论文中文题名: | 车载雷达测距系统的研究与设计 |
姓名: | |
学号: | 19207205078 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085208 |
学科名称: | 工学 - 工程 - 电子与通信工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 雷达信号处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-23 |
论文答辩日期: | 2022-06-02 |
论文外文题名: | Research and Design of Vehicle Radar Ranging System |
论文中文关键词: | |
论文外文关键词: | Radar ranging ; Auto-correlation function method ; FFT method ; LFMCW |
论文中文摘要: |
近年来,随着人们的生活水平越来越好,汽车成为许多人首选的代步工具,车辆事故率也随着汽车数量的增长而增高,给人们造成了巨大的损失。因此,研究可以辅助人们安全驾驶的车载雷达测距系统具有一定的意义,可以更加智能的为驾驶者提供路况信息。 为了能够准确预判行车能否通过路边障碍物,避免出现剐蹭的现象,需提高车载雷达系统测量车身与障碍物之间横向距离的准确性,而横向距离可通过车载雷达与目标之间的纵向距离和角度进行数学运算获得;课题通过减小纵向距离的测量误差,来提高横向距离测量的准确性,对现有测距算法进行改进,将自相关函数法和FFT法相结合,获得更高精度的频率,减小测距误差。在系统设计中,信号的周期对测距范围有较大的影响,为了避免测距时产生的非单值性问题,通过确定探测最远目标的距离来获得信号的周期。在硬件方面,选用带有AD9361的射频板卡和FPGA的Zedboard硬件系统对障碍物进行测距测角,调用FPGA中DDS的IP核,产生线性调频连续波信号,通过硬件系统的接口将信号根据AD9361寄存器中的工作模式传输至FPGA中进行信号处理,得到雷达与障碍物之间的纵向距离和角度;为了获得更加准确的横向距离,对测得的纵向距离进行修正,减小测量误差。 经参数设计和系统仿真验证,证明设计方案的可行性,并在硬件平台上,对系统进行测试。在雷达距离前方目标10m范围内,通过对雷达与目标之间的纵向距离和角度的测量,从而获得与目标之间的横向距离,测得的横向距离误差小于0.1m,达到研究目标的性能要求。 |
论文外文摘要: |
In recent years, cars have become the preferred means of transportation for most people with the improvement of living standards. The vehicle accident rate has also increased with the more and more cars, causing huge losses to people. Therefore, it is of great significance to study the vehicle radar ranging system which can assist people to drive safely and provide road information intelligently. In order to accurately predict whether the vehicle can pass the roadside obstacles and avoid scratching, it is necessary to improve the accuracy of the vehicle radar system in measuring the lateral distance between the vehicle and the obstacles, and the lateral distance can be obtained by mathematical calculation through the longitudinal distance and angle between the vehicle radar and the obstacle; The subject improves the accuracy of lateral distance measurement by reducing the measurement error of longitudinal distance. It is proposed to improve the existing ranging algorithm by combining the auto-correlation function method and FFT method, and reduce the ranging error by improving the frequency measurement accuracy. In the system design, the period of the signal has a great influence on the ranging range. In order to avoid the non-single-valued problem during ranging, the period of the signal is obtained by determining the distance to detect the farthest target. In terms of hardware,the Zedboard hardware system with FPGA and the AD9361 RF board is used to measure the distance and angle of obstacles,and LFMCW signal can be generated by the IP core of DDS in FPGA . Through the interface of the hardware system,the signal is transmitted to the FPGA according to the working mode in the AD9361 register for signal processing to obtain the longitudinal distance and angle between the radar and the obstacle; In order to obtain a more accurate lateral distance, the measured longitudinal distance is corrected to reduce the measurement error. Through parameter design and system simulation verification, the feasibility of the design scheme is proved, and the system is tested on the hardware platform.The lateral distance can be obtained by measuring the longitudinal distance and angle between the radar and the target within the range of 10m from the radar to the front target.The measured lateral distance error is less than 0.1m, achieving the performance requirements of the research target. |
参考文献: |
[1] 何班本,文翊,李瑞翩.高级驾驶辅助系统传感器布置策略研究[J].汽车文摘,2021(06):50-55. [6] 袁梅,汪鹏程,张学军.超声波测距的双相位检测方法[J].电子测量技术,2021,44(17):112-117. [7] 刘兆伦,周明,周延,等.超声波雷达、毫米波雷达与激光雷达数据融合的研究[J].机械工程与自动化,2021(02):17-18. [10]贺红雨,孙建锋,卢智勇,等.基于载波相位调制的相位式激光测距外场实验[J].中国激光,2021,48(24):85-93. [11]姜晓雪,陈小菊,徐锐,等.一种基于FPGA的双目测距系统[J].电子制作,2021(19):64-67+27. [12]张三川,叶建明,师艳娟.基于毫米波雷达的汽车前防撞预警系统设计[J].郑州大学学报(工学版),2020,41(06):13-18. [13]姜嘉睿.无人驾驶中的核心传感器系统分析[J].时代汽车,2019(02):145-146. [14]马硕.无人驾驶汽车应用与发展现状分析[J].汽车与驾驶维修,2017(04):142-143. [22]曹燕,王一歌,李欣雯,等.一种基于窄带自相关的实信号频率估计算法[J].科学技术与工程,2020,20(07):2756-2761. [26]俱莹,何佳,胡稷鑫.经典功率谱估计方法的研究[J].数字通信世界,2015(04):47-50. Conference on Electronic Information Technology and Computer Engineering(EITCE2018),2018:1200-1203. [29]陈平,王佳昌,吴兴研.能量重心法的改进FFT算法分析及应用研究[J].机械科学与技术,2018,37(12):1883-1889. [30]伍龙,黄凯峰,肖理庆,等.频谱细化分数阶Fourier变换的LFM信号滤波算法[J].山东农业大学学报(自然科学版),2020,51(01):163-167. [31]宋鑫超,刘启明,苏庆堂.基于FFT最大谱线处相位差的频谱校正方法[J].控制工程,2017,24(05):1086-1089. [32]王聪,李跃华,马益路,等.基于频率估计的调频毫米波高精度测距算法研究[J].微波学 报,2017,33(S1):234-237. [34]黄超,索继东,于亮.基于自相关函数相位的正弦信号频率估计新算法[J].电讯技术,2014,54(01):63-67. [35]苏耀,刘钧,李艳萍.自相关函数的多普勒信号频率估计算法[J].西安工业大学报,2017,37(10):711-715. [36]张汉光,薛广然,毕进,等.相位和差单脉冲测角算法在某雷达中的应用[J].软件导刊,2016,15(06):145-146. [37]李彦龙,杨博盛.一种相关干涉仪与MUSIC算法相结合的改进测向算法[J].航天电子对抗,2020,36(02):42-44. [42]李猛,王志春.毫米波线性调频连续波测距方法研究[J].内蒙古科技大学学报,2021,40(03):267-270. [43]刘治甬,陈舒.振幅法与相位法测向宽带天线单元分析[J].现代信息科技,2021,5(15):73-76+81. [44]柴慧斯,张风国.GNSS干扰源测向方法对比分析[J].全球定位系统,2019,44(02):59-62. [45]徐振海,王罗胜斌,熊子源,等.雷达目标最大信号法测角精度研究[J].电气电子教学学报,2014,36(03):16-18. [46]丁鹭飞,耿富录.雷达原理(第四版)[M].北京:电子工业出版社,2009. [47]陈绍荣,李晓毅,栗铁桩,等.一种分析和计算自相关函数估计的方法[J].通信技术,2019,52(11):2641-2648. [48]刘畅,张丕状,姚金杰,等.基于FFT+FT的FMCW雷达高精度测距算法研究[J].国外电子测量技术,2019,38(10):65-69. [49]魏同飞,侯志,张金栋,等.基于ZYNQ的LFMCW雷达动目标二维检测的实现[J].微波学报,2021,37(S1):138-141. [50]贺庆,郝思聪.基于时钟合成的高速任意波形数字信号产生方法[J].北京信息科技大学学报(自然科学版),2020,35(06):8-13. |
中图分类号: | TN95 |
开放日期: | 2022-06-23 |