- 无标题文档
查看论文信息

论文中文题名:

 大采高综采面厚硬顶板水力切顶卸压技术与应用    

姓名:

 张旭东    

学号:

 19203213054    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085218    

学科名称:

 工学 - 工程 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 岩层控制    

第一导师姓名:

 邓广哲    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-24    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Hydraulic roof cutting and pressure relief technology and    

论文中文关键词:

 大采高 ; 厚硬顶板 ; 水力切顶卸压 ; 采空侧煤柱巷道系统 ; 围岩控制    

论文外文关键词:

 Large mining height ; thick hard roof ; hydraulic roof cutting and pressure relief    

论文中文摘要:

大采高综采是我国陕北侏罗纪厚煤层普遍采用的开采方式,厚硬顶板地质条件矿井
在陕北侏罗纪煤层矿区分布极为广泛。所谓厚硬顶板常常岩层结构致密、节理不发育,
层厚达到 10m 以上。在大采高厚硬顶板煤层开采过程中,厚硬顶板难以随采随落,极
易形成大采高工作面采空区扇形悬顶,结果导致工作面及其侧向采动区支承应力的高度
集中,造成采场周围巷道围岩的严重破坏变形等问题。为此,本文以小保当大采高综采
面厚硬顶板水力压裂卸压工程为背景,采用理论分析、实验室测试、数值模拟、现场试
验相结合的研究方法,对大采高综采厚硬顶板压裂卸压机理进行了系统研究,给出了工
作面侧向煤柱切顶卸压护巷的关键参数,通过现场工业试验,验证了参数的合理性。论
文取得的主要结论如下:
(1)通过现场钻探和岩石取芯,查明了试验工作面岩层分布特征;通过钻芯实验
室加工,进行了顶板岩石物理力学性质研究。基于关键层判别,给出了试验工作面覆岩
的 3 个关键层位置及其赋存特征。结合试验工作面回采过程的矿压观测,给出了大采高
工作面厚硬顶板条件下的顶板初次来压步距为 65.78m,周期来压步距为 45.42m。
(2)理论分析了水力切顶卸压对厚硬顶板悬顶的影响,预切裂缝导致覆岩难以形
成厚硬顶板悬臂结构,减少了采空区顶板悬顶长度;同时,及时垮落的下位顶板矸石又
起到了及时支承高位顶板的作用,缓和了厚硬顶板工作面煤柱上的载荷集中程度,从而
保证了工作面侧煤柱-巷道系统围岩的稳定性。
(3)通过 112201 大采高工作面煤柱侧厚硬顶板水力压裂卸压数值模拟,分析了水
力压裂切顶卸压参数对覆岩运动的影响规律。基于控制变量法,给出了不同切顶高度与
不同切顶角度变化对煤柱应力、巷道围岩位移变化的影响规律。确定了 112201 工作面
顶板水压切顶钻孔参数:采空侧 25m、10°,煤柱侧 35m、15°。
(4)结合 112201 工作面试验,水力压裂切顶后 112201 工作面采空侧悬臂长度减
小,煤柱应力下降了 57%,煤柱-巷道系统围岩顶底板移近量减小 51.25%,两帮移近量
减小 51.28%,有效改善了工作面侧向煤柱巷道系统围岩的应力环境,降低支护成本。

论文外文摘要:

Large mining height integrated mining is a common mining method for thick Jurassic coal
seams in northern Shaanxi Province, and mines with thick hardtop geological conditions are
widely distributed in Jurassic coal seam mines in northern Shaanxi Province. The so-called
thick hard tops often have dense rock structure and undeveloped joints, and the layer thickness
reaches 10 m. In the process of mining thick hard top coal seams with large mining heights, the
thick hard tops are difficult to fall with mining, and it is very easy to form fan-shaped
overhanging roofs in the workings of large mining heights, which results in a high
concentration of supporting stresses in the workings and their lateral mining areas, causing
serious damage and deformation of the surrounding rocks of the roadway around the mining
site. To this end, this paper takes the thick hard roof hydraulic fracture unloading project of
Xiaobodang 7m large mining height comprehensive mining face as the background, and adopts
the research method combining theoretical analysis, laboratory test, numerical simulation and
field test to systematically study the mechanism of thick hard roof fracture unloading of large
mining height comprehensive mining, and gives the key parameters of lateral coal column
cutting roof unloading pressure protection lane at the working face, and verifies the
reasonableness of the parameters through field industrial test. The main conclusions obtained in
the paper are as follows.
(1) The rock distribution characteristics of the test working face were identified through
field drilling and rock coring; the physical and mechanical properties of the roof rock were
studied through drill core laboratory processing. Based on the key layer identification, the
locations of three key layers of the overburden rock of the test workface and their distribution
characteristics were given. The initial pressure step of the roof under the condition of thick hard
roof of large mining face is 65.78m, and the periodic pressure step is 45.42m.
(2) Theoretical analysis of the impact of hydraulic roof cutting and pressure removal on
the overhanging roof of thick hard roof, pre-cut cracks lead to the overlying rock is difficult to form the cantilever structure of thick hard roof, reducing the length of the overhanging roof in
the mining area; at the same time, the timely collapse of the lower roof gangue and play the
role of timely support of the high roof, moderate the concentration of load on the coal column
of the working face of the thick hard roof, thus ensuring the stability of the working face side
coal column - roadway system surrounding rock.
(3) Through the numerical simulation of hydraulic fracture unloading on the thick hard
roof of the coal pillar side of 112201 large mining face, the influence law of hydraulic fracture
top cutting and unloading parameters on the movement of overburden rock was analyzed.
Based on the control variable method, the influence law of different top cutting height and
different top cutting angle changes on the change of coal pillar stress and the change of
roadway surrounding rock displacement is given. The parameters of hydraulic roof cutting
drilling at 112201 working face were determined: 25m and 10° on the mining side and 35m
and 15° on the coal pillar side.
(4) Combined with the test on 112201 working face, the cantilever length on the mining
side of 112201 working face was reduced after hydraulic fracturing and roof cutting, the stress
of coal pillar decreased by 57%, the top and bottom slab shift of coal pillar-roadway system
surrounding rock was reduced by 51.25%, and the shift of two gangs was reduced by 51.28%.
The test parameters effectively improve the stress environment of the lateral coal pillar
roadway system at the working face and reduce the support cost

参考文献:

[1] 谢和平,苗鸿雁,周宏伟.我国矿业学科“十四五”发展战略研究[J].中国科学基金,2021,35(06):856-863.

[2] 钱鸣高,许家林,王家臣.再论煤炭的科学开采[J].煤炭学报,2018,43(01):1-13.

[3] 钱鸣高,许家林.煤炭开采与岩层运动[J].煤炭学报,2019,44(04):973-984.

[4] 赵善坤,苏振国,侯煜坤,等.采动巷道矿压显现特征及力构协同防控技术研究[J].煤炭科学技术,2021,49(06):61-71.

[5] 任尚磊,张向阳,涂敏,等.厚硬顶板煤层开采强矿压防治技术研究[J].矿业研究与开发,2020,40(09):81-86.

[6] 王昕,谭英明,牛钦环,等.松软特厚煤层厚硬顶板综放工作面矿压规律研究[J].煤炭技术,2017,36(03):21-23.

[7] 钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.

[8] 弓培林.大采高围岩控制理论及应用研究[D].太原:太原理工大学.2006.

[9] 贾喜荣岩石力学与岩层控制[M].徐州,中国矿业大学出版社2010:262-269.

[10] 苗凯军,屠世浩,刘迅,等.深部厚硬顶板下充填面留巷大变形分析及控制[J].煤炭学报,2021,46(04):1232-1241.

[11] Jin Zhiyuan, Xu Youlin, Peng Tao, et al. Roof Control Technology of Mining Roadway under the Influence of Advanced Supporting Pressure[J]. Advances in Civil Engineering, 2021, 2021

[12] Yu Guangyuan, Wang Jiong, Ren Jianjun, et al. Study on Surrounding Rock Structure Evolution Characteristics and Roof Control Techniques of the Retained Roadway Formed by Roof Cutting in Inclined Coal Seams[J]. Shock and Vibration, 2021, 2021

[13] Wang Xu Feng, Tian Li Wei, Wang Jin Liang. Optimization and Practice on Method of Roof Control in Single-Support Coalface for Ascending Mining[J]. Advanced Materials Research, 2012, 629(629-629):943-949.

[14] 郭卫彬,刘长友,吴锋锋,等.坚硬顶板大采高工作面压架事故及支架阻力分析[J]煤炭学报,2014,39(7):1212-1219.

[15] 李富.坚硬顶板控制放顶方式及其悬顶长度控制[J].山西煤炭管理干部学院学报,2016,29(04):13-15.

[16] 刘跃东,张东峰.特厚坚硬顶板控制机理和弱化技术研究[J].矿业研究与开发,2014,34(05):55-58.

[17] 孙勇,于智卓.五家沟煤矿5105工作面坚硬顶板控制技术研究与应用[J].山东煤炭科技,2021,39(04):88-90+93+99.

[18] 彭邦林.辛置煤矿坚硬顶板下巷道围岩控制技术研究与应用[J].山东煤炭科技,2021,39(07):20-22.

[19] 张国红,吴鑫,吴洪胜,等.大倾角大采高综采面覆岩移动特征及顶板稳定性控制[J].中国矿业,2014,23(06):101-105+139.

[20] 高明仕,徐东,贺永亮,等.厚硬顶板覆岩冲击矿震影响的远近场效应研究[J].采矿与安全工程学报,2022,39(02):215-226.

[21] 陈星,冯美华,尚楠,等.厚硬顶板宽煤柱临空巷道冲击地压防治技术研究[J].煤炭工程,2022,54(01):84-88.

[22] 李嘉维,王卫钢,韩振东.直接硬厚顶板条件下无煤柱沿空留巷预裂爆破顶板控制技术质量研究[J].中国石油和化工标准与质量,2021,41(11):103-104.

[23] 苗凯军,屠世浩,刘迅,等.深部厚硬顶板下充填面留巷大变形分析及控制[J].煤炭学报,2021,46(04):1232-1241.

[24] 吴晓,杨贵儒,杨伟,等.特厚坚硬顶板巷道变形原因与控制技术研究[J].煤炭科技,2019,40(05):95-96+103.

[25] Cong Lin,Jianqiang Deng,Yaoru Liu, et al. Experiment simulation of hydraulic fracture in colliery hard roof control[J]. Journal of Petroleum Science and Engineering,2016,138.

[26] Lifeng Li,Gan Li,Weili Gong, et al. Energy Evolution Pattern and Roof Control Strategy in Non-Pillar Mining Method of Goaf-Side Entry Retaining by Roof Cutting—A Case Study[J]. Sustainability,2019,11(24).

[27] Chao Pan,Yu Jun Zuo,Shang Gao, et al. Numerical Simulation on Hard and Stable Roof Control by Means of Directional Hydraulic Fracturing in Coal Mine[J]. Applied Mechanics and Materials,2014,3489(638-640).

[28] 武艳龙.综采工作面过断层破碎区顶板控制技术研究[J].山西冶金,2022,45(01):273-274.

[29] Liu Yulong,Xu Tianfu,Yuan Yilong, et al. A laboratory study on fracture initiation and propagation of granite under cyclic-injection hydraulic fracturing[J]. Journal of Petroleum Science and Engineering,2022,212.

[30] Li Yanyan,Hu Wei,Wei Siyu, et al. Sensitivity analysis on the effect of natural fractures and injected fluid on hydraulic fracture propagation in a fractured reservoir[J]. Engineering Fracture Mechanics,2022,263.

[31] Chen, Bin,Barboza, et al. A Review of Hydraulic Fracturing Simulation[J]. Archives of Computational Methods in Engineering,2021(prepublish).

[32] 邓广哲,郑锐,徐东.大采高综采端头悬顶水力切顶控制机理[J].西安科技大学学报,2019,39(02):224-233.

[33] 齐晓华. 水压致裂煤层裂隙演化规律研究[D].西安科技大学,2017.

[34] 邓广哲,王有熙.煤层定向水压致裂机理研究[J].西安科技大学学报,2014,34(06):664-669.

[35] 邓广哲,齐晓华,王雷.水压致裂提高块煤率的机理及应用[J].西安科技大学学报,2017,37(02):187-193.

[36] 邓广哲,郑锐,徐东.硬厚煤层压裂节能与块煤分级控制机理及应用[J].中国煤炭,2018,44(04):67-72.

[37] 黄炳香,赵兴龙,陈树亮,等.坚硬顶板水压致裂控制理论与成套技术[J].岩石力学与工程学报,2017,36(12):2954-2970.

[38] 吴拥政,康红普.煤柱留巷定向水力压裂卸压机理及试验[J].煤炭学报,2017,42(05):1130-1137.

[39] 徐幼平,林柏泉,翟成,等.定向水力压裂裂隙扩展动态特征分析及其应用[J].中国安全科学学报,2011,21(07):104-110.

[40] 梁大海.坚硬顶板注水软化机理研究[D].太原理工大学,2006.

[41] 于洋.特厚煤层坚硬顶板破断动载特征及巷道围岩控制研究[D].中国矿业大学,2015.

[42] 冯新庆.厚硬顶板定向水力压裂数值模拟研究[J].山西能源学院学报,2019,32(04):35-36.

[43] 翟振宇.斜沟煤矿迎采掘巷水力压裂切顶卸压技术研究[J].煤矿现代化,2022,31(02):98-100.

[44] 张有河.高压水力压裂切顶技术在综采工作面初采放顶中的应用[J].煤炭与化工,2022,45(02):5-8+53.

[45] 蔡燕伟.水力切顶技术在大采高孤岛面的研究与应用[J].煤炭技术,2021,40(09):29-32.

[46] 边相君.水力压裂切顶钻孔布置参数研究[J].陕西煤炭,2021,40(03):131-134+169.

[47] 王涛.三交河煤矿11-201工作面两巷水力压裂切顶卸压技术研究[J].山东煤炭科技,2021,39(05):156-158.

[48] Pan C, Zuo Y J, Gao S, et al. Numerical Simulation on Hard and Stable Roof Control by Means of Directional Hydraulic Fracturing in Coal Mine[J]. Trans Tech Publications Ltd, 2014,3489: 894−897.

[49] 张庆国.厚煤层综放工作面沿空掘巷坚硬顶板水力压裂弱化技术研究[J].中国煤炭,2021,47(12):32-37.

[50] 付强,李晓云.软岩巷道支护理论研究与发展[J].矿业安全与环保, 2007(02): 70-72.

[51] 马冰,蒋威.厚硬顶板定向水力压裂分层垮落技术研究[J].煤炭技术,2022,41(04):13-17.

[52] 姜希印,毕瑞阳,杨森,等.基于关键层理论深井巷道群稳定性分析[J].能源技术与管理,2022,47(01):4-8.

[53] 郭冲. 基于关键层理论的采动应力演化及其对巷道变形影响研究[D].中国矿业大学,2018.

[54] 于斌,杨敬轩,刘长友,等.大空间采场覆岩结构特征及其矿压作用机理[J].煤炭学报,2019,44(11):3295-3307.DOI:10.13225

[55] 汪尔乾.石膏矿大型采空区突变失稳机理及稳定性研究[D]. 中国矿业大学,2017.

[56] Zhou Yuejin, Li Mingpeng,Xu Xiaoding; et al.A Study on Dual-Load-Zone Model of Overlying Strata and Evolution Law of Mining Stress[J]. CMC-Computers Materials & Continua, 2019, 58(2): 391-407.

[57] 钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M]徐州:中国矿业大学出版社,2003.

[58] 徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2018.

[59] 任建喜,张向东,杨双锁,等.岩石力学[M].徐州:中国矿业大学出版社, 2013.

中图分类号:

 TD322    

开放日期:

 2022-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式