论文中文题名: |
四苯基甲烷衍生多脲受体的合成、表征及阴离子识别研究
|
姓名: |
路莎莎
|
学号: |
18213069009
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
081704
|
学科名称: |
工学 - 化学工程与技术 - 应用化学
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
应用化学
|
研究方向: |
超分子化学
|
第一导师姓名: |
杨再文
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-24
|
论文答辩日期: |
2021-06-06
|
论文外文题名: |
Study on synthesis, characterization and anion recognition of tetraphenyl methane-derived polyurea receptors
|
论文中文关键词: |
超分子 ; 多脲受体 ; 配合物 ; 阴离子识别
|
论文外文关键词: |
Supramolecular ; Polyurea receptors ; Complex ; Anion recognition
|
论文中文摘要: |
︿
分子自组装和分子识别作为超分子化学的主要研究内容,近年来受到研究者的广泛关注。阴离子对人类生活的重要作用,促使了阴离子配位化学的发展,而配位的过程是主客体通过弱相互作用力进行结合的过程,因此设计出良好的阴离子选择性受体具有重要意义。本文论述了四苯基甲烷衍生多脲受体的合成、表征及阴离子识别研究。主要工作如下:
(1)合成并表征四苯基甲烷衍生多脲受体。以四(4-氨基苯基)甲烷和4-硝基苯基异氰酸酯为原料,合成了四苯基甲烷衍生四脲受体L1;以四(4-氨基苯基)甲烷和2-硝基苯基异氰酸酯为原料,反应得到中间产物A,将A进行还原得到中间产物B,然后B和4-硝基苯基异氰酸酯反应得到四苯基甲烷衍生八脲受体L2;中间产物B和4-氰基苯基异氰酸酯反应得到四苯基甲烷衍生八脲受体L3。通过熔点测试、元素分析、红外光谱和核磁进行表征,结果一致表明,得到所设计的目标产物。
(2)研究四苯基甲烷衍生四脲受体与阴离子的相互作用。受体L1与四丁基氯化铵和四丁基溴化铵分别在丙酮和二氯甲烷中进行常温反应,正己烷缓慢扩散其中得到配合物1和配合物2的单晶。通过X-射线单晶衍射、核磁、紫外可见吸收光谱研究了受体L1与氯离子和溴离子的相互作用,X-射线单晶衍射分析表明,受体L1与氯离子和溴离子的结合比分别为1:1和1:2;核磁氢谱和紫外可见吸收光谱表明,受体L1与氯离子的结合比为1:1,紫外可见吸收光谱表明,受体L1与溴离子的结合比为1:1。进一步通过紫外可见吸收光谱研究了受体Ll对10种不同阴离子的识别响应,结果表明,受体Ll可以选择性识别SO42-;通过核磁氢谱和紫外可见吸收光谱对受体Ll与SO42-作用的溶液性质进行研究,结果表明,受体Ll与SO42-的结合比为1:1,结合常数为2.4×104 M-1。
(3)研究四苯基甲烷衍生八脲受体与阴离子的相互作用。受体L2与18-冠醚-6和硫酸钾在丙酮和DMF体系中进行常温反应,正己烷缓慢扩散其中得到配合物3的单晶;通过X-射线单晶衍射和红外光谱研究了受体L2与硫酸根阴离子作用的固态性质,证明配合物3的初步形成及发现配合物3的晶体结构中主要含有1个受体L2和2个SO42-及4个[K([18]-crown-6)]+;通过核磁氢谱和紫外可见吸收光谱研究了受体L2和L3与硫酸根离子作用的溶液性质,结果表明,受体L2和L3与硫酸根阴离子的结合比都为1:2,通过紫外滴定由希尔方程求得受体L2和L3与硫酸根离子的结合常数分别为6.1×104 M-1和5.4×104 M-1;通过紫外可见吸收光谱研究了受体L2和L3对10种不同阴离子的识别响应,表明受体L2和L3均可以很好地识别硫酸根离子。
(4)研究水分子与硫酸根阴离子的相互作用。为了理解水分子对受体与硫酸根阴离子作用的影响,碱性条件下,FeSO4·7H2O的水溶液缓慢挥发得到配合物[Fe0.5(H2O)3]2SO4·H2O的单晶;通过X-射线单晶衍射研究了硫酸根离子与水分子的相互作用,结果表明,硫酸根离子与水分子间通过12条氢键进行作用。
﹀
|
论文外文摘要: |
︿
Molecular self-assembly and recognition, as the main research contents of supramolecular chemistry, have attracted wide attention in recent years. The important role of anions in human life promotes the developmment of anion coordination chemistry, and the coordination process is the binding process of host and guest through weak interaction force, so it is of great significance to design a good anion selective receptor. The synthesis, characterization and anion recognition of tetraphenyl methane-derived polyurea receptors are discussed. The main tasks were as follows:
(1) Synthesis and characterization of tetraphenyl methane-derived polyurea receptors. Tetraphenyl methane-derived tetraurea receptor L1 was synthesized from tetra(4-aminophenyl)methane and 4-nitrophenyl isocyanate. Intermediate product A was synthesized from tetra(4-aminophenyl)methane and 2-nitrophenyl isocyanate and compound A was reducted to intermediate product B. Tetraphenyl methane-derived octaurea receptors L2 and L3 were synthesized from compound B and 4-nitrophenyl isocyanate, 4-cyanophenyl isocyanate respectively. The receptor L1-L3 , compund A and B were characterized by melting point, IR and NMR. Various characterization results show that the target product was obtained.
(2) Study on the interaction of tetraphenyl methane-derived tetraurea receptor with anions. The receptor L1 was reacted with chloride and bromide in acetone and dichloromethane at room temperature respectively, and then the n-hexane was slowly diffused to obtain the single crystal of complex 1 and 2. The binding properties of receptor L1 with chloride and bromide were studied by X-ray single crystal diffraction, NMR and UV-vis. The X-ray single crystal diffraction analysis shows that the binding ratios of receptor L1 with chloride and bromide are 1:1 and 1:2 respectively. The 1H NMR and UV-vis show that the binding ratio of receptor L1 with chloride is 1:1. The UV-vis shows that binding ratio of receptor L1 with bromide is 1:1. Further the recognition response of receptor Ll with ten different anions was studied by UV-vis and showed that the receptor Ll can selectively identify SO42-. The solution properties of receptor Ll with SO42- were studied by 1H NMR and UV-vis, showing that the binding ratio of receptor Ll with SO42- is 1:1 and the binding constant is 2.4×104 M-1.
(3) Study on the interaction of tetraphenyl methane-derived octaurea receptors with anions. The receptor L2 was reacted with 18-Crown-6 and potassium sulfate in acetone and DMF at room temperature, and then the n-hexane was slowly diffused to obtain the single crystal of complex 3. The solid properties of the receptor L2 with the sulfate anion interaction were studied by X-ray single crystal diffraction and IR. Proving the initial formation of complex 3 and finding that the crystal structure of complex 3 contains mainly one receptor L2, two sulfate anions and four [K([18]-crown-6)] cations. The solution properties of receptors L2 and L3 with sulfate anion interaction were studied by 1H NMR and UV-vis. The analysis show that the binding ratios of L2 and L3 with sulfate anion are 1:2. The binding constants of receptor L2 and L3 with sulfate are 6.1×104 M-1 and 5.4×104 M-1 obtained from Hill equation by UV-vis respectively. The recognition response of the receptor L2 and L3 with ten different anions was studied by UV-vis and showed that the receptor L2 and L3 can selectively identify SO42-.
(4) Study on the interaction of water molecules with sulfate anion. To understand the effects of water molecules on the action of the receptor with sulfate anion, [Fe0.5(H2O)3]2SO4·H2O is obtained by slow volatilization of the aqueous solution of FeSO4·7H2O under alkaline condition. The interaction between sulfate and water molecule was studied by X-ray single crystal diffraction. The result shows that twelve hydrogen bonds are formed between sulfate and water molecule.
﹀
|
参考文献: |
︿
[1] Huang F, Anslyn E V, Introduction: Supramolecular Chemistry[J]. Chemical Reviews, 2015, 115(15): 6999-7000. [2] Kalyani V S, Gawhale S T, Rathod N V, et al. pH Dependent Self-Assembly of Single-Pyrene-Armed Calix[4]arene: Modulation and Complexation with p-Sulfonatocalix[6]arene[J]. ChemistrySelect, 2019, 4 (29): 8542-8549. [3] 董运红, 曹利平. 葫芦脲大环官能团功能化[J]. 化学进展, 2016, 28(7): 1039-1053. [4] 程宇, 王辉. 唑类超分子药物研究与应用[J]. 有机化学, 2016, 36(1): 1-42. [5] 张来新, 陈琦. 超分子配体的合成分子识别及应用新进展[J]. 应用化工, 2016, 45(2): 337-339. [6] Abd El-Rahman M K, Mazzone G, Mahmoud A M, et al. Spectrophotometric determination of choline in pharmaceutical formulations via host-guest complexation with a biomimetic calixarene receptor[J]. Microchemical, 2019, 146: 735-741. [7] Gale P A, Howe E N W, Wu X. Anion Receptor Chemistry[J]. Chem, 2016, 1 (3): 351-422. [8] Wenzel M, Weigand J J. Recent advances in anion recognition[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 89 (3): 247-251. [9] Smith P J, Reddington M V, Wilcox C S. Ion pair binding by a urea in chloroform solution[J]. Tctrahcdron Letters, 1992, 33 (41): 6085-6088. [10] Fan E, Arman Van S A, Kincaid S, et al. Molecular recognition: Hydrogen-Bonding Receptors that function in highly Competitive Solvents[J]. Journal of the American Chemical Society, 1993, 115: 369-370. [11] Gomez D E, Fabbrizzi L, Licchelli M, et al. Urea vs. thiourea in anion recognition[J]. Organic & Biomolecular Chemistry, 2005, 3(8): 1495-500. [12] Gale P A, Hiscock J R, Lalaoui N, et al. Benzimidazole-based anion receptors: tautomeric switching and selectivity[J]. Organic & Biomolecular Chemistry, 2012, 10 (30): 5909-5915. [13] 吴芳英, 赵永强. 硫脲类阴离子受体的设计合成与阴离子识别[J]. 分析试验室, 2008, 27(9): 22-25. [14] Jia C, Wu B, Liang J, et al. A colorimetric and ratiometric fluorescent chemosensor for fluoride based on proton transfer[J]. Journal of Fluorescence, 2010, 20: 291-297. [15] Jose D A, Kumar D K, Kar P, et al. Role of positional isomers on receptor–anion binding and evidence for resonance energy transfer[J]. Tetrahedron, 2007, 63 (48): 12007-12014. [16] Lee J Y, Cho E J, Mukamel S, et al. Efficient Fluoride-Selective Fluorescent Host: Experiment and Theory[J]. The Journal Organic Chemistry, 2004, 69(3): 943-950. [17] Xu G X, Tarr M A. A novel fluoride sensor based on fluorescence enhancement[J]. Chemical communications, 2004, (9): 1050-1051. [18] Li Z Y, Su H K, Tong H X, et al. Calix[4]arene containing thiourea and coumarin functionality as highly selective fluorescent and colorimetric chemosensor for fluoride ion[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 200: 307-312. [19] Li R, Zhao Y, Li S, et al. Tris Chelating Phosphate Complexes of Bis(thio)urea Ligands[J]. Inorganic Chemistry, 2013, 52(10): 5851-5860. [20] Dey S K, Das G. Encapsulation of trivalent phosphate anion within a rigidified π-stacked dimeric capsular assembly of tripodal receptor[J]. Dalton Transactions, 2011, 40(45): 12048-12051. [21] Murugesan K, Jeyasingh V, Lakshminarayanan S, et al. Traditional hydrogen bonding donors controlled colorimetric selective anion sensing in tripodal receptors: First-naked-eye detection of cyanide by a tripodal receptor via fluoride displacement assay[J]. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2019, 223: 117238. [22] Grauwels G, Valkenier H, Davis A P, et al. Repositioning Chloride Transmembrane Transporters: Transport of Organic Ion Pairs[J]. Angewandte Chemie International Edition , 2019, 58: 6921-6925. [23] Huang Z, Jia C, Wu B, et al. Selective binding of (thio)sulfate and phosphate in water by quaternary ammonium functionalized oligo-ureas[J]. Chemical communications, 2019, 55(12): 1714-1717. [24] Wu X, Wang P, Turner P, Lewis, et al. Tetraurea Macrocycles: Aggregation-Driven Binding of Chloride in Aqueous Solutions[J]. Chem, 2019, 5(5): 1210-1222. [25] Jia C, Wu B, Li S, et al. Highly efficient extraction of sulfate ions with a tripodal hexaurea receptor[J]. Angewandte Chemie International Edition, 2011, 50(2): 486-490. [26] Zhao J, Yang D, Zhao Y, et al. Anion Coordination-Induced Turn-On Fluorescence of an Oligourea-functionalized Tetraphenylethene in a Wide Concentration Range[J]. Angewandte Chemie International Edition, 2014, 53(26): 6632-6636. [27] Rostami A, Colin A, Li X Y, et al. N,N′-Diarylsquaramides: General, High-Yielding Synthesis and Applications in Colorimetric Anion Sensing[J]. The Journal of Organic Chemistry, 2010, 75(12): 3983-3992. [28] Rostami A, Wei C J, Guérin G, et al. Anion detection by a fluorescent poly(squaramide): self-assembly of anion-binding sites by polymer aggregation[J]. Angewandte Chemie International Edition, 2011, 50(9): 2059-2062. [29] Llinares J M, Powell D, Bowman-James K. Ammonium based anion receptors[J]. Coordination Chemistry Reviews, 2003, 240: 57-75. [30] Park C H, Simmons H E. Macrobicyclic amines. III. Encapsulation of halide ions by in,in-1,(k + 2)-diazabicyclo[k.l.m.]alkane ammonium ions[J]. Journal of the American Chemical Society, 1968, 90(9): 2431-2432. [31] Lehn J M, Sonveaux E, Willard A K. Molecular recognition. Anion cryptates of a macrobicyclic receptor molecule for linear triatomic species[J]. Journal of the American Chemical Society, 1978, 100(15), 4914-4916. [32] Pascal R A, Spergel J, Van Engen D. Synthesis and X-ray crystallographic characterization of a (1,3,5)cyclophane with three amide N-H groups surrounding a central cavity. A neutral host for anion complexation[J]. Tetrahedron Letters, 1986, 27(35): 4099-4102. [33] Sessler J L, Cyr M J, Lynch V, et al. Synthetic and structural studies of sapphyrin, a 22-.pi.-electron pentapyrrolic "expanded porphyrin"[J]. Journal of the American Chemical Society, 1990, 112(7): 2810-2813. [34] Curiel D, Cowley A, Beer P D. Indolocarbazoles: a new family of anion sensors[J]. Chemical communications, 2005, (2), 236-238. [35] Pinter T, Simhadri C, Hof F. Dissecting the complex recognition interfaces of potent tetrazole- and pyrrole-based anion binders[J]. The Journal Organic Chemistry, 2013, 78(10): 4642-4648. [36] Lee S, Chen C-H, Flood A H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3] rotaxanes[J]. Nature Chemistry, 2013, 5(8): 704-710. [37] Smith D K. Rapid NMR screening of chloride receptors: uncovering catechol as a useful anion binding motif[J]. Organic & Biomolecular Chemistry, 2003, 1(22): 3874-3877. [38] Winstanley K J, Sayer A M, Smith D K. Anion binding by catechols—an NMR, optical and electrochemical study[J]. Organic & Biomolecular Chemistry, 2006, 4(9): 1760-1767. [39] Molina P, Zapata F, Caballero A. Anion Recognition Strategies Based on Combined Noncovalent Interactions[J]. Chemical reviews, 2017, 117(15): 9907-9972. [40] Gale P A, Pérez-Tomás R, Quesada R. Anion Transporters and Biological Systems[J]. Accounts of Chemical Research, 2013, 46(12): 2801-2813. [41] Young R W. The role of the golgi complex in sulfate metabolism[J]. Journal of Cell Biology, 1973, 57 (1): 175-189. [42] Babu J N, Bhalla V, Kumar M , et al. Selective Colorimetric Sensing of Cyanide Ions Over Fluoride Ions by Calix[4]arene Containing Thiourea Moieties[J]. Letters in Organic Chemistry, 2006, 3(10): 787-793. [43] Emamin Khansari M, Mirchi A, Pramanik A, et al. Remarkable hexafunctional anion receptor with operational urea-based inner cleft and thiourea-based outer cleft: Novel design with high-efficiency for sulfate binding[J]. Scientific Reports, 2017, 7(1): 6032. [44] He Q, Kelliher M, Bähring S, et al. A Bis-calix[4]pyrrole Enzyme Mimic That Constrains Two Oxoanions in Close Proximity[J]. Journal of the American Chemical Society, 2017, 139(21): 7140-7143. [45] Eytel L M, Brueckner A C, Lohrman J A, et al. Conformationally flexible arylethynyl bis-urea receptors bind disparate oxoanions with similar, high affinities[J]. Chemical communications, 2018, 54(94), 13208-13211. [46] Odago M O, Colabello D M, Lees A J. A simple thiourea based colorimetric sensor for cyanide anion[J]. Tetrahedron, 2010, 66(38): 7465-7471. [47] Sathish Kumar B, Pati N N, Jose K V J, et al. Synthetic access to calix[3]pyrroles via meso-expansion: hosts with diverse guest chemistry[J]. Chemical communications, 2020, 56(42): 5637-5640. [48] Gómez-Vega J, Moreno-Corral R A, Santacruz Ortega H, et al. Anion, cation and ion-pair recognition by bis-urea based receptors containing a polyether bridge[J]. Supramolecular Chemistry, 2019, 31(5): 322-335. [49] Chen Y, Wu G, Chen L, et al.Selective Recognition of Chloride Anion in Water[J]. Organic Letters, 2020, 22(12): 4878-4882. [50] Jia C, Wu B, Li S, et al. A fully complementary, high-affinity receptor for phosphate and sulfate based on an acyclic tris(urea) scaffold[J]. Chemical communications, 2010, 46(29), 5376-5378. [51] Li S, Jia C, Wu B, et al. A triple anion helicate assembled from a bis(biurea) ligand and phosphate ions[J]. Angewandte Chemie International Edition, 2011, 50(25): 5721-5724. [52] Wu B, Li S, Lei Y, et al. The Effect of the Spacer of Bis(biurea) Ligands on the Structure of A2L3-type (A=anion) Phosphate Complexes[J]. Chemistry A European Journal, 2015, 21(6): 2588-2593. [53] Jia C, Zuo W, Yang D, et al. Selective binding of choline by a phosphate-coordination-based triple helicate featuring an aromatic box[J]. Nature communications, 2017, 8 (1): 938. [54] Fan X, Zhang D, Jiang S, et al. Construction and interconversion of anion-coordination-based (‘aniono’) grids and double helicates modulated by counter-cations[J]. Chemical Science, 2019, 10(25): 6278-6284. [55] Wu B, Cui F, Lei Y, et al. Tetrahedral Anion Cage: Self-Assembly of a (PO4)4L4 Complex from a Tris(bisurea) Ligand[J]. Angewandte Chemie International Edition, 2013, 52(19): 5096-5100. [56] Yang D, Zhao J, Zhao Y, et al. Encapsulation of Halocarbons in a Tetrahedral Anion Cage[J]. Angewandte Chemie International Edition, 2015, 54(30): 8658-8661. [57] Yang D, Zhao J, Yu L, et al. Air- and Light-Stable P4 and As4 within an Anion-Coordination-Based Tetrahedral Cage[J]. Journal of the American Chemical Society, 2017, 139(16): 5946-5951. [58] Zhang W, Yang D, Zhao J, et al. Controlling the Recognition and Reactivity of Alkyl Ammonium Guests Using an Anion Coordination-Based Tetrahedral Cage[J]. Journal of the American Chemical Society, 2018, 140(15): 5248-5256. [59] Liu Y, Parks F C, Sheetz E G, et al. Polarity-Tolerant Chloride Binding in Foldamer Capsules by Programmed Solvent-Exclusion[J]. Journal of the American Chemical Society, 2021, 143(8): 3191-3204. [60] Zhang D, Hou L K, Zhang Q, et al. Anion-Coordination-Assisted Assembly of Supramolecular Charge-Transfer Complexes Based on Tris(urea) Ligands[J]. Chemistry-A European Journal, 2020, 26(6): 1414-1421. [61] Gao J, Yu H, Chen F Y, et al. A hyaluronidase/ATP tandem stimuli-responsive supramolecular assembly[J]. Chemical Communications, 2019, 55(95): 14387-14390. [62] 那铎. 基于阴离子诱导组装的离子识别和分子器件的构筑[D]. 大连: 大连理工大学, 2015. [63] Russell J M, Boron W F. Role of chloride transport in regulation of intracellular pH[J]. Nature, 1976, 264(5581): 73-74. [64] Keegan J, Kruger P E, Nieuwenhuyzen M, et al. Anion directed assembly of a dinuclear double helicate[J]. Chemical communications, 2001, (21): 2192-2193. [65] Selvakumar P M, Jebaraj P Y, Sahoo J, et al. The first bromide ion directed double helicate and its role in catalysis[J]. RSC Advances, 2012, 2 (20), 7689-7692. [66] Yang P, Wang J, Jia, C, et al. Dinuclear Chloride-Binding Foldamers Based on Fluorescent Oligoureas[J]. European Journal of Organic Chemistry, 2013, (17): 3446-3454. [67] Oshovsky G V, Reinhoudt D N, Verboom W. Supramolecular Chemistry in Water[J]. Angewandte Chemie International Edition, 2007, 46(14): 2366-2393. [68] Sherbow T J, Fargher H A, Haley M M, et al. Solvent-Dependent Linear Free-Energy Relationship in a Flexible Host-Guest System[J]. The Journal of Organic Chemistry, 2020, 85(19): 12367-12373. [69] Bowman-James K. Alfred Werner Revisited: The Coordination Chemistry of Anions[J]. Accounts of Chemical Research, 2005, 38(8): 671-678. [70] Ravikumar I, Ghosh P. Recognition and separation of sulfate anions[J]. Chemical Society Reviews, 2012, 41(8): 3077-3098. [71] Gale P A, Quesada R. Anion coordination and anion-templated assembly: Highlights from 2002 to 2004[J]. Coordination Chemistry Reviews, 2006, 250(23-24): 3219-3244. [72] Mullen K M, Beer P D. Sulfate anion templation of macrocycles, capsules, interpenetrated and interlocked structures[J]. Chemical Society Reviews, 2009, 38(6): 1701-1713. [73] Steed J W. Coordination and organometallic compounds as anion receptors and sensors[J]. Chemical Society Reviews, 2009, 38(2): 506-519. [74] Moyer B A, Custelcean R, Hay B P, et al. A case for molecular recognition in nuclear separations: sulfate separation from nuclear wastes[J]. Inorganic Chemistry, 2013, 52(7): 3473-3490. [75] Kaur S, Day V W, Bowman-James K. Urea-Based Macrocycle Selective for Sulfate and Structurally Sensitive to Water[J]. Crystal Growth & Design, 2020, 20(7): 4212-4216. [76] Ravikumar I, Ghosh P. Unusual recognition of (n-Bu4N)2SO4 by a cyanuric acid based host via contact ion-pair interactions[J]. Chemical communications, 2010, 46(36): 6741-6743. [77] Wu B, Yang X J, Janiak C, et al. Large size anion binding with iron(II) complexes of a 5,5'-disubstituted-2,2'-bipyridine ligand[J]. Chemical communications, 2003, (7): 902-903. [78] 苏铭健. 含脲/硫脲基取代聚乙炔的合成及阴离子识别性能[D]. 广州: 华南理工大学, 2013. [79] Fu Y, Xu Z, Ren J, et al. Organically Directed Iron Sulfate Chains: Structural Diversity Based on Hydrogen Bonding Interactions[J]. Inorganic Chemistry, 2006, 45(20): 8452-8458. [80] Fu Y, Zhang Y, Xu Z. Hydrothermal synthesis and characterization of a zigzag chain and transformation between isomeric iron–sulfate chains[J]. Journal of Molecular Structure, 2008, 891(1-3): 30-34. [81] Yang Z, Huang X, Zhao Q, et al. Hydrogen-bonded 1D nanotubes and 2D layers of group 12 metal complexes with a pyridylurea ligand[J]. CrystEngComm, 2012, 14(17): 5446-5453. [82] Wu B, Liang J J, Yang J, et al. Sulfate ion encapsulation in caged supramolecular structures assembled by second-sphere coordination[J]. Chemical communications, 2008, (15), 1762-1764.
﹀
|
中图分类号: |
O641.3
|
开放日期: |
2023-06-25
|