论文中文题名: | TiO2-碳纳米材料复合薄膜的制备及性能研究 |
姓名: | |
学号: | 20211025005 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 080502 |
学科名称: | 工学 - 材料科学与工程 - 材料学 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 纳米材料 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-19 |
论文答辩日期: | 2023-06-06 |
论文外文题名: | Preparation and properties of TiO2-carbon nanomaterials composite films |
论文中文关键词: | |
论文外文关键词: | Titanium dioxide ; sol-gel method ; carbon-coated iron ; carbon nanotubes ; light absorption properties |
论文中文摘要: |
二氧化钛(TiO2)以其低成本、无毒、高稳定性和光催化活性等优点引起了研究人员的广泛关注。近年来,TiO2被广泛应用于太阳能电池、光电器件和光催化制氢等领域。然而,TiO2对太阳光的利用率不足、光生电子和空穴重组率高的缺点限制了其光量子产率。使用金属离子掺杂及半导体复合是解决上述问题的有效方法。碳纳米材料具有良好的导电性、化学稳定性和光吸收性能而受到广泛关注,除了优异的导电性外,碳材料还可以将光吸收范围从紫外光扩展到可见光甚至近红外波长区域。目前利用具有优异性能的不同形式的碳材料与TiO2复合是一种降低薄膜电阻、提高电子传输性能,进而改善TiO2对可见光吸收性能的有效方法,但碳材料对于TiO2薄膜的光学性能影响研究还尚不充分。因此,本文在制备纳米碳包铁(Fe@C)和碳纳米管(CNTs)的基础上,分别用Fe@C和CNTs与TiO2进行复合并制备两种体系的复合薄膜,并对复合薄膜的光学性能进行了系统性研究。主要工作分为以下几个部分: (1)通过溶胶-凝胶结合提拉浸渍法制备了纯TiO2薄膜,研究了退火温度对薄膜形貌、结晶度及光学性能的影响。结果表明,过低的退火温度(400℃)使TiO2不能全部转换成锐钛矿相,光吸收强度较低,而过高的退火温度(600,700℃)使TiO2转换成金红石相,TiO2薄膜的光吸收性能也不佳。与之相比,在500℃下退火2 h的TiO2薄膜对可见光吸收最佳。 (2)在得到的最佳退火温度(500℃)的TiO2薄膜中引入不同含量的碳包覆铁纳米粒子(Fe@C)(0.20 wt%、0.50 wt%、0.80 wt%),通过将不同含量的Fe@C纳米粒子加入TiO2溶胶前驱体中制备出TiO2-Fe@C复合薄膜。研究结果表明,少量的Fe@C可以使薄膜的晶粒尺寸减小,表面变得更加光滑致密,且可以降低TiO2薄膜的带隙能,进一步提高薄膜的光吸收性能。而过量的Fe@C则会使得薄膜表面凹凸不平且晶粒变大。适当的Fe@C可以提高薄膜的优先取向性,含量不足或过多都会影响薄膜的结晶性能。随着钛源含量的增加薄膜的磁性呈现明显下降,这是由于TiO2的包裹使得Fe@C的相对含量减少。当Fe@C含量为0.50 wt%时,薄膜的禁带宽度为2.48 eV。 (3)制备了不同碳纳米管(CNTs)含量的(0.25 wt%、0.50 wt%、0.75 wt%、1.00 wt%)TiO2-CNTs复合薄膜,探究了不同CNTs含量对所制备复合薄膜的光学性能的影响。结果表明,CNTs可以有效地改变TiO2薄膜的形貌、结晶度、化学结构和光学性能,当CNTs含量增加到0.75 wt%时,这种变化达到饱和。当CNTs含量过低时,薄膜的结晶度较低且吸光效果不理想,而当CNTs含量过高时,复合薄膜表面会变得不均匀且容易开裂,同时复合薄膜的吸光度下降,禁带宽度增加。值得注意的是,当CNTs的含量为0.75 wt%时,复合薄膜具有最佳的光学吸收性能。 |
论文外文摘要: |
Titanium dioxide (TiO2) has attracted extensive attention from researchers due to its low cost, non-toxicity, high stability, and photocatalytic activity. In recent years, TiO2 has been widely used in the fields of solar cells, optoelectronic devices, and photocatalytic hydrogen production. However, the low utilization of solar light by TiO2 and the high recombination rate of photogenerated electrons and holes limit its photocatalytic quantum yield. The effective methods to solve these problems include metal ion doping and semiconductor composites. Carbon nanomaterials have been widely studied due to their good conductivity, chemical stability, and light absorption properties. In addition to excellent conductivity, carbon materials can also extend the light absorption range from ultraviolet to visible and even near-infrared wavelengths. Currently, using different forms of carbon materials with excellent performance to composite with TiO2 is an effective method to reduce film resistance, improve electron transfer performance, and improve TiO2's visible light absorption performance. However, the influence of carbon-metal composites and different forms of carbon materials on the optical properties of TiO2 films is still insufficient. Therefore, based on the preparation of nano-carbon-coated iron (Fe@C) and carbon nanotubes (CNTs), this paper respectively uses Fe@C and CNTs to composite with TiO2 to prepare two composite film systems. The optical properties of the composite films are systematically studied. The main work is divided into the following parts: Pure TiO2 thin films were prepared by sol-gel method combined with pullout impregnation, and the effect of annealing temperature on the morphology, crystallinity and optical properties of the films was studied. The results showed that too low annealing temperature (400℃) prevented TiO2 from completely converting to the anatase phase, and the light absorption intensity was low. Too high annealing temperature (600, 700℃) caused TiO2 to convert to the rutile phase, both of which had a negative impact on the light absorption performance of TiO2 thin films. Compared with these, TiO2 thin films annealed at 500℃ for 2 h had the best light absorption intensity. Different amounts of carbon-coated iron nanoparticles (Fe@C) (0.20 wt%, 0.50 wt%, 0.80 wt%) were introduced into the TiO2 film obtained at the optimal annealing temperature (500℃), and TiO2-Fe@C composite films were prepared by adding different amounts of Fe@C nanoparticles to the TiO2 sol-gel precursor. The results showed that a small amount of Fe@C could reduce the grain size of the film, make the surface smoother and denser, and lower the band gap energy of the TiO2 film, further improving the light absorption performance of the film. Excessive Fe@C would make the surface of the film uneven and the grain size larger. Appropriate Fe@C could improve the preferred orientation of the film, and insufficient or excessive content would affect the crystallization performance of the film. With the increase of the titanium source content, the magnetic properties of the film showed a significant decrease, which was due to the decrease in the relative content of Fe@C caused by the encapsulation of TiO2. When the content of Fe@C was 0.50 wt%, the band gap width of the film was 2.48 eV. TiO2-CNTs composite films with different carbon nanotubes (CNTs) (0.25 wt%, 0.50 wt%, 0.75 wt%, 1.00 wt%) were prepared, and the effects of different CNTs content on the optical properties of the prepared composite films were explored. The results showed that CNTs can effectively change the morphology, crystallinity, chemical structure, and optical properties of TiO2 films. When the CNTs content increased to 0.75 wt%, this change reached saturation. When the CNTs content is too low, the crystallinity of the film is low and the light absorption effect is not ideal, while when the CNTs content is too high, the surface of the composite film becomes uneven and easy to crack, and the light absorption of the composite film decreases and the bandgap width increases. It is worth noting that when the CNTs content is 0.75 wt%, the composite film has the best optical absorption performance. |
参考文献: |
[1]姚林如, 傅思翔, 彭清玲. 可再生能源在我国化工产业中的应用——评《新能源材料—基础与应用》[J].日用化学工业, 2021, 51(09): 925-926. [6] 施王明, 沈浩, 罗理达, 刘津, 汪庆卫. 锐钛矿型TiO2太阳能反射涂层的制备及其性能[J]. 东华大学学报(自然科学版), 2022, 48(03): 15-20. [10] 高伟, 吴凤清, 罗臻, 等. TiO2 晶型与光催化活性关系的研究[J]. 高等学校化学学报, 2001, 22(4): 660-662. [11] 苏华枝, 彭诚, 吴建青. 氧化钛光催化材料及其在陶瓷中的应用[J]. 佛山陶瓷, 2016, 26(1): 1-9. [15] 张兵兵, 李俊峰. 微乳法制备纳米TiO2及结构表征[J]. 广州化工, 2013, 41(23): 69-70. [37] 王国栋, 魏长平, 何瑞英, 等. Cu掺杂 SnO2/TiO2复合薄膜的制备及性能研究[J]. 发光学报, 2015, 36(9): 996-1000. [38] 卜彦强, 马德伟, 宋琨, 等. 低温制备N-Fe共掺杂TiO2-SiO2可见光催化复合薄膜[J]. 材料科学与工程学报, 2018, 36(06): 921-926. [73] 王浚宇, 端木庆铎, 张舒婷. 退火温度对TiO2/ZnO复合纳米棒光学性能的影响[J]. 半导体技术, 2019, (9): 702-705. [74] 林玲, 王威, 唐正霞, 等. 退火温度对溶胶-凝胶法制备的TiO2/石墨烯复合材料性能影响[J]. 电子器件, 2019, 42(05): 1085-1089. [78] 李晓敏,武英桐,白睿,王东伟,黄美东.退火温度对二氧化钛薄膜结构和浸润性能的影响[J]. 真空, 2020, 57(03): 21-24. [83] 吕波. 金属(铁, 镍)复合纳米粒子“核/壳”结构及其电磁特性研究[D]. 大连理工大学, 2010. [84] 赵利端, 刘丽妍, 何崟, 等. 基于碳纳米管的柔性应变传感器研究进展[J]. 材料科学与工程学报, 2022, 40(05): 883-889. [85] 李振武. 纳米CdS/碳纳米管复合材料的光电特性[J]. 物理学报, 2012, 61(1): 296-301. [90] 金铁凝. 基于碳纳米管的光伏器件的基础研究[D]. 上海交通大学, 2013. [91] 徐顺建, 肖宗湖, 罗晓瑞, 等. 碳纳米管和二甲基亚砜对钙钛矿太阳电池中 PEDOT: PSS 空穴传输层的协同影响[J]. 无机材料学报, 2018, 33(6): 641-647. |
中图分类号: | TB383 |
开放日期: | 2023-06-19 |