论文中文题名: | 基于区块链的数字资产保护技术研究 |
姓名: | |
学号: | 20208088026 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083500 |
学科名称: | 工学 - 软件工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 区块链安全 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-18 |
论文答辩日期: | 2023-06-05 |
论文外文题名: | The Research on Digital Asset Protection Technology Based on Blockchain |
论文中文关键词: | |
论文外文关键词: | Blockchain ; Digital Asset ; Privacy Access Control ; Modular Decision Forest ; Fraud Detection |
论文中文摘要: |
区块链技术广泛应用于数字资产和电子交易等行业。针对数字资产中的数据隐私性和数据资产交易的资金安全性难以保证的问题,本文提出基于零知识证明的区块链数字资产隐私访问策略和模块化决策森林的区块链交易欺诈检测模型。在数据层解决了用户的隐私信息被第三方泄漏风险和权限控制传递不明确的问题;在应用层面解决数字资产容易遭受不法节点的欺诈,导致财产损失的问题。本文主要研究内容如下: 第一,本文提出一种基于零知识证明的区块链数字资产隐私访问策略。此策略利用零知识证明思想对原始数据确权、存证与隐私保护,增强数据的可信度,保证数字资产的可信性和可用性。该访问策略包括用户注册、数据上传和验证、数据处理和访问控制三个阶段。用户注册阶段,以数字签名来明确所属关系,以避免将个人信息与账户相关联,从而降低关联泄露风险。在数据上传和验证阶段,采用 BGN(Boneh-Goh-Nissim, BGN)算法对原始数据进行加密,并用零知识证明验证数字资产的所有者。在访问控制阶段,为解决数据细粒度共享问题,提出一种基于 Shamir 的零知识密钥分配方案,并提高信息分割部分的安全性和个人隐私信息管理的效率。并从一致性分析、隐私性分析证明了所提系统的安全性。最终实验分析该系统的各个参数对运行时间的影响。 第二,针对区块链数字资产交易欺诈检测的有效性与精确性不足的问题,本文提出模块化决策森林的区块链交易欺诈检测模型。模块化决策森林是基于峰值密度快速模糊聚类算法将数据分解为多组小数据,每组数据都将由一个决策树学习。其次,模型根据隶属度确定模糊边界,模糊边界样本被添加到一组决策树学习。对于分类难度较大的样本采用多次划分,由父决策树与多个子决策树共同学习。最后,分别采用数字图像数据集 Optdigits、虚拟货币交易数据集 Elliptic 和 Ethereum,验证模块化决策森林模型的性能,并与图神经网络、逻辑回归等模型相对比。实验结果表明,模块化决策森林模型在精确率、召回率、F1-score 均有大幅提升,增幅范围分别是 1.2~7%、3.6~26.2%和 2.6~17.5%。 |
论文外文摘要: |
The blockchain technology has been widely applied in industries such as digital assets and electronic transactions. To address the issues of data privacy and fund security in digital asset transactions, this paper proposes a blockchain transaction fraud detection model based on zero-knowledge proof for privacy access to blockchain digital assets and a modular decision forest. The user's privacy risk of being leaked by third parties and the issue of unclear permission control in data transmission are addressed at the data level. Secondly, the problem of digital assets being susceptible to fraudulent nodes leading to property loss is resolved. The main research contents of this paper are as follows: Firstly, a privacy access strategy for blockchain digital assets based on zero-knowledge proof is proposed. On one hand, by using the idea of zero-knowledge proof for the rightful claim, certification, storage, and privacy protection of original data, the credibility of data is enhanced, and the availability, credibility, and invisibility of digital assets are ensured. This access strategy includes three stages: user registration, data uploading and validation, and data processing and access control. In the user registration stage, digital signatures are used to confirm the relationship and avoid associating personal information with the account to reduce the risk of associated disclosure. In the data uploading and validation stage, the BGN algorithm is used to encrypt the original data, and zero-knowledge proof is used to verify the owner of the digital asset. In the access control stage, a zero-knowledge key distribution scheme based on Shamir is proposed to solve the problem of fine-grained data sharing, and the security of the information partition and the efficiency of personal privacy information management are improved. The security of the proposed system is demonstrated through consistency analysis and privacy analysis. Finally, the experimental analysis investigates the impact of various parameters of the system on the operating time. Secondly, to address the issue of low effectiveness and accuracy of blockchain digitalasset transaction fraud detection, this dissertation proposes a modular decision forest-based blockchain transaction fraud detection model. The modular decision forest is based on peak density fast fuzzy clustering to decompose data into multiple small groups of data, each of which is learned by a decision tree. Then, the model determines the fuzzy boundary according to the membership degree, and the fuzzy boundary samples are learned by an additional decision tree. For samples with difficulty in classification, a multiple division strategy is adopted, in which the parent decision tree and multiple child decision trees learn together. Finally, the performance of the modular decision forest model is verified using digital image datasets such as Optdigits, virtual currency transaction datasets such as Elliptic, and Ethereum, and is compared with other models such as graph neural networks, logistic regression, and random forests. Experimental results show that the modular decision forest model significantly improves precision, recall, and F1-score, with improvements ranging from 1.2% to 7%, 3.6% to 26.2%, and 2.6% to 17.5%, respectively |
参考文献: |
[1] 中共中央办公厅 国务院办公厅印发,关于推进实施国家文化数字化战略的意见 [J]. 国家图书馆学刊, 2022, 31(04): 49. [2] 伍湘陵, 王思怡. 论数字资产保护的重要性 [J]. 中国科技产业, 2021, (09): 60–61. [10] 倪炀. 数字资产的产权保护对高质量发展的影响 [D]. 中南财经政法大学, 2021. [17] 董贵山,陈宇翔,范佳,郝尧,李枫.区块链应用中的隐私保护策略研究 [J]. 计算机科学, 2019, 46(05): 29–35. [28] 周桐. 基于区块链技术的可信数据通证化方法的研究与应用 [D]. 中国科学技术大学, 2019. [42] 高见, 孙懿, 王润正, 袁得嵛. 基于机器学习的浏览器挖矿检测模型研究 [J]. 计算机工程与应用, 2021, 57(22): 125–130. [43] 黄彦春. 基于神经网络的快速模型预测控制算法研究 [D]. 浙江大学,2018. [44] Kwon J. Tendermint: Consensus without mining [J]. Draft v. 0.6, fall, 2014, 1(11): 1–11. [53] 贺东博. 基于同态加密和零知识证明的区块链隐私保护研究 [D] .华中科技大学, 2019. [64] 李莉,周斯琴,刘芹,何德彪.基于区块链的数字版权交易系统 [J]. 网络与信息安全学报, 2018, 4(07): 22–29. [65] 袁勇, 王飞跃. 区块链技术发展现状与展望 [J]. 自动化学报, 2016, 42(04): 481-494. [66] 田国华, 胡云瀚, 陈晓峰. 区块链系统攻击与防御技术研究进展 [J]. 软件学报, 2021, 32(05): 1495–1525. [67] 李素,宋宝燕,李冬,王俊陆.面向金融活动的复合区块链关联事件溯源方法 [J]. 计算机科学, 2022, 49(03): 346–353. [68] 檀超,张静宣,王铁鑫,岳涛.复杂软件系统的不确定性 [J].软件学报, 2021, 32(07):1926–1956. [69] 喻文强,张艳梅,李梓宇,牛娃.以太坊庞氏骗局的类型分析与识别方法 [J]. 重庆大学学报, 2020, 43(11): 111–120. [70] 林伟宁,陈明志,詹云清,刘川葆.一种基于PCA和随机森林分类的入侵检测算法研究[J]. 信息网络安全, 2017, (11): 50–54. [71] 张昊,张小雨,张振友,李伟.基于深度学习的入侵检测模型综述 [J]. 计算机工程与应用, 2022, 58(6): 17–28. [72] 张昭昭, 乔俊飞, 余文. 多层自适应模块化神经网络结构设计 [J]. 计算机学报, 2017, 40(12): 2827–2838. |
中图分类号: | TP309 |
开放日期: | 2023-06-19 |