱学与光谱分析, 2022, 42(08): 2624-2630.

[65] 邹晓艳, 李焕同, 朱志蓉, 等. 小保当富镜煤与富惰煤大分子结构模型构建及分子模拟[J]. 中国煤炭, 2024, 50(04): 105-14.

[66] Zhang S, Wag Z, Zhang X, et al. Construction of molecular structure model of Tunlan coal and its microscopic physicochemical mechanism[J]. Fuel, 2022, 308: 121936.

[67] 张晨, 张松航, 唐书恒, 等. 不同煤阶煤大分子模型构建及对比[J]. 现代地质, 2024, 5: 1-21.

[68] Xu Z X, Ma X Q, Shan Y Q, et al. Artificial coal: facile and green production method via low-temperature hydrothermal carbonization of lignocellulose[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(10): 3335-3345.

[69] 李玉姣. 生物质炭及其复合材料的制备及应用性能研究[D]. 长春:吉林大学, 2015.

[70] Li X M, Shen Q R, Zhang D Q, et al. Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional 13C NMR Correlation Spectroscopy[J]. Plos One, 2013, 8(6): e65949.

[71] Guizani C, Jeguirim M, Gadiou R, et al. Biomass char gasification by H2O, CO2 and their mixture: Evolution of chemical, textural and structural properties of the chars[J]. Energy, 2016, 112: 133-145.

[72] Mohan D, Pittman C U, JR, Steele P H. Pyrolysis of wood/biomass for bio-oil:  A critical review[J]. Energy & Fuels, 2006, 20(3): 848-889.

[73] Zhao M Y, Enders A, Lchmann J. Short- and long-term flammability of biochars[J]. Biomass & Bioenergy, 2014, 69(oct.): 183-191.

[74] Benavente V, Calabuig E, Fullana A. Upgrading of moist agro-industrial wastes by hydrothermal carbonization[J]. Journal of Analytical & Applied Pyrolysis, 2015, 113(4): 89-98.

[75] Mckendry P. Energy production from biomass (Part 1): Overview of biomass[J]. Bioresour Technol, 2002, 83(1): 37-46.

[76] 万江. 生物质组分对生物炭中碳归趋及其环境应用性能的影响机制研究[D]. 上海:华东理工大学, 2022.

[77] Li S, Lyons-hart J, Banyasz J, et al. Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis[J]. Fuel, 2001, 80(12): 1809-1817.

[78] 刘紫云. 生物质组分对生物油中酚类产物的调控规律研究[D]. 淄博:山东理工大学, 2017.

[79] Chu S, Subrahmanyam A V, Huber G W. The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound[J]. Green Chemistry, 2013, 15(1): 125-36.

[80] Fu P, Yi W, Li Z, et al. Evolution of char structural features during fast pyrolysis of corn straw with solid heat carriers in a novel V-shaped down tube reactor[J]. Energy Conversion and Management, 2017, 149: 570-578.

[81] Zhang C, Shao Y, Zhang L, et al. Impacts of temperature on evolution of char structure during pyrolysis of lignin[J]. Science of The Total Environment, 2020, 699: 134381.

[82] Freitas J C C, Bonagamba T J, Emmerich F G. Investigation of biomass- and polymer-based carbon materials using 13C high-resolution solid-state NMR[J]. Carbon, 2001, 39(4): 535-545.

[83] 王鑫雨, 孙健超, 徐世明, 等. 稻壳高温热解条件对焦结构演化的影响[J]. 煤炭学报, 2023, 48(06): 2397-2409.

[84] Li L, Fan H, Hu H. Distribution of hydroxyl group in coal structure: A theoretical investigation[J]. Fuel, 2017, 189: 195-202.

[85] 王翠珍, 陈窕, 王健博. 酶催化杂Diels-Alder反应[J]. 合成生物学, 2024, 5(01): 107-25.

[86] Williams C L, Chang C C, Do P, et al. Cycloaddition of biomass-derived furans for catalytic production of renewable p-Xylene[J]. ACS Catal, 2012, 2(6): 935-939.

[87] Pacheco J J, Labinger J A, Sessions A L, et al. Route to renewable PET: reaction pathways and energetics of diels-alder and dehydrative aromatization reactions between ethylene and biomass-derived furans catalyzed by lewis acid molecular sieves[J]. Acs Catalysis, 2015, 5(10): 5904-5913.

[88] 詹佐民. 低温固化全生物基苯并噁嗪的构筑及热性能研究[D]. 杭州: 浙江大学, 2020.

[89] Werpy T A, Petersen G E, Aden A, et al. Top Value Added Chemicals from Biomass: Volume I - Results of Screening for Potential Candidates from Sugars and Synthesis Gas[M]. United States: Medium: ED. 2004.

[90] Serrano-ruiz J C, Luque R, Sepúlveda-escribano A. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuelsvia aqueous-phase processing[J]. Chemical Society Reviews, 2011, 40(11): 5266-5281.

[91] Chheda J N, Huber G W, Dumesic J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angewandte Chemie (International ed in English), 2007, 46(38): 7164-7183.

[92] Toftgaard Pedersen A, Ringborg R, Grotkjær T, et al. Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose–fructose mixtures[J]. Chemical Engineering Journal, 2015, 273: 455-464.

[93] Fang R, Luque R, LI Y. Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst[J]. Green Chemistry, 2016, 18(10): 3152-3157.

[94] Aitrass H, Essayem N, Besson M. Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2-based and ZrO2-based supports[J]. ChemSusChem, 2015, 8(7): 1206-1217.

[95] Xiang X M, Cui J L, Ding G Q, et al. One-step continuous conversion of fructose to 2,5-dihydroxymethylfuran and 2,5-dimethylfuran[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4506-4510.

[96] 张雄飞, 于梦姣, 邱健豪, 等. 葡萄糖催化制备5-羟甲基糠醛研究新进展[J]. 林业工程学报, 2022, 7(02): 14-25.

[97] Zhang T, Wei H, Xiao H, et al. Advance in constructing acid catalyst-solvent combinations for efficient transformation of glucose into 5-Hydroxymethylfurfural[J]. Molecular Catalysis, 2020, 498: 111254.

[98] 张鑫. 微通道反应器内果糖脱水制HMF的CFD模拟研究[D]. 北京:北京化工大学, 2018.

[99] Van Putten R-J, Van Der Waal J C, De Jong E, et al. Hydroxymethylfurfural, A versatile platform chemical made from renewable resources[J]. Chemical Reviews, 2013, 113(3): 1499-1597.

[100]Mika L T, Cséfalvay E, Németh Á. Catalytic conversion of carbohydrates to cnitial platform chemicals: chemistry and sustainability[J]. Chemical Reviews, 2018, 118(2): 505-613.

[101]Chen S S, Tsang D C W, Tessonnier J-P. Comparative investigation of homogeneous and heterogeneous Brønsted base catalysts for the isomerization of glucose to fructose in aqueous media[J]. Applied Catalysis B: Environmental, 2020, 261: 118126.

[102]Moreau C, Durand R, Razigade S, et al. Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites[J]. Applied Catalysis A: General, 1996, 145(1): 211-224.

[103]Huang F, Su Y, Tao Y, et al. Preparation of 5-hydroxymethylfurfural from glucose catalyzed by silica-supported phosphotungstic acid heterogeneous catalyst[J]. Fuel, 2018, 226: 417-422.

[104]刘毅强, 裘依梅, 唐兴, 等. 化学催化葡萄糖异构化果糖[J]. 化学进展, 2021, 33(11): 2128-2137.

[105]Watanabe M, Aizawa Y, Iida T, et al. Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: Relationship between reactivity and acid–base property determined by TPD measurement[J]. Applied Catalysis A: General, 2005, 295(2): 150-156.

[106]Yan H, Yang Y, Tong D, et al. Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42−/ZrO2 and SO42−/ZrO2–Al2O3 solid acid catalysts[J]. Catalysis Communications, 2009, 10(11): 1558-1563.

[107]Liu D, Zhang Y, Zhou A, et al. The kaolinite crystallinity and influence factors of coal-measure kaolinite Rrock from datong coalfield, China[J]. Minerals, 2021, 12(1): 54.

[108]慕诗芸, 刘凯, 吕孝琦, 等. 微波协同氧化锆@碳纳米管强化果糖制5-羟甲基糠醛[J]. 化工进展, 2022, 41(11): 5858-5869.

[109]Jiménez-morales I, Moreno-recio M, Santamaría-gonzález J, et al. Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural[J]. Applied Catalysis B: Environment and Energy, 2014, 154-155: 190-196.

[110]Nakajima K, Baba Y, Noma R, et al. Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant lewis acid sites[J]. Journal of the American Chemical Society, 2011, 133(12): 4224–4227.

[111]韩彬. B2O3固体酸型催化剂降解葡萄糖制5-羟甲基糠醛的研究[D]. 金华:浙江师范大学, 2017.

[112]Takagaki A. Rational design of metal oxide solid acids for sugar conversion[J]. Catalysts, 2019, 9(11): 907.

[113]Tyrlik S K, Szerszen D, Olejnik M, et al. Concentrated water solutions of salts as solvents for reaction of carbohydrates. Part 21. Influence of some magnesium salts and some ruthenium species on catalysis of dehydration of glucose[J]. Journal of Molecular Catalysis A: Chemical, 1996, 106(3): 223-233.

[114]Efremov A A, Pervyshina G G, Kuznetsov B N. Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts[J]. Chemistry of Natural Compounds, 1998, 34: 182-185.

[115]Román-leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science, 2006, 312(5782):1933-1937.

[116]Rasrendra C B, Makertihartha I G B N, Adisasmito S, et al. Green chemicals from d -glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions[J]. Topics in Catalysis, 2010, 53: 1241-1247.

[117]Zhang Z, Wang Q, Xie H, et al. Catalytic conversion of carbohydrates into 5‐hydroxymethylfurfural by germanium(IV) chloride in ionic liquids[J]. ChemSusChem, 2010, 4(1): 131-138.

[118]徐英钊, 漆新华, 郭海心, 等. 离子液体中葡萄糖催化转化为5-羟甲基糠醛[J]. 化工进展, 2011, 30(03): 552-556.

[119]De S, Dutta S, Saha B. Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water[J]. Green Chemistry, 2011, 10: 2859-2868.

[120]王超. 金属氯化物催化葡萄糖和蔗糖高效转化为5-羟甲基糠醛的研究[D]. 天津: 天津大学, 2012.

[121]Zhang X, Murria P, Jiang Y, et al. Maleic acid and aluminum chloride catalyzed conversion of glucose to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media[J]. Green Chemistry, 2016, 18: 5219-5229.

[122]苏叶, 鲍宗必, 张治国, 等. L酸/B酸可调的磺酸功能化MIL-101(Cr)材料催化葡萄糖脱水制备5-羟甲基糠醛[J]. 化工学报, 2016, 67(07): 2799-2807.

[123]Yabushita M, Li P, Islamoglu T, et al. Selective metal–organic framework catalysis of glucose to 5-hydroxymethylfurfural using phosphate-modified NU-1000[J]. Industrial & Engineering Chemistry Research, 2017, 56(25): 7141–7148

[124]Gong J, Katz M J, Kerton F M. Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal–organic frameworks using microwave heating[J]. RSC Advances, 2018, 8(55): 31618-31627.

[125]Oozeerally R, Ramkhelawan S D K, Burnett D L, et al. ZIF-8 metal organic framework for the conversion of glucose to fructose and 5-hydroxymethyl furfural[J]. Catalysts, 2019, 9(10): 812-812.

[126]Zhang Y, Li B, Wei Y, et al. Direct synthesis of metal-organic frameworks catalysts with tunable acid–base strength for glucose dehydration to 5-hydroxymethylfurfural[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96: 93-103.

[127]Thuy nguyen L H, Vo H T, Phan H B, et al. Synthesis of 5-hydroxymethylfurfural from monosaccharides catalyzed by superacid VNU-11–SO4 in 1-ethyl-3-methylimidazolium chloride ionic liquid[J]. RSC Advances, 2020, 10: 39687-39692.

[128]Aljammal N, Lenssens A, Reviere A, et al. Metal–organic frameworks as catalysts for fructose conversion into 5-hydroxymethylfurfural: Catalyst screening and parametric study[J]. Applied Organometallic Chemistry, 2021, 35(12): e6419.

[129]Oozeerally R, Burnett D L, Chamberlain T W, et al. Systematic modification of UiO-66 metal-organic frameworks for glucose conversion into 5-Hydroxymethyl furfural in water[J]. ChemCatChem, 2021, 13(10): 2517-2529.

[130]阎智锋, 连洁, 赵舟, 等. 亚临界水中葡萄糖转化生成5-羟甲基糠醛的理论研究[J]. 燃料化学学报, 2021, 49(08): 1122-1131.

[131]Wang Y, Wang J, Zhang Y, et al. N-Doped carbon materials as heterogeneous catalysts for high efficiency isomerization glucose to fructose in aqueous media[J]. Catalysis Letters, 2020, 150(2): 493-504.

[132]Qi T, He M F, Zhu L F, et al. Cooperative catalytic performance of lewis and brønsted acids from AlCl3 salt in aqueous aolution toward glucose-to-fructose isomerization[J]. The Journal of Physical Chemistry C, 2019, 123(8): 4879-4891.

[133]Liu L J, Wang Z M, Fu S, et al. Catalytic mechanism for the isomerization of glucose into fructose over an aluminium-MCM-41 framework[J]. Catalysis Science and Technology, 2021, 11(4): 1537-1543.

[134]Xiong J S, Qi T, Hu Y X, et al. Cooperative catalysis mechanism of brønsted and lewis acids from Al(OTf)3 with methanol for β-cellobiose-to-fructose conversion: An experimental and theoretical study[J]. Journal of Physical Chemistry A, 2023, 127(31): 6400-6411.

[135]Nagorski R W, Richard J P. Mechanistic imperatives for aldose-ketose isomerization in water: specific, general base- and metal ion-catalyzed isomerization of glyceraldehyde with proton and hydride transfer[J]. Journal of the American Chemical Society, 2001, 123(5): 794-802.

[136]Román-leshkov D Y, Moliner M, Davis J A L, Mark E. Mechanism of glucose isomerization using a solid lewis acid catalyst in water[J]. Angewandte Chemie International Edition, 2010, 49(47): 8954-8657.

[137]Hannah Nguyennikolakis V, Dionisios G. Mechanistic insights into lewis acid metal salt-catalyzed glucose chemistry in aqueous solution[J]. ACS catalysis, 2016, 6(3): 1497-1504.

[138]刘苗, 何颖, 焦莹莹, 等. Lewis酸性MOF催化葡萄糖异构和差向异构反应机制[J]. 工业催化, 2023, 31(10): 29-34.

[139]Koch W, Holthausen M C. A chemist's guide to density functional theory[M]. Hoboken: Molecular Structures and Vibrational Frequencies, 2000.

[140]赵茹芳. 过渡金属氢氧化物型单原子催化剂的设计及其高效催化CO氧化机理的理论研究[D]. 扬州: 扬州大学, 2023.

[141]Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3): 864-871.

[142]尹辉. 基于密度泛函理论的NRR、ORR电催化剂设计及其催化机理研究[D]. 广州: 华南理工大学, 2022.

[143]陈明. 离子液体超级电容器的双电层微观结构及其储能机理的分子模拟研究[D].武汉: 华中科技大学, 2020.

[144]Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566-569.

[145]胡少进. 铁基分子复合物水氧化催化机理的密度泛函理论研究[D]. 中国科学技术大学, 2021.

[146]Halls M D, Velkovski J, Schlegel H B. Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set[J]. Theoretical Chemistry Accounts, 2001, 105(6): 413-421.

[147]王晶辉. 界面固定化酶的Pickering乳液和纳米酶的仿生构建及其催化应用[D]. 天津:天津大学, 2021.

[148]薛少铭. Mn对双钙钛矿光电特性调控的第一性原理研究[D].济南:山东大学, 2022.

[149]Zhao Y, Truhlar D G. Density functional for spectroscopy:  No long-range self-interaction error, good performance for rydberg and charge-transfer states, and better performance on Aaverage than B3LYP for ground states[J]. The Journal of Physical Chemistry A, 2006, 110(49): 13126-13130.

[150]Zhao Y, Truhlar D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theoretical Chemistry Accounts, 2008, 120(1): 215-241.

[151]Jurečka P, Černý J, Hobza P, et al. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations[J]. Journal of Computational Chemistry, 2007, 28(2): 555-569.

[152]Grimme S. Density functional theory with London dispersion corrections[J]. WIREs Computational Molecular Science, 2011, 1(2): 211-228.

[153]Klimevs J I, Bowler D R, Michaelides A. Van der waals density functionals applied to solids[J]. Physical Review B, 2011, 83: 195131.

[154]Klimeš J, Bowler D R, Michaelides A. Chemical accuracy for the van der Waals density functional[J]. Journal of physics Condensed matter: an Institute of Physics journal, 2010, 22(2): 022201.

[155]Hamada I. van der Waals density functional made accurate[J]. Physical Review B, 2014, 89(12): 121103.

[156]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Physical review B, Condensed matter, 1992, 46(11): 6671-6687.

[157]Perdew J P, Kurth S, Zupan A, et al. Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation[J]. Physical Review Letters, 1999, 82(12): 2544-2547.

[158]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.

[159]Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A, General Physics, 1988, 38(6): 3098-3100.

[160]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, Condensed Matter, 1988, 37(2): 785-789.

[161]Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7): 5648-5652.

[162]Van Voorhis T, Scuseria G E. A novel form for the exchange-correlation energy functional[J]. The Journal of Chemical Physics, 1998, 109(2): 400-410.

[163]Tao J, Perdew J P, Staroverov V N, et al. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids[J]. Physical Review Letters, 2003, 91(14): 146401.

[164]Becke A D. Density-functional thermochemistry. V. systematic optimization of exchange-correlation functionals[J]. The Journal of Chemical Physics, 1997, 107(20): 8554-8560.

[165]Schmider H L, Becke A D. Optimized density functionals from the extended G2 test set[J]. The Journal of Chemical Physics, 1998, 108(23): 9624-9631.

[166]罗渝然. 过渡态理论的进展[J]. 化学通报, 1983, 10: 8-14.

[167]沈柏名. 铑催化碳氢活化环化机制研究和钴催化还原醚化实验探索[D]. 重庆:重庆大学, 2020.

[168]Berne B J A C, Giovanni A Coker, David F. Classical and quantum dynamics in condensed phase simulations[M]. World Scientific, 1998.

[169]Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22): 9901-9904.

[170]Henkelman G A, Jónsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives[J]. Journal of Chemical Physics, 1999, 111: 7010-7022.

[171]Choudhary V, Pinar A B, Lobo R F, et al. Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media[J]. ChemSusChem, 2013, 6(12): 2369-2376.

[172]Mushrif S H, Varghese J J, Vlachos D G. Insights into the Cr(iii) catalyzed isomerization mechanism of glucose to fructose in the presence of water using ab initio molecular dynamics[J]. Physical Chemistry Chemical Physics, 2014, 16(36): 19564-19572.

[173]Li Y-P, Head-gordon M, Bell A. Analysis of the reaction mechanism and catalytic activity of metal-substituted beta zeolite for the isomerization of glucose to fructose[J]. ACS Catalysis, 2014, 4: 1537–1545.

[174]宋明芝. 有机羧酸脱羧机理的量子化学计算研究[D ]. 青岛:中国石油大学(华东) , 2014.

[175]Wachs I E. Catalysis science of supported vanadium oxide catalysts[J]. Dalton Transactions, 2013, 42(33): 11762-11769.

[176]李尧. 单相二氧化钒的可控合成及其性能研究[D]. 北京:北京科技大学, 2018.

[177]Ma Z, Yan S, Liu Z, et al. Anisotropic metal–insulator transition in strained VO2(B) single crystal[J]. Chinese Physics B, 2024, 33(6): 067103.

[178]徐甲强. 氧化物纳米材料的合成、结构与气敏特性研究[D]. 上海:上海大学, 2005.

[179]李婉莹, 陈良勇. 化学链甲烷氧化偶联界面反应路径和晶格氧传递的分子动力学模拟[J]. 燃料化学学报(中英文), 2024, 52(06): 820-830.

[180]张作峰. 金属氧化物催化剂中氧空位的研究进展[J]. 山东化工, 2024, 53(14): 116-121.

[181]Wang H, Wen N, Wang Y, et al. Boosting electrochemical reduction of CO2 to formate over oxygen vacancy stabilized copper–tin dual single atoms catalysts[J]. Advanced Functional Materials, 2023, 33(42): 2303473.

[182]Dupin J-C, Gonbeau D, Vinatier P, et al. Systematic XPS studies of metal oxides, hydroxides and peroxides[J]. Physical Chemistry Chemical Physics, 2000, 2(6): 1319-1324.

[183]Wang J, Liu C-Y, Senftle T P, et al. Variation in the In2O3 crystal phase alters catalytic performance toward the reverse water gas shift reaction[J]. ACS Catalysis, 2020, 10(5): 3264-3273.

[184]Liu W, Sun J, Xu L, et al. Understanding the noble metal modifying effect on In2O3 nanowires: highly sensitive and selective gas sensors for potential early screening of multiple diseases[J]. Nanoscale Horizons, 2019, 4(6): 1361-1371.

[185]王薇. 过渡金属氧化物活性中心调控强化VOCs和NOx催化消除机制[D]. 北京:中国科学院大学(中国科学院地球环境研究所), 2023.

[186]Burrell M C, Gillman E. XPS investigation of monoatomic and cluster argon sputtering of zirconium dioxide[J]. Journal of Vacuum Science & Technology A, 2023, 41(4): 043202.

[187]Piñón-espitia M, Torres-ochoa J, Córtazar-martínez O, et al. Charge transfer effects in CuO nanofibers, observed by EELS and XPS[J]. Microscopy and Microanalysis, 2020, 26(S2): 1424-1425.

[188]Mendialdua J, Casanova R, Barbaux Y. XPS studies of V2O5, V6O13, VO2 and V2O3[J]. Journal of Electron Spectroscopy and Related Phenomena, 1995, 71(3): 249-261.

[189]Chen Y, Xie K, Liu Z X. Determination of the position of V4+ as minor component in XPS spectra by difference spectra[J]. Applied Surface Science, 1998, 133(3): 221-224.

[190]张依福. 具有热致相变性能的钒氧化物及其复合材料的制备、表征及性能研究[D].武汉: 武汉大学, 2013.

[191]Demeter M, Neumann M, Reichelt W. Mixed-valence vanadium oxides studied by XPS[J]. Surface Science, 2000, 454-456: 41-44.

[192]Weckhuysen B M, Keller D E. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis[J]. Catalysis Today, 2003, 78(1): 25-46.

[193]Ganduglia-pirovano M V, Hofmann A, Sauer J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges[J]. Surface Science Reports, 2007, 62(6): 219-270.

[194]Fan L, Wang X, Wang F, et al. Revealing the role of oxygen vacancies on the phase transition of VO2 film from the optical-constant measurements[J]. RSC Advances, 2018, 8(34): 19151-19156.

[195]Yun D, Wang Y, Herrera J E. Ethanol partial oxidation over VOx/TiO2 catalysts: the role of titania surface oxygen on vanadia reoxidation in the mars–van krevelen mechanism[J]. ACS Catalysis, 2018, 8(5): 4681-4693.

[196]董文豪, 薛永常, 刘长斌. 苹果酸结构类似物抗氧化活性的DFT研究[J]. 原子与分子物理学报, 2023, 40(06): 15-24.

[197]Gu Y, Luo H, Xu W, et al. Fabrication of MOF-808(Zr) with abundant defects by cleaving Zr-O bond for oxidative desulfurization of fuel oil[J]. Journal of Industrial and Engineering Chemistry, 2022, 105: 435-445.

[198]Furukawa H, Gándara F, Zhang Y-B, et al. Water Adsorption in Porous Metal–Organic Frameworks and Related Materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381.

[199]Horcajada P, Surblé S, Serre C, et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores[J]. Chemical Communications, 2007, 27: 2820-2822.

[200]Samsami S, Sarrafzadeh M-H, Ahmadi A. Surface modification of thin-film nanocomposite forward osmosis membrane with super-hydrophilic MIL-53 (Al) for doxycycline removal as an emerging contaminant and membrane antifouling property enhancement[J]. Chemical Engineering Journal, 2022, 431: 133469.

[201]Zhao Y-Y, Liu Y-L, Wang X-M, et al. Impacts of metal–organic frameworks on structure and performance of polyamide thin-film nanocomposite membranes[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13724-113734.

[202]Kazemzadeh N, Halladj R, Askari S, et al. Tuning parameters for the synthesis of MIL-53(Al): Mn doped MIL-53(Al) as a high potential catalyst for methanol dehydration[J]. International Journal of Chemical Reactor Engineering, 2022, 20(9): 977-988.

[203]Loiseau T, Serre C, Huguenard C, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chemistry-A European Journal, 2004, 10(6): 1373-1382.

[204]Hu Z, Peng Y, Kang Z, et al. A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-Type MOFs[J]. Inorganic Chemistry, 2015, 54(10): 4862-4868.

[205]付国栋. 金属有机骨架UiO-66水吸附性能调控[D]. 北京:北京科技大学, 2023.

[206]Ermer M, Mehler J, Kriesten M, et al. Synthesis of the novel MOF hcp UiO-66 employing ionic liquids as a linker precursor[J]. Dalton Transactions, 2018, 47(41): 14426-14430.

[207]Strzempek W, Menaszek E, Papiez M, et al. Slowing down the “Magic Bullet”: encapsulation of imatinib in Fe-MOF for cardiotoxicity reduction and improvement in anticancer activity[J]. Molecules, 2024, 29(16): 3818.

[208]吴壹伟. 对于MIL-53金属有机框架材料呼吸效应的研究[J]. 中国石油和化工标准与质量, 2018, 38(18): 138-140.

[209]Wang R, Xu H, Liu X, et al. In-situ growth of iron oxides with MIL-100(Fe) enhances its adsorption for selenite[J]. Surfaces and Interfaces, 2022, 34: 102325.

[210]Zokaee Z, Mahmoodi N M, Rahimpour M R, et al. Synthesis of visible light activated metal-organic framework coated on titania nanocomposite (MIL-53(Al)@TiO2) and dye photodegradation[J]. Journal Of Solid State Chemistry, 2022, 307: 122747.

[211]Mirzaei K, Jafarpour E, Shojaei A, et al. Facile Synthesis of Polyaniline@UiO-66 Nanohybrids for Efficient and Rapid Adsorption of Methyl Orange from Aqueous Media[J]. Industrial & Engineering Chemistry Research, 2022, 61(32): 11735-11746.

[212]Lin J, Li G, She C, et al. Microchannel tube NH3 sensor based on metal-organic framework UiO-66 modified polyaniline[J]. Materials Research Bulletin, 2022, 150: 111770.

[213]张嘉翔. 锂二次电池电解液稳定性及功能性理论研究[D]. 西安: 西安科技大学, 2021.

[214]Li M, Liu Y, Li F, et al. Defect-Rich Hierarchical Porous UiO-66(Zr) for Tunable Phosphate Removal[J]. Environmental Science & Technology, 2021, 55(19): 13209-13218.

[215]Cho K Y, Seo J Y, Kim H-J, et al. Facile control of defect site density and particle size of UiO-66 for enhanced hydrolysis rates: insights into feasibility of Zr(IV)-based metal-organic framework (MOF) catalysts[J]. Applied Catalysis B: Environmental, 2019, 245: 635-647.

[216]Guo Q, Li Y, Zheng L-W, et al. Facile fabrication of Fe/Zr binary MOFs for arsenic removal in water: High capacity, fast kinetics and good reusability[J]. Journal of Environmental Sciences, 2023, 128: 213-223.

[217]Li J, Wu Q, Wang X, et al. Heteroaggregation behavior of graphene oxide on Zr-based metal–organic frameworks in aqueous solutions: a combined experimental and theoretical study[J]. Journal of Materials Chemistry A, 2017, 5(38): 20398-20406.

[218]Xu R, Ji Q, Zhao P, et al. Hierarchically porous UiO-66 with tunable mesopores and oxygen vacancies for enhanced arsenic removal[J]. Journal of Materials Chemistry A, 2020, 8(16): 7870-7879.

中图分类号:

 P618.11    

开放日期:

 2027-01-03    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式