- 无标题文档
查看论文信息

论文中文题名:

 TiO2-碳纳米材料复合薄膜的制备及性能研究    

姓名:

 刘璐    

学号:

 20211025005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 工学 - 材料科学与工程 - 材料学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 纳米材料    

第一导师姓名:

 陈进    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Preparation and properties of TiO2-carbon nanomaterials composite films    

论文中文关键词:

 二氧化钛 ; 溶胶-凝胶法 ; 碳包铁 ; 碳纳米管 ; 光吸收性能    

论文外文关键词:

 Titanium dioxide ; sol-gel method ; carbon-coated iron ; carbon nanotubes ; light absorption properties    

论文中文摘要:

二氧化钛(TiO2)以其低成本、无毒、高稳定性和光催化活性等优点引起了研究人员的广泛关注。近年来,TiO2被广泛应用于太阳能电池、光电器件和光催化制氢等领域。然而,TiO2对太阳光的利用率不足、光生电子和空穴重组率高的缺点限制了其光量子产率。使用金属离子掺杂及半导体复合是解决上述问题的有效方法。碳纳米材料具有良好的导电性、化学稳定性和光吸收性能而受到广泛关注,除了优异的导电性外,碳材料还可以将光吸收范围从紫外光扩展到可见光甚至近红外波长区域。目前利用具有优异性能的不同形式的碳材料与TiO2复合是一种降低薄膜电阻、提高电子传输性能,进而改善TiO2对可见光吸收性能的有效方法,但碳材料对于TiO2薄膜的光学性能影响研究还尚不充分。因此,本文在制备纳米碳包铁(Fe@C)和碳纳米管(CNTs)的基础上,分别用Fe@C和CNTs与TiO2进行复合并制备两种体系的复合薄膜,并对复合薄膜的光学性能进行了系统性研究。主要工作分为以下几个部分:

(1)通过溶胶-凝胶结合提拉浸渍法制备了纯TiO2薄膜,研究了退火温度对薄膜形貌、结晶度及光学性能的影响。结果表明,过低的退火温度(400℃)使TiO2不能全部转换成锐钛矿相,光吸收强度较低,而过高的退火温度(600,700℃)使TiO2转换成金红石相,TiO2薄膜的光吸收性能也不佳。与之相比,在500℃下退火2 h的TiO2薄膜对可见光吸收最佳。

(2)在得到的最佳退火温度(500℃)的TiO2薄膜中引入不同含量的碳包覆铁纳米粒子(Fe@C)(0.20 wt%、0.50 wt%、0.80 wt%),通过将不同含量的Fe@C纳米粒子加入TiO2溶胶前驱体中制备出TiO2-Fe@C复合薄膜。研究结果表明,少量的Fe@C可以使薄膜的晶粒尺寸减小,表面变得更加光滑致密,且可以降低TiO2薄膜的带隙能,进一步提高薄膜的光吸收性能。而过量的Fe@C则会使得薄膜表面凹凸不平且晶粒变大。适当的Fe@C可以提高薄膜的优先取向性,含量不足或过多都会影响薄膜的结晶性能。随着钛源含量的增加薄膜的磁性呈现明显下降,这是由于TiO2的包裹使得Fe@C的相对含量减少。当Fe@C含量为0.50 wt%时,薄膜的禁带宽度为2.48 eV。

(3)制备了不同碳纳米管(CNTs)含量的(0.25 wt%、0.50 wt%、0.75 wt%、1.00 wt%)TiO2-CNTs复合薄膜,探究了不同CNTs含量对所制备复合薄膜的光学性能的影响。结果表明,CNTs可以有效地改变TiO2薄膜的形貌、结晶度、化学结构和光学性能,当CNTs含量增加到0.75 wt%时,这种变化达到饱和。当CNTs含量过低时,薄膜的结晶度较低且吸光效果不理想,而当CNTs含量过高时,复合薄膜表面会变得不均匀且容易开裂,同时复合薄膜的吸光度下降,禁带宽度增加。值得注意的是,当CNTs的含量为0.75 wt%时,复合薄膜具有最佳的光学吸收性能。

论文外文摘要:

Titanium dioxide (TiO2) has attracted extensive attention from researchers due to its low cost, non-toxicity, high stability, and photocatalytic activity. In recent years, TiO2 has been widely used in the fields of solar cells, optoelectronic devices, and photocatalytic hydrogen production. However, the low utilization of solar light by TiO2 and the high recombination rate of photogenerated electrons and holes limit its photocatalytic quantum yield. The effective methods to solve these problems include metal ion doping and semiconductor composites. Carbon nanomaterials have been widely studied due to their good conductivity, chemical stability, and light absorption properties. In addition to excellent conductivity, carbon materials can also extend the light absorption range from ultraviolet to visible and even near-infrared wavelengths. Currently, using different forms of carbon materials with excellent performance to composite with TiO2 is an effective method to reduce film resistance, improve electron transfer performance, and improve TiO2's visible light absorption performance. However, the influence of carbon-metal composites and different forms of carbon materials on the optical properties of TiO2 films is still insufficient. Therefore, based on the preparation of nano-carbon-coated iron (Fe@C) and carbon nanotubes (CNTs), this paper respectively uses Fe@C and CNTs to composite with TiO2 to prepare two composite film systems. The optical properties of the composite films are systematically studied. The main work is divided into the following parts:

Pure TiO2 thin films were prepared by sol-gel method combined with pullout impregnation, and the effect of annealing temperature on the morphology, crystallinity and optical properties of the films was studied. The results showed that too low annealing temperature (400℃) prevented TiO2 from completely converting to the anatase phase, and the light absorption intensity was low. Too high annealing temperature (600, 700℃) caused TiO2 to convert to the rutile phase, both of which had a negative impact on the light absorption performance of TiO2 thin films. Compared with these, TiO2 thin films annealed at 500℃ for 2 h had the best light absorption intensity.

Different amounts of carbon-coated iron nanoparticles (Fe@C) (0.20 wt%, 0.50 wt%, 0.80 wt%) were introduced into the TiO2 film obtained at the optimal annealing temperature (500℃), and TiO2-Fe@C composite films were prepared by adding different amounts of Fe@C nanoparticles to the TiO2 sol-gel precursor. The results showed that a small amount of Fe@C could reduce the grain size of the film, make the surface smoother and denser, and lower the band gap energy of the TiO2 film, further improving the light absorption performance of the film. Excessive Fe@C would make the surface of the film uneven and the grain size larger. Appropriate Fe@C could improve the preferred orientation of the film, and insufficient or excessive content would affect the crystallization performance of the film. With the increase of the titanium source content, the magnetic properties of the film showed a significant decrease, which was due to the decrease in the relative content of Fe@C caused by the encapsulation of TiO2. When the content of Fe@C was 0.50 wt%, the band gap width of the film was 2.48 eV.

TiO2-CNTs composite films with different carbon nanotubes (CNTs) (0.25 wt%, 0.50 wt%, 0.75 wt%, 1.00 wt%) were prepared, and the effects of different CNTs content on the optical properties of the prepared composite films were explored. The results showed that CNTs can effectively change the morphology, crystallinity, chemical structure, and optical properties of TiO2 films. When the CNTs content increased to 0.75 wt%, this change reached saturation. When the CNTs content is too low, the crystallinity of the film is low and the light absorption effect is not ideal, while when the CNTs content is too high, the surface of the composite film becomes uneven and easy to crack, and the light absorption of the composite film decreases and the bandgap width increases. It is worth noting that when the CNTs content is 0.75 wt%, the composite film has the best optical absorption performance.

参考文献:

[1]姚林如, 傅思翔, 彭清玲. 可再生能源在我国化工产业中的应用——评《新能源材料—基础与应用》[J].日用化学工业, 2021, 51(09): 925-926.

[2] Zhang H, Guo Y, Meng F. Metal oxide semiconductor sensors for triethylamine detection: sensing performance and improvements[J]. Chemosensors, 2022, 10(6): 231.

[3] Su X, He Q, Yang Y, et al. Free-standing nitrogen-doped TiO2 nanorod arrays with enhanced capacitive capability for supercapacitors[J]. Diamond and Related Materials, 2021, 114: 108168.

[4] Caldognetto T, Petucco A, Lauri A, et al. A flexible power electronic converter system with rapid control prototyping for research and teaching[J]. HardwareX, 2023, 14(2): e00411.

[5] Rabbani M, Wadud M, Hoque M E. Polymer nanocomposites for microelectronic devices and biosensors[M]. Advanced Polymer Nanocomposites, 2022: 205-233.

[6] 施王明, 沈浩, 罗理达, 刘津, 汪庆卫. 锐钛矿型TiO2太阳能反射涂层的制备及其性能[J]. 东华大学学报(自然科学版), 2022, 48(03): 15-20.

[7] Achoi M, Soga T, Mahmood M R, et al. The deposition of titanium dioxide nanostructures layer using one-step solution process and spin-coating technique[J]. Current Nanomaterials, 2021, 6(3): 240-245.

[8] Muhammad A, Hassan Z, Mohammad S M, et al. Fabrication of ultra-violet photodetector with enhanced optoelectronic parameters using low-cost F-doped ZnO nanostructures[J]. Sensors and Actuators A Physical, 2021, 332(6): 113092.

[9] Mondal A, Ganguly A, Das A, et al. The Ag nanoparticles/TiO2 thin film device for enhanced photoconduction and role of traps[J]. Plasmonics, 2015, 10: 667-673.

[10] 高伟, 吴凤清, 罗臻, 等. TiO2 晶型与光催化活性关系的研究[J]. 高等学校化学学报, 2001, 22(4): 660-662.

[11] 苏华枝, 彭诚, 吴建青. 氧化钛光催化材料及其在陶瓷中的应用[J]. 佛山陶瓷, 2016, 26(1): 1-9.

[12] Qin Y, Deng L, Wei S, et al. An effective strategy for improving charge separation efficiency and photocatalytic degradation performance using a facilely synthesized oxidative TiO2 catalyst[J]. Dalton Transactions, 2022, 51(17): 6899-6907.

[13] Younas M, Gondal M A. Economical and efficient dye sensitized solar cells using single wall carbon-nanotube titanium dioxide nanocomposites as photoanode and SWCNT as Pt-free counter electrode[J]. Solar Energy, 2022, 245: 37-45.

[14] Falco C Y, Florea A F, Shang L, et al. Reactivity of anatase and rutile titanium dioxide powder with hydrogen peroxide vapour: Implication for reactive coating systems for laundry enzymes[J]. Powder Technology, 2021, 391: 353-361.

[15] 张兵兵, 李俊峰. 微乳法制备纳米TiO2及结构表征[J]. 广州化工, 2013, 41(23): 69-70.

[16] O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740.

[17] Freitas A E, Manhabosco T M, Batista R J C, et al. Development and charac- terization of titanium dioxide ceramic substrates with high dielectric permittivities [J]. Materials, 2020, 13(2): 386.

[18] Zhang Y, Zhao X, Fu S, et al. Preparation and antibacterial activity of Ag/TiO2- functionalized ceramic tiles[J]. Ceramics International, 2022, 48(4): 4897-4903.

[19] Sedda K, Djafar R, Boumchedda K, et al. Synthesis, characterization and structural study of perovskite ceramics for piezoelectric applications[C]//The 6th Inter- national Conference on Welding, Non Destructive Testing and Materials Industry. 2018.

[20] Hameed T A, Azab A A, Ibrahim R S, et al. Optimization, structural, optical and magnetic properties of TiO2/CoFe2O4 nanocomposites[J]. Ceramics International, 2022, 48(14): 20418-20425.

[21] Xu C , Li D , Liu X. Direct Z-scheme construction of g-CsN4 quantum dots/TiO2 nanoflakes for efficient photocatalysis[J]. Chemical engineering journal, 2022, 430(2): 132861.

[22] Huang L, Hu Z, Xu J, et al. Efficient planar perovskite solar cells without a high temperature processed titanium dioxide electron transport layer[J]. Solar Energy Materials and Solar Cells, 2016, 149: 1-8.

[23] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantumsized TiO2: correlation between photoreactivity and charge carrier recombination dynamics[J]. The Journal of Physical Chemistry, 2002, 98(51): 13669-13679.

[24] Zhou Y, He F, Huang Y, et al. Composites of the titania thin films implanted by Ge and Si[J]. International Journal of Modern Physics B, 2011, 25(12): 1629-1635.

[25] Guo M, Du J. First-principles study of electronic structures and optical properties of Cu, Ag, and Au-doped anatase TiO2[J]. Physica B: Condensed Matter, 2012, 407(6): 1003-1007.

[26] Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting[J]. Nano letters, 2006, 6(1): 24-28.

[27] Choi Y, Umebayashi T, Yoshikawa M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts[J]. Journal of materials science, 2004, 39(5): 1837-1839.

[28] Chen S, Chen L, Gao S. The preparation of nitrogen-doped photocatalyst TiO2-xNx by ball milling[J]. Chem. Phys. Lett. 2005, 413: 404-409.

[29] Burda C, Lou Y, Chen X. Enhanced Nitrogen doping in TiO2 Nanoparticles [J]. Nano Lett. 2003, 3: 1049-1051.

[30] Diwald O, Thompson T L, Zubkov T, et al. Photochemical activity of nitrogen- doped rutile TiO2(110) in Visible Light[J]. The journal of physical chemistry B, 2004, 108(19): 6004-6008.

[31] Helmy E T, Abouellef E M, Soliman U A, et al. Novel green synthesis of S-doped TiO2 nanoparticles using Malva parviflora plant extract and their photocatalytic, antimicrobial and antioxidant activities under sunlight illumination[J]. Chemos- phere, 2021, 271: 129524.

[32] Madurai R, Natarajan M, Pitchaiya S, et al. Microwave assisted solvothermal synthesis of quasi cubic F doped TiO2 nanostructures and its performance as dye sensitized solar cell photoanode[J]. International Journal of Energy Research, 2020, 45(12): 17259-17268.

[33] Shifu C, Lei C, Shen G, et al. The preparation of nitrogen-doped photocatalyst TiO2-xNx by ball milling[J]. Chemical Physics Letters, 2005, 413(4-6): 404-409.

[34] Tian H, Hu L, Zhang C, et al. Superior energy band structure and retarded charge recombination for Antase N, B codoped nanocrystalline TiO2 anodes in dye -sensitized solar cells[J]. Journal of Materials Chemistry, 2012, 22(18): 9123-9130.

[35] Yu H, Zhang M, Wang Y, et al. Low-temperature strategy for vapor phase hydrothermal synthesis of C\N\S-doped TiO2 nanorod arrays with enhanced photoelectrochemical and photocatalytic activity[J]. Journal of Industrial and Engineering Chemistry, 2021, 98: 130-139.

[36] Shi J, Yan X, Cui H J, et al. Low-temperature synthesis of CdS/TiO2 composite photocatalysts: influence of synthetic procedure on photocatalytic activity under visible light[J]. Journal of Molecular Catalysis A: Chemical, 2012, 356: 53-60.

[37] 王国栋, 魏长平, 何瑞英, 等. Cu掺杂 SnO2/TiO2复合薄膜的制备及性能研究[J]. 发光学报, 2015, 36(9): 996-1000.

[38] 卜彦强, 马德伟, 宋琨, 等. 低温制备N-Fe共掺杂TiO2-SiO2可见光催化复合薄膜[J]. 材料科学与工程学报, 2018, 36(06): 921-926.

[39] Messaadi C, Ghrib M, Chenaina H, et al. Structural, optical and electrical properties of SnO2 doped TiO2 synthesized by the Sol-Gel method[J]. Journal of Materials Science: Materials in Electronics, 2018, 29: 3095-3103.

[40] Sayahi H, Aghapoor K, Mohsenzadeh F, et al. TiO2 nanorods integrated with titania nanoparticles: Large specific surface area 1D nanostructures for improved efficiency of dye-sensitized solar cells (DSSCs)[J]. Solar Energy, 2021, 215: 311-320.

[41] Bharathi J, Pappayee N .Titanium dioxide (TiO2) thin film based gas sensors [J].Journal of Chemical and Pharmaceutical Sciences, 2014, 2014:59-61.

[42] Ubaidullah M, Mehmood M, Tanvir M T, et al. Preparation of composite-layered structure of TiO2 nanoparticles/TiO2 nanotubes and its role in dye sensitized solar cell[J]. Journal of Porous Materials, 2021, 28: 555-566.

[43] Yu G, Zhang X, Sang Y, et al. Synthesis and characterization of a coaxial carbon-TiO2 nanotube arrays film with spectral response from UV to NIR and its application in solar energy conversion[J]. Electrochimica Acta, 2019, 301: 325-331.

[44] Mehmood U, Ishfaq A, Sufyan M. Nanocomposites of Multi-walled Carbon Nanotubes and Titanium dioxide (MWCNTs/TiO2) as affective counter electrode materials for Platinum-free Dye-Sensitized Solar Cells (DSSCs)[J]. Solar Energy, 2021, 220: 949-952.

[45] Rodriguez P, Olivares F, Gomez-Ruiz S, et al. Functionalized carbon nanotubes decorated with fluorine-doped titanium dioxide nanoparticles on silicon substrate as template for titanium dioxide film photoanode grown by chemical vapour deposition[J]. Thin Solid Films, 2018, 656: 30-36.

[46] Cuong D,Van C, Nghia L, et al. Synthesis of titanium dioxide/reduced graphene oxide nanocomposite by ultrasound-assisted mechanical mixing method for fabricating photoanode to upgrade the performance and stability of dye-sensitized solar cell[J]. Materials Research Bulletin, 2022, 156: 112000.

[47] Mustafa M N, Azhari N A, Sulaiman Y. Reduced graphene oxide-titanium dioxide compact layer prepared via electrodeposition for enhanced performance of dye-sensitized solar cells[J]. Optical Materials, 2021, 120: 111475.

[48] Li C, Deng L, He J, et al. Multi-interfacial TiO2/carbon fibers encapsulated with needle-like FeCo2O4 for excellent microwave absorption[J]. Applied Surface Science, 2023, 629: 157417.

[49] Guo X, Zhang B, Lin Z, et al. Interface engineering of TiO2/perovskite interface via fullerene derivatives for high performance planar perovskite solar cells[J]. Organic Electronics, 2018, 62: 459-467.

[50] Oussidhoum S, Hocine D, Chaumont D, et al. Optimization of physicochemical and optical properties of nanocrystalline TiO2 deposited on porous silicon by metal-organic chemical vapor deposition (MOCVD)[J]. Materials Research Express, 2020, 6(12): 125917.

[51] Kite S V, Sathe D J, Patil S S, et al. Nanostructured TiO2 thin films by chemical bath deposition method for high photoelectrochemical performance[J]. Materials Research Express, 2018, 6(2): 026411.

[52] Kumar V, Sharma D K. Fabrication of dimensional hydrophilic TiO2 nanostructured surfaces by hydrothermal method[J]. Materials Today: Proceedings, 2021, 46: 2171-2174.

[53] Zhou X, Zhou X. Pulsed laser deposition preparation and laser-induced voltage signals of TiO2 thin films[J]. Thin Solid Films, 2022, 756: 139375.

[54] Lu Y, Yi G, Zhou H, et al. Arrays of needle-like TiO2/CdS nanorod heterostructure photoelectrodes with enhanced photoelectrochemical properties fabricate by pulsed laser deposition[J]. Vacuum, 2021, 184: 109985.

[55] Devi K P, Goswami P, Chaturvedi H. Fabrication of nanocrystalline TiO2 thin films using Sol-Gel spin coating technology and investigation of its structural, morphology and optical characteristics[J]. Applied Surface Science, 2022, 591: 153226.

[56] de Faria R A D, Houmard M, do Rosário V A M, et al. TiO2 sol-gel coating as a transducer substrate for impedimetric immunosensors[J]. Chemical and Biochemical Engineering Quarterly, 2019, 33(4): 437-447.

[57] Wang Y, Zhang X, Wang Q, et al. Investigating PCE of PSCs with N-based groups doped TiO2 ETLs prepared by sol-gel and sputtering technologies[J]. Materials Letters, 2022, 327: 133055.

[58] Huff M. Recent advances in reactive ion etching and applications of high-aspect- ratio microfabrication[J]. Micromachines, 2021, 12(8): 991.

[59] Kalita J M, Sarma M P, Wary G. Electrical conductivity and X-ray sensing properties of TiO2: Cr thin film synthesised by chemical bath deposition method[J]. Thin Solid Films, 2021, 726: 138656.

[60] Chae S Y, Park M K, Lee S K, et al. Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films[J]. Chemistry of Materials, 2003, 15(17): 3326-3331.

[61] Yang J, Mei S, Ferreira J M F. Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols[J]. Materials Science and Engineering: C, 2001, 15(1-2): 183-185.

[62] Bessekhouad Y, Robert D, Weber J. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions[J]. Journal of Photo-chemistry and Photobiology A: Chemistry, 2003, 157(1): 47-53.

[63] Chemseddine A, Moritz T. Nanostructuring titania: control over nanocrystal structure, size, shape, and organization[J]. European Journal of Inorganic Chemistry, 1999, 1999(2): 235-245.

[64] Do K, Kim H. Synthesis of TiO2 nanoparticles by hydrolysis of TEOT and decrease of particle size using a two-stage mixed method[J]. Powder Technology, 2001, 119(2-3): 164-172.

[65] Sugimoto T. Preparation of monodispersed colloidal particles[J]. Advances in Colloid and Interface Science, 1987, 28: 65-108.

[66] Roy S, Zhai L, Kim H, et al. Tannic-acid-cross-linked and TiO2-nanoparticle- reinforced chitosan-based nanocomposite film[J]. Polymers, 2021, 13(2): 228.

[67] Zoubeik M, Salama A, Henni A. A comprehensive experimental and artificial network investigation of the performance of an ultrafiltration titanium dioxide ceramic membrane: application in produced water treatment[J]. Water and Environment Journal, 2019, 33(3): 459-475.

[68] Moongraksathum B, Hsu P T, Chen Y W. Photocatalytic activity of ascorbic acid-modified TiO2 sol prepared by the peroxo sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2016, 78: 647-659.

[69] Ayyaz M, Huda N U, Rasool F, et al. Effects of pure and mixed stabilizers on opto-electrical properties and morphology of TiO2 nanoparticles synthesized by sol-gel method[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020, 863(1): 012029.

[70] Salomatina E V, Bityurin N M, Gulenova M V, et al. Synthesis, structure, and properties of organic-inorganic nanocomposites containing poly (titanium oxide)[J]. Journal of Materials Chemistry C, 2013, 1(39): 6375-6385.

[71] Wang J, Wang Z, Zhao D, et al. Preparation, structural and photocatalytic activity of Sn/Fe co-doped TiO2 nanoparticles by sol-gel method[J]. Ceramics International, 2022, 48(6): 8297-8305.

[72] Szołdra P, Frąc M, Pichór W. Effect of sol composition on the properties of TiO2 powders obtained by the sol-gel method[J]. Powder Technology, 2021, 387: 261-269.

[73] 王浚宇, 端木庆铎, 张舒婷. 退火温度对TiO2/ZnO复合纳米棒光学性能的影响[J]. 半导体技术, 2019, (9): 702-705.

[74] 林玲, 王威, 唐正霞, 等. 退火温度对溶胶-凝胶法制备的TiO2/石墨烯复合材料性能影响[J]. 电子器件, 2019, 42(05): 1085-1089.

[75] Devi K P, Goswami P, Chaturvedi H. Fabrication of nanocrystalline TiO2 thin films using Sol-Gel spin coating technology and investigation of its structural, morphology and optical characteristics[J]. Applied Surface Science, 2022, 591: 153226.

[76] Halim F S A, Chandren S, Nur H. Carbon-containing-titania coated stainless steel prepared by high voltage powder spray coating and its adhesion phenomena[J]. Progress in Organic Coatings, 2020, 147: 105782.

[77] Yuan Y, Jiang W, Li J. Preparation of solid acid catalyst SO42-/TiO2/γ-Al2O3 for esterification: A study on catalytic reaction mechanism and kinetics[J]. Chinese Journal of Chemical Engineering, 2019, 27(11): 2696-2704.

[78] 李晓敏,武英桐,白睿,王东伟,黄美东.退火温度对二氧化钛薄膜结构和浸润性能的影响[J]. 真空, 2020, 57(03): 21-24.

[79] J. Tauc, R. Grigorovici, A. Vancu. Optical Properties and Electronic Structure of Amorphous Germanium[J]. Basic solid state physics, 1966, 15(2): 627-637.

[80] González D M, Körstgens V, Yao Y, et al. Organic Electronics: Improved power conversion efficiency of P3HT: PCBM Organic solar cells by strong spin-orbit coupling-induced delayed fluorescence (Adv. Energy Mater. 8/2015)[J]. Advanced Energy Materials, 2015, 5(8) 1401770.

[81] Krafft G A. Design and synthesis of enzyme activated irreversible inactivators for proteases. suicide inactivation of hymotrypsin[M]. University of Illinois at Urbana-Champaign, 1980.

[82] Ruoff R S, Lorents D C, Chan B, et al. Single crystal metals encapsulated in carbon nanoparticles[J]. Science, 1993, 259(5093): 346-348.

[83] 吕波. 金属(铁, 镍)复合纳米粒子“核/壳”结构及其电磁特性研究[D]. 大连理工大学, 2010.

[84] 赵利端, 刘丽妍, 何崟, 等. 基于碳纳米管的柔性应变传感器研究进展[J]. 材料科学与工程学报, 2022, 40(05): 883-889.

[85] 李振武. 纳米CdS/碳纳米管复合材料的光电特性[J]. 物理学报, 2012, 61(1): 296-301.

[86] Mitin D M, Mozharov A M, Raudik S A, et al. Solar cells based on GaAs and carbon nanotubes[C]//Journal of Physics: Conference Series. IOP Publishing, 2020, 1482(1): 012035.

[87] Oublal E, Ait Abdelkadir A, Sahal M. High performance of a new solar cell based on carbon nanotubes with CBTS compound as BSF using SCAPS-1D software[J]. Journal of Nanoparticle Research, 2022, 24(10): 202.

[88] Jeon I, Yoon J, Ahn N, et al. Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2017, 8(21): 5395-5401.

[89] Terasawa N. Nanocomposite electrodes using highly conductive sub-millimetre- long single-walled carbon nanotubes pasted with PEDOT: PSS and high- performance actuators[J]. Diamond and Related Materials, 2022, 126: 109039.

[90] 金铁凝. 基于碳纳米管的光伏器件的基础研究[D]. 上海交通大学, 2013.

[91] 徐顺建, 肖宗湖, 罗晓瑞, 等. 碳纳米管和二甲基亚砜对钙钛矿太阳电池中 PEDOT: PSS 空穴传输层的协同影响[J]. 无机材料学报, 2018, 33(6): 641-647.

[92] Zapsas G, Moschovas D, Ntetsikas K, et al. Segregation of maghemite nano- particles within symmetric diblock copolymer and triblock terpolymer patterns under solvent vapor annealing[J]. Materials, 2020, 13(6): 1286.

[93] Sun K, Duan W, Lei Y, et al. Flexible multi-walled carbon nanotubes /polyvinylidene fluoride membranous composites with weakly negative permittivity and low frequency dispersion[J]. Composites Part A: Applied Science and Manufacturing, 2022, 156: 106854.

中图分类号:

 TB383    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式