- 无标题文档
查看论文信息

论文中文题名:

 大倾角煤层长壁工作面飞矸动力损害与控制    

姓名:

 胡博胜    

学号:

 16103304010    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 081901    

学科名称:

 工学 - 矿业工程 - 采矿工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 大倾角煤层开采    

第一导师姓名:

 伍永平    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-06-07    

论文外文题名:

 Damage Mechanism and Control of Flying-gangue Hazard in Longwall Mining of Steeply Dipping Coal Seams    

论文中文关键词:

 大倾角煤层 ; 飞矸灾害 ; 随机分离体 ; 风险指标 ; 致灾机理    

论文外文关键词:

 Steeply dipping coal seam ; Flying-gangue hazard ; Random detached block ; Risk indicator ; Disaster-causing mechanism    

论文中文摘要:

大倾角煤层指煤层埋藏倾角介于35°~55°的煤层。回采过程中采煤机落煤、端面片、冒煤岩块受煤层倾角影响不能在底板稳定停留,沿倾斜方向向工作面下部滑移、滚动,不断加速形成冲击,在回采空间伤人损物,形成大倾角煤层长壁工作面开采的特有的“飞矸”灾害,严重制约矿井安全高效生产。

通过工作面实测、飞矸块体冲击实验、分离式霍普金森压杆试验(SHPB)、非线性动力学数值模拟相结合的研究手段。回溯了飞矸的物质来源、划分了基本类型、区划了形成范围、统计了发生频率;厘定了不同因素影响下飞矸在回采空间的运动轨迹,阐明了运动过程中动能的累积与耗散机制;揭示了飞矸块体在不同冲击载荷作用下破碎过程中的能量耗散与几何分形特征;还原了不同碰撞方位、入射动能条件下飞矸与挡矸网的碰撞过程,基于挡矸网的力学行为响应实现了飞矸冲击效能评价,为挡矸网参数优化提供了依据。研究结果表明:

采动过程中飞矸的主要物源有:煤壁片帮后脱落的片状煤体、端面冒落的破碎顶板、采煤机截割过程中抛射的煤矸、底板挤压膨出的散状块体。其中,片帮煤体占工作面飞矸来源的66%,端面漏冒煤矸占13%,采煤机截割落煤占16%,底板膨出块体占比较少。初采期间飞矸主要形成于工作面倾斜中部,充分采动后沿工作面全长均有分布,以中部最为集中;发生频率沿倾斜方向呈“中部最高,上部次之,下部最低”区域性分布特征。

飞矸形成后,沿工作面倾斜方向的运动模式分为“一次碰撞”、“一次碰撞—滑移”、“多次回弹”和“多次间歇回弹—滑移” 四种模式;随着煤层倾角的增大、飞矸块体几何尺度的减小,飞矸运动轨迹沿底板法向更加均匀且离散程度减弱;当煤层底板Schmidt硬度由36.0增大至78.2时,飞矸回弹高度由0~3倍升高至3~6倍的飞矸等效直径。

飞矸沿底板滑动、滚动以及自由落体过程中,动能均会随运动历程的增加而累积;当飞矸与底板或设备发生碰撞后其自身积聚的动能部分转化为对底板或设备的冲击能量。飞矸动能在大倾角煤层倾斜采场空间运动历程服从对数正态函数分布;工作面有设备情况下飞矸动能相比无设备时下降了20%,综采设备的存在降低了动能与对数正态函数的相关性,加剧了飞矸运动过程动能的离散程度。

飞矸块体与底板及回采空间设备的碰撞过程与分离式霍普金森压杆试验具有高度的“过程相似性”和“载荷相似性”:高速冲击作用下飞矸破坏分为完好、单一劈裂、粉碎三种模式。破碎后煤岩几何分形维数D与应变率呈对数函数关系。在相同应变率水平下,煤岩强度越小,分形破碎程度越高;破碎煤岩分形维数与煤岩几何尺寸呈负相关关系;几何形态对煤岩块体分形维数与应变率的函数关系形式影响不显著,均呈对数函数。煤质飞矸节理裂隙相对发育,碰撞过程中高速冲击载荷作用时应力波传递路径呈现出弥散性,当传递至煤岩不规则边缘交界处易产生应力集中并诱发破坏,即飞矸外缘轮廓的棱角处易率先发生破坏分离导致球形度逐步增加,几何形态趋于“球”体—飞矸形状“磨圆”现象。

基于飞矸累积损伤效应发展了Hertz经典碰撞理论,构建了飞矸损伤风险指标Ē(碰撞前动能)和ĒCOR,BE(飞矸与设备碰撞能量恢复系数)关系模型。Ē越大,ĒCOR,BE越小,相应地飞矸损伤风险越大;反之亦然。飞矸损伤风险指标随着影响因素的不同呈现差异,Ē随着煤层倾角和底板Schmidt硬度的增加而增加,随着飞矸等效直径增大近似呈指数函数增加。ĒCOR,BE随着飞矸等效直径和煤层倾角的增大单调递减,随着底板Schmidt 硬度的增大呈先减小后增大的非线性趋势。但ĒCOR,BE值受以上因素的影响程度较低,变化幅度较小。

基于以上研究基础,提出了以“上部飞矸着重轨迹阻拦、中部飞矸强调源头治理、下部飞矸预防二次衍生”为目标的大倾角工作面沿倾向分区控制原则;以“运动阶段多次碰撞梯阶耗能、碰撞前阶段飞矸与设备柔性隔断阻滞、碰撞时高强材料抑损抗变”为手段的分阶段控制对策;以“诱导运动模式,限制回弹高度,调控耗能比例”为核心的全过程控制技术,并基于此提出了不同飞矸冲击条件下的挡矸网强度、密度参数优化方案。

以大倾角煤层长壁大采高工作面飞矸灾害控制为研究目标,围绕“飞矸的形成来源、分布规律、运动机制、致灾机理、损害效果评价”等问题展开系统研究,阐明了飞矸动力灾害的控制原则与方法。研究成果可为大倾角煤层开采飞矸灾害防控实践提供科学指导,具有一定的理论与现实意义。

论文外文摘要:

The steeply dipping coal seam (SDCS) involves a coal seam with an inclination that varies from 35˚ to 55˚. Blocks may be formed by the cutter, coal wall spall, and fall rock of the roof during the mining process, they cannot stay on the floor stably because of seam inclination. The detached blocks slipping and rolling to the lower part of the working face, accelerating continuously to form impacts, lead to many fatalities for coal miners and the fully-mechanized equipment in the longwall workings. This dynamic phenomenon is referred to as the “flying gangue” hazard, which is a unique disaster in longwall mining of the SDCSs.

This study was carried out through the combination of on-site investigation, small-scale block impact test, Split Hopkinson Pressure Bar test (SHPB), and nonlinear dynamic numerical simulation. First of all, the provenances of the flying-gangue hazard were traced, the basic types for the flying-gangue hazard were divided, the block detachment range was divided and the occurrence frequency was counted. Secondly, the trajectory of the flying-gangue under different influencing factors was determined, and the accumulation and dissipation of block kinetic energy during the moving process was clarified. The energy dissipation and fractal characteristics of the block under different loading rates were revealed. The collision processes between the flying-gangue and the flexible net under different scenes was examined. Finally, the efficiency evaluation for the flying-gangue is realized based on the mechanical behavior response of the net, which provides a basis for parameters optimization of the flexible net. The main conclusions are as follows:

Main provenance for the flying-gangue hazard includes the coal wall spall, roof fall, coal cutting and the floor squeezing. Among them, the coal wall spall accounts for 66% of the total blocks, the roof fall accounts for 13%, the coal cutting accounts for 16%, and the floor squeezing accounts for the least proportion. During the initial mining period, flying-gangues are mainly formed in the middle part of the working face. It can distribute along the full length of the working face where the middle part is the most concentrated after fully mining. The flying-gangue occurrence frequency shows a regional distribution characteristic, of which the highest frequency occurring in the middle part of the working face.

The motion mode of a block (flying-gangue) moving from the upper region to the lower region can be divided into one collision mode, one collision and slipping mode, multiple collisions mode, and multiple intermittent collisions and slipping mode.  The normal rebound effect decreased as the seam angle increased as well as the block size increased. The rebound height concentration area increased from 0 to 3 times to 3 to 6 times the equivalent diameter of the block, the longwall floor Schmidt hardness increasing from 36.0 to 78.2. Along the direction of the working face inclination, the dispersion degree of flying-gangue trajectory is positively correlated with seam inclination and floor hardness, but negatively correlated with the block size.

The accumulation, dissipation and release of flying gangue energy run through its entire propagation process. For a single block, the kinetic energy of the flying-gangue is closely related to its motion. The kinetic energy of flying-gangue increases in sliding, rolling, and free fall, and the energy decreases when it collides with the floor and equipment. Among these five motion types, the impact of blocks on the equipment is one of the main factors that affect the equipment damage. The statistics of block energy show that the flying-gangue kinetic energy obeys a log-normal distribution based on many blocks in small-scale impact tests. The collision process between the flying-gangue and the floor or the mining equipment has a highly “process similarity” and “load similarity” with the SHPB test, and thus the fractal laws for flying-gangue fragmentation can be carried out. The failure mode of coal-rock under high-speed impact can be divided into three types: intact, single crack, and severe fragmentization. Fractal dimension D the coal specimen has a logarithmic relationship with the strain rate. Coal with lower uniaxial compression strength is more severely broken and has a larger fractal dimension D under the same strain rate conditions. The larger the coal size, the smaller the fractal dimension D is. The fractal dimension D of coal has a logarithmic relationship with strain rate regardless of whether the shape of the specimen is a disk or a cube.

The “shape-rounded” phenomenon of the block (flying-gangue) is prone to appear during the movement. This phenomenon can be attributed to three parts: First, because the impact orientation between the block and slope or equipment is not strictly perpendicular compared with a drop test, the stress wave propagation within the specimen is dispersed to some extent during an impact. Second, because the block shape is not strictly regular, the stress is easily concentrated on a non-smooth surface. Finally, due to local shear failure in the contact area, a damaged area is formed. The above reasons also explain the shape-spheroidality of flying-gangue after a long-distance propagation.

Ē and ĒCOR,BE are risk indicators that take into account the cumulative damage effect of flying-gangues. Ē increases linearly with the increase of the inclination of the floor and the Schmidt hardness of longwall floor. The approximate exponential function increases as the equivalent diameter of the flying-gangue increases. ĒCOR,BE decrease monotonously with the increase of the equivalent diameter of the flying-gangue and the longwall floor inclination and increase by a quadratic polynomial with the increase of the longwall floor Schmidt hardness. In general, the change of ĒCOR, BE is not obvious. There is a negative correlation between ĒCOR, BE and Ē.

The basic control principles, measures, and methods for the control of flying-gangue hazards were proposed based on the above research. The sub-regional control principle is “For the flying-gangue occurred in the upper section of working face, trajectory obstruction should be focused; For the flying-gangue occurred in the middle section of working face, source control should be accepted, and for the flying-gangue occurred in the lower section of working face, the secondary derivation should be forbidden”. The principle based on a different phase of flying-gangue is “Increasing the collisions of block-to-floor, avoiding the contact between the block and equipment, and improving the Schmidt Hardness of materials”. The principle based on the different motion of flying-gangue is “Taking measures to change the motion mode, forcibly reducing the rebound trajectory of flying-gangue, increasing the proportion of energy consumption during an impact”.

Taking flying-gangue hazard in SDCS with a large mining height as the object, the flying-gangue hazard control mitigations with consideration of site-specific flying-gangue characteristics were proposed based on field investigation and evaluating risk indicators. This study provides a method for risk assessment and for determining the principles of protective systems in underground steep coal seams.

参考文献:

[1] 伍永平,贠东风,周邦远.大倾角煤层综采基本问题研究[J].煤炭学报,2000, 25(5):465-468.

[2] 伍永平,胡博胜,王红伟,等.大倾角煤层长壁开采工作面飞矸致灾机理研究[J]. 煤炭学报,2017,42(09):2226-2234.

[3] 国家能源局. 能源发展“十三五”规划[R]. 北京: 国家发改委, 2016.

[4] R. D. Singh. Principles and Practices of Modern Coal Mining[M]. Glencoe: McGraw-Hill, 1997.

[5] 伍永平,刘孔智,贠东风,等.大倾角煤层安全高效开采技术研究进展[J].煤炭学报,2014,39(08):1611-1618.

[6] 李佩全, 李俊斌. 淮南矿区大倾角煤层采煤方法初探[J]. 煤矿开采, 1999, (02):3-5.

[7] 李建民.开滦复杂煤层综合机械化开采技术[M]. 北京:煤炭工业出版社, 2007.

[8] 周英. 伪斜短壁采煤法应用与评价[J]. 中州煤炭, 1990:38-40.

[9] 李先才, 刘天应, 张瑞鹤. 大倾角煤层分段走向密集采煤法[J]. 矿山压力与顶板管理, 1990:30-34.

[10] 杨方. 伪斜小巷多短壁采煤方法应用与探讨[J]. 煤矿开采, 1992, (03):38-42.

[11] 伍永平,东风,周邦远,等.绿水洞煤矿大倾角煤层综采技术研究与应用[J].煤炭科学技术,2001, 29(04):30-32.

[12] 华道友,平寿康.大倾角煤层矿压显现立体相似模拟[J]. 采矿与安全工程学报, 1999, 4(03):97-100.

[13] 黄建功,平寿康.大倾角煤层采面顶板岩层运动研究[J]. 采矿与安全工程学报 2002, 19(02): 19–21.

[14] 黄建功. 大倾角煤层采场顶板运动结构分析[J]. 中国矿业大学学报, 2002, 31(05):74-77.

[15] 周邦远,伍厚荣,聂春辉,等. 绿水洞煤矿大倾角煤层综采开采实践[J]. 煤炭科学技术2002, 30(9):21-23.

[16] Zhang Bei, Cao Shenggen.Study on first caving fracture mechanism of overlying roof rock in steep thick coal seam[J]. International Journal of Mining Science and Technology, 2015,25(01):133-138.

[17] Deng Xuejie, Zhang Jixiong, Kang Tao, et al. Strata behavior in extra-thick coal seam mining with upward slicing backfilling technology[J]. International Journal of Mining Science and Technology,2016,26(04):587-592.

[18] Yun Dongfeng, Liu Zhu, Cheng Wendong, et al. Monitoring strata behavior due to multi-slicing top coal caving longwall mining in steeply dipping extra thick coal seam[J]. International Journal of Mining Science and Technology,2017,27(01):179-184.

[19] 伍永平,解盘石,杨永刚,等.大倾角煤层群开采岩移规律数值模拟及复杂性分析[J]. 采矿与安全工程学报,2007, 24(04): 391–395.

[20] 杨科,何祥,刘帅,等.近距离采空区下大倾角“三软”厚煤层综采片帮机理与控制[J].采矿与安全工程学报,2016,33(04):611-617.

[21] 王家臣,魏炜杰,张锦旺,等.急倾斜厚煤层走向长壁综放开采支架稳定性分析[J].煤炭学报,2017,42(11):2783-2791.

[22] Hu Shaoxuan, Ma Liqiang, Guo Jinshuai, et al. Support-surrounding rock relationship and top-coal movement laws in large dip angle fully-mechanized caving face[J]. International Journal of Mining Science and Technology,2018,28(3):533-539.

[23] 罗生虎,伍永平,解盘石,等.大倾角大采高综采工作面支架受载与失稳特征分析[J].煤炭学报,2018,43(12):3320-3328.

[24] 王红伟,伍永平,解盘石.大倾角煤层开采覆岩应力场形成及演化特征[J].辽宁工程技术大学学报(自然科学版),2013,32(08):1022-1026.

[25] 王红伟,伍永平,解盘石,等.大倾角采场矸石充填量化特征及覆岩运动机制[J].中国矿业大学学报,2016,45(05):886-892+922.

[26] 王金安,张基伟,高小明.大倾角厚煤层长壁综放开采基本顶破断模式及演化过程(Ⅰ)-初次破断[J].煤炭学报,2015,40(6):1353-1360.

[27] 王金安,张基伟,高小明.大倾角厚煤层长壁综放开采基本顶破断模式及演化过程(Ⅱ)-周期破断[J].煤炭学报,2015,40(08):1737-1745.

[28] 伍永平.大倾角煤层开采“顶板-支护-底板”系统稳定性及动力学模型[J].煤炭学报,2004(05):527-531.

[29] 伍永平.大倾角煤层开采“顶板-支护-底板”系统的动力学方程[J].煤炭学报,2005(06):685-689.

[30] 伍永平.大倾角采场“顶板-支护-底板”系统动力学方程求解及其工作阻力的确定[J].煤炭学报,2006(06):736-741.

[31] 解盘石,伍永平,王红伟,等.大倾角煤层长壁采场倾斜砌体结构与支架稳定性分析[J].煤炭学报,2012,37(08):1275-1280.

[32] 伍永平,王红伟,解盘石.大倾角煤层长壁开采围岩宏观应力拱壳分析[J].煤炭学报,2012,37(04):559-564.

[33] http://mobile.zgkyb.com/content/2019-12/02/048800.html

[34] http://www.coalren.org/wapbencandy.php?fid=278&id=30004

[35] Wang Jin-an, Jiao Junling. Criteria of support stability in mining of steeply inclined thick coal seam[J]. International Journal of Rock Mechanics & Mining Sciences, 2016, (82):22-35.

[36] 李方立,伍永平,陈建杰,等.大倾角煤层走向长壁大采高综采技术研究[R].乌鲁木齐:新疆焦煤集团,西安:西安科技大学,2013.

[37] 员东风,伍永平.大倾角煤层综采工作面调伪仰斜原理与方法[J].辽宁工程技术大学学报(自然科学版),2001(02):152-155.

[38] 伍永平,皇甫靖宇,解盘石,等.基于大范围岩层控制技术的大倾角煤层区段煤柱失稳机理[J].煤炭学报,2018,43(11):3062-3071.

[39] Deng Yuehua, Wang Shouquan. Feasibility analysis of gob-side entry retaining on a working face in a steep coal seam[J]. International Journal of Mining Science and Technology,2014,24(04):499-503.

[40] Long Fan, Jiangcheng Zhong, Bin Han, et al. Sensitivity Analysis of Factors Affecting Asymmetric Deformation of Roadways in Steep Inclined Coal Seam[J]. Advanced Materials Research, 707(2013):255-260.

[41] 伍永平,贠东风,解盘石,等.大倾角煤层长壁综采:进展、实践、科学问题[J].煤炭学报,2020,45(01):24-34.

[42] BODI J. Safety and technological aspects of man less exploitation technology for steep coal seams[A]. 27th International Conference of Safety in Mines Research Institutes [C].1997:955-965.

[43] KULAKOV V N.Stress state in the face region of a steep coal bed[J]. Journal of Mining Science ( English Translation ),1995(9):161-168.

[44] SINGH T N, GEHI L D. State behavior during mining of steeply dipping thick seams-A case study[A]. Proceedings of the International Symposium on Thick Seam Mining[C]. Dhanbad,1993:311-315.

[45] Syd S. Peng. Longwall Mining[M]. Morgantown: Department of Mining Engineering West Virginia University,2006.

[46] Chris Ross, David Conover, Jake Baine. Highwall mining of thick, steeply dipping coal–A case study in geotechnical design and recovery optimization[J]. International Journal of Mining Science and Technology,2019,29(05):777-780.

[47] 樊运策.法国倾斜煤层综采工作面的经验[J].煤炭科学技术,1982, (08):50-51.

[48] Mrig,G. C, Sinha,A.N.. Proposing a new method for thick,steep and gassy XV seam of Sudamdih[M]. International symposium on thick seam mining: problem and issues(ISTS'92),1992. 445-456. (India)

[49] Mathur, R.B., Jain, D. K., Prasad, B. Extraction of thick and steep coal seams a global overview[M]. 4th Asian mining. Exploration, exploitation, environment.475-488. Nov.24-28, 1993. (India).

[50] Proyavkin,E. T.. New nontraditional technology of working thin and steep coal seams[M]. Ugol Ukrainy. 1993(3).2-4. (Russia)

[51] Ongallo Acedo, J.M., Femandez Villa, A., Lglesias Alvarez, J. L. Experience with integrated exploition systems in narrow, very steep seams in HUNOSA[M]. 8th international congress on mining and metalurgy, Vol.3. 1-23.Oct.16-22,1998.(Spain)

[52] 张建.大倾角中厚煤层综采面防飞矸液压支架的研究与应用[J].科技创新导报,2014,(16):24.

[53] 曹树刚,李毅,雷才国,等.采煤工作面轻型架间挡矸装置究[J].采矿与安全工程学报,2013,30(1):51-56.

[54] 楚开万,陈朝鲜.急倾斜综采工作面煤矸飞窜防护工艺及装置的研究与应用[J].煤矿机械,2017,38(06):79-81.

[55] 李守瑸,申兢,魏利朋,等.泉店煤矿11采区运输巷防飞矸技术[J].煤矿机械,2015,36(03):121-122.

[56] 安彦海.大倾角综采工作面飞矸伤人事故的预防[J].山东煤炭科技,2015,(10):41-42+44.

[57] 石汝银,李增峰,管伟明.大倾角工作面防飞矸技术措施[J].山西焦煤科技,2009(1):4-6.

[58] 牛军, 鲍杰.“大倾角”综采工作面的管理[J].煤炭技术,2009,28(11):62-63.

[59] 黄国春,伍永平,廖由俊,等.大倾角煤层挡矸防护装置[P].中国专利: 200920140119.3, 2010-02-10.

[60] 伍永平,胡博胜,解盘石,等.一种智能化控制的大倾角煤层飞矸防护系统[P].中国专利: 201621467511.5, 2016-08-29.

[61] 吕文胜,李松强.大倾角综采工作面煤壁片帮原因分析[A].第六届天山地质矿产资源学术讨论会论文集[C].乌鲁木齐:中国地质学会,2008:926-929.

[62] 刘明申,杨峰,马怀利等.大倾角采煤工作面防飞矸设施的研究与应用[J].山东煤炭科技,2008,(5):62-63.

[63] 李俊斌,单付丰,何海荣,等.淮南矿区急倾斜厚煤层综合机械化开采技术[J].煤炭科学技术,2013,41(11):39-46.

[64] 张进忠,赵克俭.大倾角超长综采面飞矸事故机理分析及预防对策[J].科技创新导报,2011,(22):128.

[65] 刘明,伍永平,徐刚.大倾角煤层开采飞矸运动规律研究[J]. 煤炭技术,2016,35(07):17-18.

[66] 伍永平,胡博胜,解盘石,等.大倾角长壁工作面飞矸灾害区域治理技术[J]. 煤炭科学技术,2017,45(02):1-5.

[67] Yongping Wu, Bosheng Hu, Ding Lang, et al. Risk assessment approach for rockfall hazards in steeply dipping coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2021,138: 1-17.

[68] Ferrari, F., Giacomini, A., Thoeni, K. Qualitative Rockfall Hazard Assessment: A Comprehensive Review of Current Practices[J]. Rock Mechanics and Rock Engineering, 2016,49, 2865–2922.

[69] 刘明,李宽,伍永平,等.基于模糊综合评价法的大倾角煤层飞矸安全评价及应用[J].煤矿安全,2020,51(02):244-247.

[70] 刘明,伍永平,耿霜,等.大倾角煤层开采飞矸威胁等级评估[J/OL].煤炭学报:1-8[2020-07-27].

[71] 伍永平,胡博胜,解盘石,等.基于支架-围岩耦合原理的模拟试验液压支架及测控系统研制与应用[J].岩石力学与工程学报,2018,37(02):374-382.

[72] B. Yu, J. Zhao, H. Xiao. Case study on overburden fracturing during longwall top coal caving using microseismic monitoring[J]. Rock Mechanics and Rock Engineering, 50 (2017): 507-511.

[73] HUBBER K M, WILLIS D G. Mechanics of hydraulic fracturing[J]. Petroleum Science and Technology, 1957,210:153-166.

[74] ZHANG Xiangxiang, WANG Jianguo, GAO Feng, et al. Impact of water and nitrogen fracturing fluids on fracturing initiation pressure and flow pattern in anisotropic shale reservoirs[J]. Computers and Geotechnics, 81,2017:59-76.

[75] LI Quangui, LIN Baiquan, ZHAI Cheng, et al. Variable frequency of pulse hydraulic fracturing for improving permeability in coal seam[J]. International Journal of Mining Science and Technology, 2013, 23(6):847-854.

[76] 王红伟,伍永平,解盘石,等.大倾角煤层长壁大采高工作面煤壁稳定性的采厚效应[J].采矿与安全工程学报,2018,35(01):64-70.

[77] 孟超. 大倾角大采高工作面煤壁失稳机理及控制[D].中国矿业大学,2013.

[78] Qiangling Yao, Xuehua Li, Boyang Sun, et al. Numerical investigation of the effects of coal seam dip angle on coal wall stability[J]. International Journal of Rock Mechanics and Mining Sciences,2017,100: 298-309

[79] 郭卫彬. 大采高工作面煤壁稳定性及其与支架的相互影响机制研究[D].中国矿业大学,2015.

[80] 刘孔智.大倾角大采高长壁综采工作面煤壁稳定性研究与应用[D].西安科技大学,2017.

[81] 王红伟,伍永平,焦建强,等.大倾角煤层大采高工作面倾角对煤壁片帮的影响机制[J].采矿与安全工程学报,2019,36(04):728-735+752.

[82] 杨敬轩,刘长友,吴锋锋,等.煤层硬夹矸对大采高工作面煤壁稳定性影响机理研究[J].采矿与安全工程学报,2013,30(06):856-862.

[83] 王家臣,王兆会,孔德中.硬煤工作面煤壁破坏与防治机理[J].煤炭学报,2015,40 (10):2243-2250.

[84] 孔德中,杨胜利,高林,等.基于煤壁稳定性控制的大采高工作面支架工作阻力确定[J].煤炭学报,2017,42(03):590-596.

[85] 方新秋, 何杰, 李海潮. 软煤综放面煤壁片帮机理及防治研究[J].中国矿业大学学报,2009,38(05):640-644.

[86] 张浩, 伍永平. 大倾角煤层长壁大采高采场煤壁片帮机制[J].采矿与安全工程学报,2019,36(02):331-337.

[87] 伍永平, 郎丁, 解盘石. 大倾角软煤综放工作面煤壁片帮机理及致灾机制[J].煤炭学报,2016,41(08):1878-1884.

[88] 谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.

[89] 谢和平. 岩石力学导论[M]. 北京:科学出版社, 1996:168–261.

[90] 刘军忠, 许金余, 吕晓聪, 等.冲击压缩荷载下角闪岩的动态力学性能试验研究[J].岩石力学与工程学报,2009,28(10):2113-2120.

[91] 贾帅龙, 王志亮, 巫绪涛, 等.不同冲击荷载下花岗岩力学和能量耗散特性[J].哈尔滨工业大学学报,2020,52(02):67-74.

[92] 于水生, 卢玉斌, 朱万成, 等.SHPB试验中花岗岩破坏程度与能量耗散关系分析[J].东北大学学报(自然科学版),2015,36(12):1733-1737.

[93] 平琦, 骆轩, 马芹永, 等. 冲击载荷作用下砂岩试件破碎能耗特征[J].岩石力学与工程学报,2015,34(S2):4197-4203.

[94] 张文清, 石必明, 穆朝民. 冲击载荷作用下煤岩破碎与耗能规律实验研究[J].采矿与安全工程学报,2016,33(02):375-380.,

[95] 谢和平, 高峰, 鞠杨,等.深地煤炭资源流态化开采理论与技术构想[J].煤炭学报,2017,42(03):547-556.

[96] 孔祥国. 动载荷下含瓦斯煤动力学行为及瓦斯放散特征研究[D].中国矿业大学,2018.

[97] 方正峰,邹飞,唐旭. 冲击荷载作用下灰岩的能量耗散及损伤演化规律研究[J].地下空间与工程学报,2020,16(02):475-483.

[98] 刘晓辉,张茹,刘建锋.不同应变率下煤岩冲击动力试验研究[J].煤炭学报,2012,37(09):1528-1534.

[99] 江红祥,杜长龙,刘送永.冲击速度对煤岩破碎能量和粒度分布的影响[J].煤炭学报,2013,38(04):604-609.

[100] 王登科,刘淑敏,魏建平,等.冲击破坏条件下煤的强度型统计损伤本构模型与分析[J].煤炭学报,2016,41(12):3024-3031.

[101] 赵洪宝,王中伟,张欢,等.冲击荷载对煤岩内部微结构演化及表面新生裂隙分布规律的影响[J].岩石力学与工程学报,2016,35(05):971-979.

[102] 李成杰,徐颖,张宇婷,等.冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J].岩石力学与工程学报,2019,38(11):2231-2241.

[103] 苗磊刚,牛园园,石必明.不同应变率下岩-煤-岩组合体冲击动力试验研究[J].振动与冲击,2019,38(17):137-143.

[104] 刘少虹,毛德兵,齐庆新,等.动静加载下组合煤岩的应力波运动机制与能量耗散[J].煤炭学报,2014,39(S1):15-22.

[105] 孔祥国,王恩元,李树刚,等.震动载荷下含瓦斯煤动力学特征[J].煤炭学报,2020,45(03):1099-1107.

[106] 杜秋浩,刘晓丽,王维民,等.超临界CO2-水-煤相互作用后冲击载荷下煤的动态响应[J].煤炭学报,2019,44(11):3453-3462.

[107] 徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1989.

[108] 高峰,谢和平,赵鹏.岩石块度分布的分形性质及细观结构效应[J].岩石力学与工程学报,1994(03):240-246.

[109] XIE H P, SANDERSON D J. Fractal kinematics of crack propagation in geomaterials[J]. Journal of China University of Mining and Technology, 1995, 5(1): 1-8.

[110] 祝文化,明锋,宋成梓.爆破荷载作用下岩体损伤破坏的分形研究[J].岩土力学,2011,32(10):3131-3135.

[111] 隋皓月,胡瑞林,高玮,等.液态CO2瞬变致裂的岩体块度快速获取与表征[J].哈尔滨工业大学学报,2019,51(10):106-114.

[112] 高峰,谢和平,巫静波.岩石损伤和破碎相关性的分形分析[J].岩石力学与工程学报,1999,18(05):3-5.

[113] 邓涛,杨林德,韩文峰.加载方式对大理岩碎块分布影响的试验研究[J].同济大学学报(自然科学版),2007,35(01):10-14..

[114] 刘石,许金余,白二雷,等.基于分形理论的岩石冲击破坏研究[J].振动与冲击,2013,32(05):163-166.

[115] 刘瑜,周甲伟,杜长龙.煤块冲击破碎粒度分形特征[J].振动与冲击,2013,32(03):18-21+28.

[116] 何满潮,杨国兴,苗金丽,等.岩爆实验碎屑分类及其研究方法[J].岩石力学与工程学报,2009,28(08):1521-1529.

[117] 刘送永,杜长龙,李建平.煤截割粒度分布规律的分形特征[J].煤炭学报,2009,34(07):977-982.

[118] 滕腾,高峰,高亚楠,等.循环气压下原煤微损伤及其破碎特性试验研究[J].中国矿业大学学报,2017,46(02):306-311.

[119] 李杨杨,张士川,文志杰等.循环载荷下煤样能量转化与碎块分布特征[J].煤炭学报,2019,44(05):1411-1420.

[120] 自适应滤波、预测与控制[M]. 科学出版社, (澳)古德温(Goodwind,G.C.),孙贵生著, 1992.

[121] 刘鹏飞. 卡尔曼滤波在运动目标跟踪问题中的研究与应用[D].哈尔滨工业大学,2008.

[122] Japan Road Association (JRA). Rockfall Handbook[S]. Tokyo: Maruzen Publisher, 1983. p. 1–359 (in Japanese).

[123] Chau K, Wong R, Wu J. Coefficient of restitution and rotational motions of rockfall impacts[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(1):69-77.

[124] Wu, Y.P., Hu, B.S., Xie, P.S. A New Experimental System for Quantifying the Multidimensional Loads on an on-Site Hydraulic Support in Steeply Dipping Seam Mining[J]. Exprimental Techniques, 2019,43(05), 571–585.

[125] K.T. Chau, X.X. Wei, R.H.C. Wong, et al. Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses[J]. Mechanics of materials, 2000,32(9):543-554.

[126] Asteriou P, Tsiambaos G. Effect of impact velocity, block mass and hardness on the coefficients of restitution for rockfall analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2018,106:41–50.

[127] 黄文恺. 冲击应力—应变仪关键技术研究[D].广州大学,2017.

[128] 李传净. 花岗岩在冲击作用下的力学特性及破坏形态研究[D].西安科技大学,2018.

[129] Zhang Q B , Zhao J . A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials[J]. Rock Mechanics and Rock Engineering, 2014, 47(4):1411-1478.

[130] Frew D, Forrestal M, Chen W. A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials[J]. Experimental Mechanics, 2001,41(1):40–46.

[131] Frew D, Forrestal M, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2002,42(1):93–106.

[132] Gerlach R, Sathianathan SK, Siviour C, et al. A novel method for pulse shaping of split Hopkinson tensile bar signals[J]. International Journal of Impact Engineering, 2011,38(12):976–980.

[133] Christensen R, Swanson S, Brown W. Split-Hopkinson-bar tests on rock under confining pressure[J]. Experimental Mechanics, 1972,12(11): 508–513.

[134] Ramesh KT. High rates and impact experiments. In: Sharpe WN (ed) Springer handbook of experimental solid mechanics[M]. Springer, US, 2008, 929–960.

[135] Li X B, Lok T S, Zhao J. Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanics and Rock Engineering, 2005,38(1):21–39.

[136] Cai M, Kaiser PK, Suorineni F, et al. A study on the dynamic behavior of the Meuse/Haute-Marne argillite[J]. Phys Chem Earth, 2007,32(8–14):907–916.

[137] 李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994:22-24.

[138] 王礼立.应力波基础[M].北京:国防工业出版社,2010:122-124.

[139] Asteriou P, Saroglou H, Tsiambaos G. Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 54(2012):103-113.

[140] J. Subero, M. Ghadiri, Breakage patterns of agglomerates[J], Powder Technology, 120 (2001): 232–243.

[141] Y. Ye, Y. Zeng, K. Thoeni, et al. An Experimental and Theoretical Study of the Normal Coefficient of Restitution for Marble Spheres[J], Rock Mechanics and Rock Engineering, 52 (2019):1705–1722.

[142] 崔廉明,石少卿,汪敏,等.多位置分布配重下引导式落石缓冲系统冲击防护性能研究[J].岩石力学与工程学报,2019,38(02):332-342.

[143] 黄润秋,刘卫华.基于正交设计的滚石运动特征现场试验研究[J].岩石力学与工程学报,2009,28(05):882-891.

[144] Bourrier F, Stéphane Lambert, Baroth J. A Reliability-Based Approach for the Design of Rockfall Protection Fences[J]. Rock Mechanics and Rock Engineering, 2015, 48(1): 247–259.

[145] 周晓宇, 陈艾荣, 马如进. 滚石柔性防护网耗能规律数值模拟[J]. 长安大学学报(自然科学版), 2012,32(06):59-66.

[146] C. Gentilini, L. Govoni, S. De Miranda, et al. Ubertini, Three-dimensional numerical modelling of falling rock protection barriers[J]. Computer. Geotechniques, 44 (2012): 58–72.

[147] 王平,崔建忠.金属塑性成形力学.北京:冶金工业出版社,2006.

中图分类号:

 TD771    

开放日期:

 2023-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式