- 无标题文档
查看论文信息

题名:

 抗溶胀导电水凝胶的制备及其传感性能研究    

作者:

 程启威    

学号:

 21211225054    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 085600    

学科:

 工学 - 材料与化工    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 柔性传感材料    

导师姓名:

 李颖    

导师单位:

 西安科技大学    

第二导师姓名:

 邓泽星    

提交日期:

 2024-06-17    

答辩日期:

 2024-06-05    

外文题名:

 Preparation and investigation on the sensing property of anti-swelling conductive hydrogel    

关键词:

 导电水凝胶 ; 抗溶胀 ; 应变传感 ; 运动监测 ; 生理信号监测    

外文关键词:

 Conductive hydrogel ; anti-swelling ; strain sensing ; motion detecting ; physiological signal detecting    

摘要:

近年来,导电水凝胶因其出色的灵活性、便携性和导电性受到极大的关注,特别是在柔性传感器和电子皮肤等领域展现了巨大的应用潜力。然而,大多数导电水凝胶的组分中含有亲水性基团,在吸收大量水分后会出现体积过度膨胀(即溶胀),这种溶胀现象会损害导电水凝胶的力学性能及导电性能,从而限制其在传感应用中的使用。因此,研发具备抗溶胀性能的导电水凝胶,以拓展其在传感领域的应用范围,具有重要的研究意义。为了解决上述问题,本文通过调控水凝胶的网络交联结构,成功设计出一系列具有抗溶胀性的导电水凝胶,并对其传感性能进行深一步研究。具体研究内容包括:

(1)采用丙烯酸(AA),甲基丙烯酸月桂酯(LMA)及两性离子[2-(甲基丙烯酰基氧基)乙基]二甲基-(3-磺酸丙基)氢氧化铵(SBMA)为主要原料, 通过自由基聚合制备了抗溶胀离子导电水凝胶。由于水凝胶体系中的氢键作用、疏水作用以及静电作用,所制备的AA-LMA-SBMA水凝胶具备良好的抗溶胀性(水中浸泡120 h,溶胀率仅为59.36%)、力学性能(拉伸强度和断裂伸长率分别达到158 kPa和176%,在80%压缩应变时的压缩强度达到0.37 MPa)和导电性(0.91 S/m)。随后,进一步研究了水凝胶的传感性能,所得水凝胶具有较高的灵敏度(在0-80%拉伸应变的传感范围,灵敏系数最高可达GF=2.41)、快速的响应时间 (365 ms)和恢复时间(121 ms),并且能够附着在人体的不同部位来监测人体运动信号和生理信号。

(2)采用聚乙烯醇(PVA)为柔性基材,碳纳米管(CNT)为导电填料,通过定向冷冻和盐析的方法,成功制备出强韧抗溶胀的PVA/CNT导电水凝胶。在定向冷冻和盐析的作用下,水凝胶内部形成排列紧密的取向结构,所得水凝胶具有良好的抗溶胀性(在去离子水中浸泡120 h后,溶胀率为92.2%)、导电性(0.20 S/m),以及优异的力学拉伸性能(拉伸强度和断裂伸长率分别为4.01 MPa和629%)。水凝胶展现出良好的应变传感性能(200%应变下的灵敏系数GF为2.30)。此外,水凝胶还能够准确地采集人体运动及生理信号,可用于健康监测。这项工作不仅提升了导电水凝胶力学拉伸性能和抗溶胀性,也为其在传感领域应用开辟了新的路径。

(3)以两性离子SBMA和AA的共聚物为第一层网络,PVA通过反复冻融形成第二层网络,制备了PVA/AA-SBMA双网络抗溶胀离子导电水凝胶。通过AA调控两性离子SBMA的平衡状态,使SBMA单体质子化,降低水凝胶的渗透压,水凝胶具有良好的抗溶胀性(水中浸泡120 h后,溶胀率为80%)。此外,该策略还综合提升了水凝胶的力学性能(拉伸强度达到0.43 MPa,断裂伸长率高达320%,在80%压缩应变时的压缩强度为1.01 MPa)和抗疲劳性。在200%-250%的拉伸应变范围内,水凝胶表现出较高的灵敏度(灵敏系数GF=3.74)、快速响应和恢复时间(分别为269 ms和87 ms),可实现水凝胶对水下人体运动和生理信号的监测,拓展了水凝胶在柔性传感领域的应用环境。

外文摘要:

In recent years, conductive hydrogels have attracted great attention due to their outstanding flexibility, portability, and comfort, exhibiting tremendous potential in applications such as flexible sensors, electronic skin, and soft robotics. However, most conductive hydrogels contain a large number of hydrophilic groups in their network structure, leading to excessive volume expansion (i.e., swelling) after absorbing a significant amount of water. This swelling phenomenon can impair the mechanical and electrical performance of the conductive hydrogels, severely limiting their potential for applications in flexible sensing. Therefore, the research and development of conductive hydrogels with anti-swelling properties has become the focus of current research to expand the application range of hydrogels in the field of flexible sensing. To address the aforementioned issue, this paper successfully designs conductive hydrogels with anti-swelling properties by adjusting the network structure of the hydrogel, and further studies and discusses its flexible sensing performance. The specific research contents include:

(1)The AA-LMA-SBMA anti-swelling ion-conductive hydrogel was designed using acrylic acid (AA), lauryl methacrylate (LMA), and the zwitterionic ion [2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA). Due to the presence of hydrogen bonding, hydrophobic interactions, and electrostatic interactions within the hydrogel system, the prepared hydrogel exhibits excellent anti-swelling properties (with a swelling ratio of only 59.36% after soaking in water for 120 hours), good mechanical properties (with maximum fracture stress and strain reaching 158 kPa and 176%, respectively, and a compressive strength of 0.37 MPa at 80% compressive strain), and ionic conductivity (0.91 S/m). The further studies on the sensing performance of hydrogel revealed that the AA-LMA-SBMA hydrogel possesses high sensitivity (with a maximum GF value of 2.41 within a sensing range of 0-80%), as well as rapid response (365 ms) and recovery times (121 ms). It can also adhere to different parts of the human body to monitor human motion and physiological signals, indicating the potential of hydrogel for application in flexible wearable devices.

(2)A robust and anti-swelling PVA/CNT conductive hydrogel was prepared through directional freezing and salting-out (sodium citrate solution) processes, using polyvinyl alcohol (PVA) as a flexible substrate and multi-walled carboxylated carbon nanotubes (CNTs) as conductive fillers. By the effects of directional freezing and salting out, a closely packed oriented structure was formed inside the hydrogel. The resulting PVA/CNT hydrogel exhibits good swelling resistance (with a swelling ratio of 92.2% after soaking in deionized water for 120 hours), conductivity (0.20 S/m), and excellent mechanical properties (with tensile strength and elongation at break of 4.01 MPa and 629%, respectively). The hydrogel shows good sensing performance under strains of 50%, 100%, and 200% (with a GF value of 2.30 at 200% strain). Additionally, the hydrogel can accurately collect human motion and physiological signals, making it applicable to smart human-machine interaction and health monitoring. This work not only enhances the mechanical properties and swelling resistance of conductive hydrogels, but also paves new paths for their application in the sensing field.

(3)A double network anti-swelling ionic conductive hydrogel was prepared using the copolymer of zwitterion SBMA and AA as the first network, while PVA formed the second network through freeze-thaw cycles. The equilibrium state of the zwitterion was regulated by AA, which protonated the SBMA monomer and reduced the osmotic pressure of the hydrogel, resulting in good anti-swelling properties (swelling rate of 80% after soaking in water for 120 hours). Moreover, this strategy significantly enhanced the mechanical properties of the hydrogel (tensile strength of 0.43 MPa, elongation at break of up to 320%, and a compressive strength of 1.01 MPa at 80% compression strain) and fatigue resistance. Within the 200%-250% tensile strain range, the hydrogel exhibited high sensitivity (sensitivity factor GF=3.74), rapid response and recovery times (269 ms and 87 ms, respectively), enabling monitoring of underwater human motion and physiological signals, thereby expanding the application of hydrogels in the flexible sensing domain.

参考文献:

[1] 宋璐, 左小磊, 李敏. 柔性可穿戴传感器及其应用研究 [J]. 分析化学, 2022, 50(11): 1661-1672.

[2] 门海蛟, 宋健尧, 黄秉经, 等. 柔性可穿戴电子应变传感器的研究进展 [J]. 材料导报, 2023, 37(21): 45-67.

[3] 梁亚飞, 陶丹, 黄云暖, 等. 聚乙烯醇水凝胶基柔性应变传感器的研究进展 [J]. 微纳电子技术, 2023, 60(12): 1907-1927.

[4] Wang X, Weng L, Zhang X, et al. Constructing conductive and mechanical strength self-healing hydrogel for flexible sensor [J]. Journal of Science: Advanced Materials and Devices, 2023, 8(3): 100563.

[5] Chalabianloo N, Can Y S, Umair M, et al. Application level performance evaluation of wearable devices for stress classification with explainable AI [J]. Pervasive and Mobile Computing, 2022, 87: 101703.

[6] Wang Z, Zhou Z, Wang S, et al. An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and wearable sensing [J]. Composites Part B: Engineering, 2022, 239: 109954.

[7] Xia X, Liang Q, Sun X, et al. Intrinsically electron conductive, antibacterial, and anti‐swelling hydrogels as implantable sensors for bioelectronics [J]. Advanced Functional Materials, 2022, 32(48): 2208024.

[8] Liu Z, Wang Y, Ren Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper [J]. Materials Horizons, 2020, 7(3): 919-927.

[9] 高志红, 裘炳毅. 功能性聚二甲基硅氧烷共聚醇的结构、性质及应用 [J]. 中国洗涤用品工业, 2016, (10): 56-60.

[10] 魏子尊. 聚氨酯复合材料在柔性传感器领域的应用与研究进展 [J]. 塑料科技, 2021, 49(08): 109-112.

[11] Han L, Zhou Q, Chen D, et al. Flexible sensitive hydrogel sensor with self-powered capability [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639: 128381.

[12] Wang B, Dai L, Hunter L A, et al. A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications [J]. Carbohydrate Polymers, 2021, 268: 118210.

[13] Zhou Y, Zhang L, Lin X, et al. Dual-network polyvinyl alcohol/polyacrylamide/xanthan gum ionic conductive hydrogels for flexible electronic devices [J]. International Journal of Biological Macromolecules, 2023, 233: 123573.

[14] Yu Z, Wu P. Underwater communication and optical camouflage ionogels [J]. Advanced Materials, 2021, 33(24): 2008479.

[15] Liu X, Zhang Q, Gao G. Solvent-resistant and nonswellable hydrogel conductor toward mechanical perception in diverse liquid media [J]. ACS Nano, 2020, 14(10): 13709-13717.

[16] Pramanick A K, Gupta S, Mishra T, et al. Topographical heterogeneity in transparent PVA hydrogels studied by AFM [J]. Materials Science and Engineering: C, 2012, 32(2): 222-227.

[17] Yang Y, Wang C, Wiener C G, et al. Tough stretchable physically-cross-linked electrospun hydrogel fiber mats [J]. ACS Applied Materials & Interfaces, 2016, 8(35): 22774-22779.

[18] Liang L, Liang X, Lin X, et al. Construction mechanism of gellan gum/chitosan/calcium ion multiple-network hydrogel by self-assembly strategy and its regulation [J]. Polymer Engineering & Science, 2024, 64(2): 689-705.

[19] Su E, Okay O. Polyampholyte hydrogels formed via electrostatic and hydrophobic interactions [J]. European Polymer Journal, 2017, 88: 191-204.

[20] Shams E S, Weiss R A. Fabrication of tough hydrogels from chemically cross-linked multiple neutral networks [J]. Macromolecules, 2016, 49(23): 8980-8987.

[21] Barron V, Killion J A, Pilkington L, et al. Development of chemically cross-linked hydrophilic–hydrophobic hydrogels for drug delivery applications [J]. European Polymer Journal, 2016, 75: 25-35.

[22] Wang X, Wang G, Liu W, et al. Developing a carbon composite hydrogel with a highly conductive network to improve strain sensing performance [J]. Carbon, 2024, 216: 118500.

[23] Ohsedo Y, Saruhashi K, Watanabe H, et al. Synthesis of an electronically conductive hydrogel from a hydrogelator and a conducting polymer [J]. New Journal of Chemistry, 2017, 41(18): 9602-9606.

[24] Li R a, Zhang K, Cai L, et al. Highly stretchable ionic conducting hydrogels for strain/tactile sensors [J]. Polymer, 2019, 167: 154-158.

[25] Yang G, Wang Y, Zhou S, et al. Graphene/phenolic resin-based porous carbon composites with improved conductivity prepared via in situ polymerization in graphene hydrogels [J]. Journal of Materials Science, 2019, 54(3): 2222-2230.

[26] Yao B, Wang H, Zhou Q, et al. Ultrahigh-conductivity polymer hydrogels with arbitrary structures [J]. Advanced Materials, 2017, 29(28): 1700974.

[27] Song X-Z, Wang H, Li Z, et al. Double-shelled carbon nanocages grafted with carbon nanotubes embedding co nanoparticles for enhanced hydrogen evolution electrocatalysis [J]. Chemical Communications, 2021, 57(24): 3022-3025.

[28] Karlický F, Otyepková E, Lo R, et al. Adsorption of organic molecules to van der waals materials: comparison of fluorographene and fluorographite with graphene and graphite [J]. Journal of Chemical Theory and Computation, 2017, 13(3): 1328-1340.

[29] Zhou Y, He J, Wang H, et al. Carbon nanofiber yarns fabricated from co-electrospun nanofibers [J]. Materials & Design, 2016, 95: 591-598.

[30] Yang R, Cheng H, Luo X, et al. Facile fabrication of carbon nanocolloids reinforced hydrogels for the application of high-performance strain sensors [J]. Sensors and Actuators A: Physical, 2023, 359: 114507.

[31] Xing L, Song Y, Zou X, et al. A mussel-inspired semi-interpenetrating structure hydrogel with superior stretchability, self-adhesive properties, and pH sensitivity for smart wearable electronics [J]. Journal of Materials Chemistry C, 2023, 11(39): 13376-13386.

[32] Park J, Jeon N, Lee S, et al. Conductive hydrogel constructs with three-dimensionally connected graphene networks for biomedical applications [J]. Chemical Engineering Journal, 2022, 446: 137344.

[33] Chen C, Wang Y, Meng T, et al. Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers [J]. Cellulose, 2019, 26(16): 8843-8851.

[34] Yang C, Suo Z. Hydrogel ionotronics [J]. Nature Reviews Materials, 2018, 3(6): 125-142.

[35] Pang Q, Hu H, Zhang H, et al. Temperature-responsive ionic conductive hydrogel for strain and temperature sensors [J]. ACS Applied Materials & Interfaces, 2022, 14(23): 26536-26547.

[36] Zhang G, Yang X, Shu H, et al. Ultrahigh conductivity and antifreezing zwitterionic sulfobetaine hydrogel electrolyte for low-temperature resistance flexible supercapacitors [J]. Journal of Materials Chemistry A, 2023, 11(16): 9097-9111.

[37] Cui W, Zheng Y, Zhu R, et al. Strong tough conductive hydrogels via the synergy of ion-induced cross-linking and salting-out [J]. Advanced Functional Materials, 2022, 32(39): 2204823.

[38] Zhang K, Qiu J, Wang S. Thermoelectric properties of PEDOT nanowire/PEDOT hybrids [J]. Nanoscale, 2016, 8(15): 8033-8041.

[39] Hill I M, Wu D, Xu B, et al. Oligoaniline-assisted self-assembly of polyaniline crystals [J]. Materials Horizons, 2023, 10(4): 1282-1291.

[40] Kaiser M R, Han Z, Wang J. Electro-polymerized polypyrrole film for fabrication of flexible and slurry-free polypyrrole-sulfur-polypyrrole sandwich electrode for the lithium-sulfur battery [J]. Journal of Power Sources, 2019, 437: 226925.

[41] Zhu B, Chan E W C, Li S Y, et al. Soft, flexible and self-healable supramolecular conducting polymer-based hydrogel electrodes for flexible supercapacitors [J]. Journal of Materials Chemistry C, 2022, 10(40): 14882-14891.

[42] Devi L S, Palathinkal R P, Dasmahapatra A K. Preparation of cross-linked PANI/PVA conductive hydrogels for electrochemical energy storage and sensing applications [J]. Polymer, 2024, 293: 126673.

[43] Ren X, Yang M, Yang T, et al. Highly conductive PPy–PEDOT:PSS hybrid hydrogel with superior biocompatibility for bioelectronics application [J]. ACS Applied Materials & Interfaces, 2021, 13(21): 25374-25382.

[44] Chen K, Liang K, Liu H, et al. Skin-Inspired ultra-tough supramolecular multifunctional hydrogel electronic skin for human–machine interaction [J]. Nano-Micro Letters, 2023, 15(1): 102.

[45] Lan Z, Wang Y, Hu K, et al. Anti-swellable cellulose hydrogel for underwater sensing [J]. Carbohydrate Polymers, 2023, 306: 120541.

[46] Li B, Kan L, Li C, et al. Adaptable ionic liquid-containing supramolecular hydrogel with multiple sensations at subzero temperatures [J]. Journal of Materials Chemistry C, 2021, 9(3): 1044-1050.

[47] Gao Y, Wang Y, Dai Y, et al. Amylopectin based hydrogel strain sensor with good biocompatibility, high toughness and stable anti-swelling in multiple liquid media [J]. European Polymer Journal, 2022, 164: 110981.

[48] Ren J, Liu Y, Wang Z, et al. An anti-swellable hydrogel strain sensor for underwater motion detection [J]. Advanced Functional Materials, 2021, 32(13): 2107404.

[49] Han X, Su Y, Che G, et al. Novel lignin hydrogel sensors with antiswelling, antifreezing, and anticreep properties [J]. ACS Sustainable Chemistry & Engineering, 2023, 11(22): 8255-8270.

[50] Wei J, Zheng Y, Chen T. A fully hydrophobic ionogel enables highly efficient wearable underwater sensors and communicators [J]. Materials Horizons, 2021, 8(10): 2761-2770.

[51] Li X, Jiang M, Du Y, et al. Self-healing liquid metal hydrogel for human–computer interaction and infrared camouflage [J]. Materials Horizons, 2023, 10(8): 2945-2957.

[52] Xu T, Zhang L, Song B, et al. High-strain sensitive zwitterionic hydrogels with swelling-resistant and controllable rehydration for sustainable wearable sensor [J]. Journal of Colloid and Interface Science, 2022, 620: 14-23.

[53] Qi C, Dong Z, Huang Y, et al. Tough, anti-swelling supramolecular hydrogels mediated by surfactant–polymer interactions for underwater sensors [J]. ACS Applied Materials & Interfaces, 2022, 14(26): 30385-30397.

[54] Li M, Lu H, Pi M, et al. Water-induced phase separation for anti-swelling hydrogel adhesives in underwater soft electronics [J]. Advanced Science, 2023, 10(32): 2304780.

[55] Li G, Huang K, Deng J, et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics [J]. Advanced Materials, 2022, 34(15): 2200261.

[56] Wei J, Xiao P, Chen T. Water-resistant conductive gels toward underwater wearable sensing [J]. Advanced Materials, 2023, 35(42): e2211758.

[57] Zhao Z, Qin X, Cao L, et al. Chitosan-enhanced nonswelling hydrogel with stable mechanical properties for long-lasting underwater sensing [J]. International Journal of Biological Macromolecules, 2022, 212: 123-133.

[58] Huang H, Shen J, Wan S, et al. Wet-adhesive multifunctional hydrogel with anti-swelling and a skin-Seamless interface for underwater electrophysiological monitoring and communication [J]. ACS Applied Materials & Interfaces, 2023, 15(9): 11549-11562.

[59] Di X, Hou J, Yang M, et al. A bio-inspired, ultra-tough, high-sensitivity, and anti-swelling conductive hydrogel strain sensor for motion detection and information transmission [J]. Materials Horizons, 2022, 9(12): 3057-3069.

[60] Dou X, Wang H, Yang F, et al. One-step soaking strategy toward anti-swelling hydrogels with a stiff "armor" [J]. Advanced Science, 2023, 10(9): e2206242.

[61] Zou C Y, Lei X X, Hu J J, et al. Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing [J]. Bioactive Materials, 2022, 16: 388-402.

[62] Chen K, Lin Q, Wang L, et al. An all-in-one tannic acid-containing hydrogel adhesive with high toughness, notch insensitivity, self-healability, tailorable topography, and strong, instant, and on-demand underwater adhesion [J]. ACS Applied Materials Interfaces, 2021, 13(8): 9748-9761.

[63] Hou W, Sheng N, Zhang X, et al. Design of injectable agar/NaCl/polyacrylamide ionic hydrogels for high performance strain sensors [J]. Carbohydrate Polymers, 2019, 211: 322-328.

[64] Nie K, Wang Z, Tang R, et al. Anisotropic, flexible wood hydrogels and wrinkled, electrodeposited film electrodes for highly sensitive, wide-range pressure sensing [J]. ACS Applied Materials & Interfaces, 2020, 12(38): 43024-43031.

[65] Zhao W, Shi Z, Hu S, et al. Understanding piezoelectric characteristics of PHEMA-based hydrogel nanocomposites as soft self-powered electronics [J]. Advanced Composites and Hybrid Materials, 2018, 1(2): 320-331.

[66] Pu X, Liu M, Chen X, et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing [J]. Science Advances, 2017, 3(5): e1700015.

[67] Wu Z, Yang X, Wu J. Conductive hydrogel- and organohydrogel-based stretchable sensors [J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2128-2144.

[68] He J, Zhang Y, Zhou R, et al. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects [J]. Journal of Materiomics, 2020, 6(1): 86-101.

[69] Xu Y, Gao Y, Liu R, et al. Robots built robots: nanorobots customized by intelligent robot [J]. Crystal Growth & Design, 2021, 21(10): 5508-5514.

[70] Chen X, Tian C, Zhang H, et al. Biodegradable magnetic hydrogel robot with multimodal locomotion for targeted cargo delivery [J]. ACS Applied Materials & Interfaces, 2023, 15(24): 28922-28932.

[71] Zhu G, Yang R, Wang S, et al. Flexible high-output nanogenerator based on lateral ZnO nanowire array [J]. Nano Letters, 2010, 10(8): 3151-3155.

[72] Wang Z L. Triboelectric nanogenerators as new Energy technology for self-powered systems and as active mechanical and chemical sensors [J]. ACS Nano, 2013, 7(11): 9533-9557.

[73] Gao C, Zheng D, Long B, et al. Anti-swelling and adhesive γ-PGA/PVA/PEDOT:PSS/TA composite conductive hydrogels for underwater wearable sensors [J]. European Polymer Journal, 2023, 201: 112590.

[74] Ji Z, Gong D, Zhu M, et al. Mussel-inspired adhesive and anti-swelling hydrogels for underwater strain sensing [J]. Soft Matter, 2024, 20(3): 629-639.

[75] Yu Z, Wu P. Water‐resistant ionogel electrode with tailorable mechanical properties for aquatic ambulatory physiological signal monitoring [J]. Advanced Functional Materials, 2021, 31(51): 2107226.

[76] Pi M, Qin S, Wen S, et al. Rapid gelation of tough and anti-swelling hydrogels under mild conditions for underwater communication [J]. Advanced Functional Materials, 2022, 33(1): 2210188.

[77] Kang B, Yan X, Zhao Z, et al. Dual-sensing, stretchable, fatigue-resistant, adhesive, and conductive hydrogels used as flexible sensors for human motion monitoring [J]. Langmuir, 2022, 38(22): 7013-7023.

[78] Lei H, Zhao J, Ma X, et al. Antibacterial dual network hydrogels for sensing and human health monitoring [J]. Advanced Healthcare Materials, 2021, 10(21): 2101089.

[79] Yi F-L, Guo F-L, Li Y-Q, et al. Polyacrylamide Hydrogel Composite E-skin Fully Mimicking Human Skin [J]. ACS Applied Materials & Interfaces, 2021, 13(27): 32084-32093.

[80] Lin W, Ma G, Wu J, et al. Different in vitro and in vivo behaviors between Poly(carboxybetaine methacrylate) and poly(sulfobetaine methacrylate) [J]. Colloids and Surfaces B: Biointerfaces, 2016, 146: 888-894.

[81] Wu J, Xiao Z, Chen A, et al. Sulfated zwitterionic poly(sulfobetaine methacrylate) hydrogels promote complete skin regeneration [J]. Acta Biomaterialia, 2018, 71: 293-305.

[82] Yin M, Li J, Wang H, et al. Development of anti-bacterial adhesion and antibacterial sulfobetaines modified chitosan/polyvinyl alcohol composite films as packaging materials [J]. International Journal of Biological Macromolecules, 2024, 260: 129465.

[83] Yang C, Pan J, Xie T, et al. Graphite-doped flexible conductive hydrogel temperature-strain sensor [J]. Diamond and Related Materials, 2024, 142: 110789.

[84] Yang P, Zhang J, Zhang R, et al. Natural polyphenolic nanodot-knotted conductive hydrogels for flexible wearable sensors [J]. Green Chemistry, 2024, 26(6): 3329-3337.

[85] 伍绍吉, 袁尘瑜, 汤建新, 等. 基于明胶的抗溶胀双网络水凝胶的制备及性能研究 [J]. 湘潭大学学报, 2022, 44(1): 31-40.

[86] 王冠芸, 黄国清, 肖军霞. O-羧甲基壳聚糖水凝胶的制备及溶胀性研究 [J]. 食品工业, 2013, 34(08): 129-132.

[87] 周智敏, 周享春. 聚乙烯醇/丙烯酸共聚物水凝胶的制备及溶胀性 [J]. 化学研究, 2006, (04): 63-65.

[88] 王裕祥, 冯传良. 羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能 [J]. 材料导报, 2017, 31(10): 41-46.

[89] 崔香梅, 郭祖鹏, 马磊. 羟基化多壁碳纳米管吸附硼的研究 [J]. 应用化工, 2023, 52(08): 2302-2305.

[90] 程尹杰, 张路, 胡仁杰, 等. 氢键型碳纳米管增强自修复复合材料的制备和表征 [J]. 应用化学, 2020, 37(10): 1147-1155.

[91] 翟天亮, 刘双会, 李小龙, 等. 硅烷表面改性碳纳米管/聚乙烯醇弹性气凝胶的制备及其压阻性能研究 [J]. 化工新型材料, 2022, 50(10): 97-101.

[92] 晏哲, 牛晓娟, 李浩然, 等. 基于碳纳米管-聚乙烯醇水凝胶的太阳能驱动界面水蒸发性能研究 [J]. 东北电力大学学报, 2021, 41(06): 17-24.

中图分类号:

 TB333.23    

开放日期:

 2026-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式