论文中文题名: | 冻融循环作用下裂隙岩体冻胀扩展破裂特性及数值流形研究 |
姓名: | |
学号: | 21204228072 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085900 |
学科名称: | 工学 - 工程 - 土木水利 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩土力学与工程应用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-14 |
论文答辩日期: | 2024-06-07 |
论文外文题名: | Study of Frost Heave Expansion and Fracture in Fractured Rock Masses under Freeze-Thaw Cycles through Numerical Manifold Method |
论文中文关键词: | |
论文外文关键词: | Freeze-thaw cycles ; Frost heave forces ; Expansion coefficient ; Numerical manifold method ; Fractured rock slope |
论文中文摘要: |
寒区含水裂隙岩体夏融冬冻导致水冰相变产生冻胀力,而相变循环累积的冻融效应是寒区岩体劣化和破坏的主要原因。由于反复冻融而引起其强度损伤劣化、变形的不断增大,将直接影响岩体工程的设计与施工,以及投入使用后的正常运营。随着寒区基础设施建设迅猛发展,铁路、公路路基两侧岩质滑坡灾害频发。本文基于数值流形方法(NMM),采用理论分析和数值模拟相结合的手段,对冻融循环作用下的裂隙岩体开展研究,深入研究了单向冻融单裂隙岩体的冻胀损伤劣化特性;借助线弹性断裂力学理论,分析了裂纹在冻胀力和单轴压缩条件下的受力和变形特性;阐明了冻融循环作用下岩质边坡的损伤破坏特性及破坏机理,并提出防治措施。主要内容如下: 综合考虑水分迁移和水冰相变特性,提出了冻融循环累积作用下的冻胀力模型和求解公式,可预测冻融循环作用下裂隙冻胀力,主要考虑冻融循环次数、水分迁移通量、岩石和冰的力学特性及裂隙尺寸等因素影响。为利用NMM模拟冻融循环作用下的裂隙岩体裂纹扩展分析提供了理论基础。 (2)基于线弹性断裂理论,重点研究了裂纹尖端应力和位移演化特征。并对NMM模拟裂纹扩展的算法进行了更新。依据裂纹的受力变形特征,将内部冻胀模型简化为法向应变张力模型,推导出冻融循环作用下裂隙岩石应力强度因子的计算公式。嵌入NMM中,对裂隙岩石冻融循环后的裂纹扩展和单轴压缩条件下裂隙岩石变形破坏过程进行了数值模拟,利用室内试验结果验证了所提出的冻胀模型的正确性,明确了NMM模拟裂隙岩石冻融损伤破坏的可行性。 (3)采用NMM数值模拟的手段,开展工程尺度的冻融循环作用下裂隙岩体冻胀扩展研究。选取天山山地地区的京新高速(G7)巴里坤至木垒段公路典型裂隙岩质边坡为研究对象,表征概化三段式锁固边坡,建立冻融边坡仿真模型。通过数值方法模拟了90°锁固段岩质边坡在1、10、20、30次冻融循环作用下,坡体应力场及位移场的变化规律,揭示了锁固段角度对损伤开裂破坏的影响规律。随着冻融循环次数的增加,冻胀力导致上部后缘张拉裂隙尖端的拉应力集中区向下移动,锁固段的变形量和裂纹延伸长度逐渐增大。根据模拟情况分析其破坏机理并提出了对应的防治措施。研究结果可为寒区边坡工程建设提供技术参考。 |
论文外文摘要: |
In cold regions, the presence of water-filled fractures in rock masses leads to the generation of frost heave forces due to the phase transition between water and ice during summer thawing and winter freezing. The cumulative effects of these freeze-thaw cycles are the primary causes of rock mass deterioration and failure in such environments.The repeated freeze-thaw cycles cause continuous strength degradation and increased deformation in rock masses, directly impacting the design, construction, and subsequent normal operation of rock engineering projects. With the rapid development of infrastructure in cold regions, rock landslides along railway and highway embankments have become increasingly frequent.This study, based on the Numerical Manifold Method (NMM), combines theoretical analysis and numerical simulation to investigate the behavior of fractured rock masses under freeze-thaw cycles. It thoroughly examines the frost heave damage and degradation characteristics of rock masses with a single fracture subjected to unidirectional freeze-thaw cycles. Utilizing the theory of linear elastic fracture mechanics, the study analyzes the stress and deformation characteristics of cracks under frost heave forces and uniaxial compression. Additionally, it elucidates the damage and failure characteristics and mechanisms of rock slopes under freeze-thaw cycles and proposes preventive measures.The main contents are as follows: By comprehensively considering moisture migration and water-ice phase transformation characteristics, a frost heave force model and solution formula under cumulative freeze-thaw cycles have been proposed. This model can predict the frost heave force in fractures under freeze-thaw cycles, taking into account factors such as the number of freeze-thaw cycles, moisture migration flux, the mechanical properties of rock and ice, and fracture size. This provides a theoretical foundation for using NMM to simulate the crack propagation analysis of fractured rock masses under freeze-thaw cycles. Based on the linear elastic fracture mechanics theory, this study focuses on the stress and displacement evolution characteristics at the crack tip. The algorithm for simulating crack propagation using the numerical manifold method (NMM) was updated accordingly. The internal frost heave model was simplified into a normal strain tension model based on the stress-deformation characteristics of the crack, leading to the derivation of the stress intensity factor calculation formula for fractured rock under freeze-thaw cycles. This model was embedded into NMM to numerically simulate the crack propagation and deformation failure processes of fractured rock after freeze-thaw cycles under uniaxial compression. The proposed frost heave model's correctness was verified using laboratory test results, confirming the feasibility of using NMM to simulate the freeze-thaw damage and failure of fractured rock. Using the numerical manifold method (NMM), this study investigates the frost heave expansion in fractured rock masses under freeze-thaw cycles at an engineering scale. The selected study area is a typical fractured rock slope along the Barkol to Mulei section of the Jingxin Expressway (G7) in the Tianshan Mountains. The slope is conceptualized as a three-section locked slope for the simulation model. The numerical simulation examined the stress field and displacement field changes in a 90° locked-section rock slope under 1, 10, 20, and 30 freeze-thaw cycles, revealing the impact of the locked-section angle on damage and cracking patterns.As the number of freeze-thaw cycles increased, the frost heave forces caused the tensile stress concentration zone at the tip of the upper rear edge cracks to move downward. This resulted in increased deformation and crack extension length in the locked section. The study analyzes the failure mechanisms based on the simulation results and proposes corresponding mitigation measures. The findings provide valuable technical references for slope engineering in cold regions. |
参考文献: |
[1]马巍,王大雁.中国冻土力学研究50a回顾与展望[J].岩土工程学报,2012,34(04):625-640. [2]南卓铜.中国1:1000万冻土区划及类型图[EB]. 国家冰川冻土沙漠科学数据中心, 2019. [3]何满潮,郭鹏飞.“一带一路”中的岩石力学与工程问题及对策探讨[J].绍兴文理学院学报(自然科学),2018,38(08):1-9. [4]周科平,许玉娟,李杰林,等.冻融循环对风化花岗岩物理特性影响的实验研究[J].煤炭学报,2012,37(S1):70-74. [5]乔雄,杨小龙,冯勇.高海拔严寒地区隧道冻害研究现状及展望[J].隧道建设(中英文),2024,44(02):233-256. [6]田四明,王伟,刘建友,等.寒区铁路隧道防寒抗冻关键技术研究与展望[J].隧道建设(中英文),2024,44(01):21-34. [7]彭建兵,崔鹏,庄建琦.川藏铁路对工程地质提出的挑战[J].岩石力学与工程学报,2020,39(12):2377-2389. [9]李长洪,肖永刚,王宇,等.高海拔寒区岩质边坡变形破坏机制研究现状及趋势[J].工程科学学报,2019,41(11):1374-1386. [10]薛翊国,孔凡猛,杨为民,等.川藏铁路沿线主要不良地质条件与工程地质问题[J].岩石力学与工程学报,2020,39(03):445-468. [11]申艳军,杨更社,王婷,等.岩石内孔隙/裂隙冻胀力模型及其适用性评价[J].冰川冻土,2019,41(01):117-128. [12]刘泉声,黄诗冰,康永水,等.低温饱和岩石未冻水含量与冻胀变形模型研究[J].岩石力学与工程学报,2016,35(10):2000-2012. [17]徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学试验研究[J].岩石力学与工程学报,2005,24(17):3076-3082. [18]李云鹏,王芝银.花岗岩低温强度参数与冰胀力的关系研究[J].岩石力学与工程学报,2010,29(S2):4113-4118. [19]刘泉声,黄诗冰,康永水,潘阳,崔先泽.低温冻结岩体单裂隙冻胀力与数值计算研究[J].岩土工程学报,2015,37(09):1572-1580. [20]阎锡东,刘红岩,邢闯锋,李超,王东会.基于微裂隙变形与扩展的岩石冻融损伤本构模型研究[J].岩土力学,2015,36(12):3489-3499. [22]黄诗冰,刘泉声,刘艳章,程爱平.低温热力耦合下岩体椭圆孔(裂)隙中冻胀力与冻胀开裂特征研究[J].岩土工程学报,2018,40(03):459-467. [25]马伟,谭贤君,陈卫忠等.基于扩展有限元方法的裂隙岩体冻胀力理论与数值研究[J].冰川冻土,2020,42(02):532-539. [27]谭贤君,陈卫忠,贾善坡,等.含相变低温岩体水热耦合模型研究[J]. 岩石力学与工程学报, 2008, 27(07):1455-1461. [28]戴峰,魏明东,徐奴文,等.内置三维裂隙非均匀性岩石渐进破坏数值研究[J]. 应用基础与工程科学学报, 2014,22(06):1178-1186. [29]赵伟,吴顺川,高永涛,等.节理岩体数值模拟及力学参数确定[J]. 北京科技大学学报, 2015, 37(12):1542-1549. [32]牛帅帅,罗学东,周盛涛,等.基于XFEM的双裂隙岩体冻胀裂纹扩展数值模拟研究[J].合肥工业大学学报(自然科学版),2022,45(01):73-80 [35]焦玉勇,张秀丽,刘泉声,等.用非连续变形分析方法模拟岩石裂纹扩展[J]. 岩石力学与工程学报, 2007, 26(04):682-691. [36]唐礼忠,宋徉霖.含非共面重叠型微裂隙类岩石试样单轴受压宏细观力学特性颗粒流模拟[J].岩石力学与工程学报,2019,38(11):2161-2171. [37]卢妮妮. 节理岩体力学性质尺寸效应离散元模拟研究[D].武汉大学,2020. [39]宋勇军,孙银伟,李晨婧,等.基于离散元法模拟的冻融砂岩细观破裂演化特征研究[J].岩土力学,2023,44(12):3602-3616. [41]王水林,葛修润.流形元方法在模拟裂纹扩展中的应用[J]. 岩石力学与工程学报,1997,16(05): 7-12. [42]栾茂田,杨新辉,田荣,等.有限覆盖无单元法在多裂纹岩体断裂特性数值分析中的应用[J]. 岩石力学与工程学报, 2005, 24(24): 4403-4408. [43]李树忱,程玉民.考虑裂纹尖端场的数值流形方法[J]. 土木工程学报, 2005, 38(07): 96-101. [44]武杰,蔡永昌.基于四边形网格的流形方法覆盖系统生成算法[J]. 同济大学学报(自然科学版), 2013, 41(05): 641-645. [46]张国新,赵妍,彭校初.考虑岩桥断裂的岩质边坡倾倒破坏的流形元模拟[J]. 岩石力学与工程学报, 2007, 26(09): 1773-1780. [47]刘红岩,王贵和.节理岩体冲击破坏的数值流形方法模拟[J]. 岩土力学, 2009, 30(11): 3523-3527. [49]郑文博,庄晓莹,李耀基,等. 基于流形方法和图论算法的岩/土质边坡稳定性分析[J]. 岩土工程学报, 2013, 35(11): 2045-2052. [51]杨石扣,任旭华,张继勋.基于数值流形法的重力坝水力劈裂研究[J].岩土力学, 2018, 39(08): 3055-3060. [57]石根华,王秋生.书评-郑宏著《数值流形法》[J]. 岩土力学, 2020, 41(01): 362-362. [61]周志东,刘武.高原寒区冻融作用对水利工程基岩边坡稳定性影响分析[J].冰川冻土,2015,37(05):1268-1274. [62]储飞.新疆乌尉高速天山段岩石冻融破坏特征及崩塌模式分析[D].成都理工大学,2014. [63]芮雪莲.寒区冻融作用下岩石力学特性及致灾机制研究[D].成都理工大学,2016. [65]黄勇,陈晓光,刘涛,等.天山公路边坡崩塌破坏模式及防治对策研究[J].公路交通科技(应用技术版),2008,4(S1):271-275. [67]朱金石.然乌至波密地区高位崩塌冻融劣化机制研究[D].成都理工大学,2021. [68]乔趁.冻融循环作用下锁固型边坡损伤演化规律及致灾机制研究[D].北京科技大学,2023. [69]王斌,冯夏庭,潘鹏志,等.物质点法在边坡稳定性评价中的应用研究[J].岩石力学与工程学报,2017,36(09):2146-2155. [70]乔国文,王运生,储飞,等.冻融风化边坡岩体破坏机理研究[J].工程地质学报,2015,23(03):469-476. [71]邹雪晴.高寒山区岩质边坡冻融孕灾时效特征研究[D].成都理工大学,2017. [72]沈小轲.边坡岩体冻融循环特性及劣化损伤机制研究[D].长江科学院,2020. [73]焦健.节理岩体稳定分析的数值流形方法研究[D].北京交通大学,2009. [76]李宗利,任青文,王亚红.岩石与混凝土水力劈裂缝内水压分布的计算[J].水利学报, 2005, 36(6):656-661. [78]袁浩,李菁,谢禹钧,等.基于有限元法对裂纹尖端应力强度因子的计算分析[J].机械制造与自动化,2018,47(01):146-151. [79]汪必升,李毅波,廖雅诗,等.基于扩展有限元模型的动态应力强度因子计算[J].中国机械工程,2019,30(11):1294-1301. [80]余天堂 -.扩展有限单元法——理论,应用及程序[M].科学出版社,2014. [81]杨永涛.多裂纹动态扩展的数值流形法[D].北京:中国科学院大学,2015. [83]申艳军,杨更社,荣腾龙等.冻融循环作用下单裂隙类砂岩局部化损伤效应及端部断裂特性分析[J].岩石力学与工程学报,2017,36(03):562-570. [85]乔趁,王宇,宋正阳等. 饱水裂隙花岗岩周期冻胀力演化特性试验研究[J].岩土力学,2021,42(08):2141-2150. [86]王宇.冻融单裂隙英安岩物理力学特性的相似材料试验及损伤本构模型研究[D].成都理工大学,2019. [87]申艳军,王艳,魏欣,等.天山山脉山地坡积土风化成生过程及垂直分带特征初探[J].工程地质学报,2023,31(04):1235-1246. |
中图分类号: | TU452 |
开放日期: | 2025-06-14 |