论文中文题名: | 生物老化对木材热解及燃烧特性影响机制研究 |
姓名: | |
学号: | 20220226139 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 消防工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-19 |
论文答辩日期: | 2023-06-03 |
论文外文题名: | Study on the influence mechanism of biological aging on wood pyrolysis and combustion characteristics |
论文中文关键词: | |
论文外文关键词: | Building fire ; Fire safety ; Pyrolysis characteristics ; Combustion characteristics ; Grey correlation analysis ; Biological aging |
论文中文摘要: |
文物建筑蕴含着悠久的历史,在全球范围内承载着城市的文化积淀,有着极大的文化价值。木结构古建筑存世长久、不可复制、形式多样,火灾过程复杂,火灾防控是古建筑消防安全工作的重点。木结构古建筑长期暴露在自然环境中,容易受到各种微生物的侵袭,导致木材发生生物老化,直接影响古建筑木质可燃物的燃烧特性。为此,本文针对生物老化对木材热解及燃烧特性影响,以古建筑典型木材为研究对象,研究了木材老化特征,提出了木材生物老化程度评价指标体系;采用同步热分析实验分析了老化木材热解动力学特征;通过锥形量热实验掌握了不同老化程度木材燃烧特性,运用灰色关联分析法确定了宏观参数与微观燃烧特征的关联关系,揭示了不同生物老化程度对生物老化木材燃烧过程的影响机制,为木结构古建筑火灾危险性预测及其消防安全评估提供理论依据,对预防木结构古建筑火灾发生具有重要的实际意义。 首先,根据古建筑老化特点,结合GBT13942.1-2009标准,制备了不同生物老化程度松木、杉木、杨木和榆木,分析了不同木材生物老化基础物理特性。研究表明,随着生物老化程度的加深,木材的表面从偏黄色变为灰褐色,不同老化程度软木的灰分含量小于硬木,软木细胞壁表面撕裂程度明显;硬木的纤维素与半纤维素随着生物老化程度的加深部分降解,菌种吸收营养物质和水分的能力弱化,微观基团减少,密粘褶菌生长养分流失,木材老化延缓,结晶度降低,软木热量扩散和导热能力增强;杉木受微生物腐蚀大,老化危险性高,为此,选择了老化杉木进行了指标体系的建立,确定了生物老化程度的判定准则。 其次,分析了不同升温速率下生物老化木材的热解特性,揭示了不同生物老化程度木材的热解动力学特征。研究表明,随着生物老化程度的加深,木材内部组分被逐渐消耗,碳燃烧反应难度降低,反应时间缩短,重度老化杉木的放热量明显高于轻度老化,且活化能较低;生物老化导致部分纤维素、半纤维素及木质素被分解,造成结构降解。轻度老化木材中半纤维素降解完全,中度老化纤维素分解困难,需要消耗更多的能量,活化能升高。生物老化程度加深,木材组分分解,细胞孔隙变大,热解所需能量降低,平均活化能减小,轻度、中度、重度老化木材机理函数的变化与评价指标划分准则一致。不同生物老化程度木材指前因子与活化能变化趋势线性关系良好,动力学补偿效应明显。 然后,研究了不同辐射强度下生物老化木材的燃烧特性,分析了生物老化作用下点燃时间、质量损失、热释放、烟气产率等关键燃烧参数变化规律。结果表明,随着生物老化程度的加深,木材燃烧过程中维持原有尺寸和形状的性能逐渐减弱;生物老化导致木材表面燃烧过程中热释放速率和点燃时间逐渐降低,重度的生物老化程度会使实验杉木由热厚型转变为热薄性;随着辐射强度的增加生物老化后木材质量损失峰、热释放峰、CO和CO2生成速率峰值出现时间随着生物老化程度的加深而逐渐提前,且强度增强。在不同辐射强度下均为中度、重度老化杉木表面温度大于轻度老化杉木。老化程度的增加,杉木中大部分纤维素被降解,木材结构松散,燃烧性能增强,火灾危险性增大。 最后,阐明了不同生物老化程度木材宏-微观参数之间的关联关系。老化2周杉木的放热量、总产烟量与活性官能团的灰色关联度最高,在轻度和中度老化阶段,O-H及H-O-H官能团是热量释放的主要来源,O-H基团氢键断裂造成放热量较大;在老化的过程中,木质素分子内的O-H基团和杉木纤维素之间的化学键发生断裂产生出更多的活性官能团,其产烟量的变化趋势不断波动,H-O-H逐渐被破坏,降低了木材的硬度和耐久性。C-O-C和C-O基团在杉木老化后期的燃烧反应中发生大规模的断裂,参与氧化反应,生成了碳氧类气体,降低了杉木的结构稳定性和热值。 |
论文外文摘要: |
Cultural relic buildings carry the cultural heritage of the city on a global scale. Wood structure ancient buildings are exposed to the natural environment for a long time, and are vulnerable to the invasion of various microorganisms, resulting in wood biological aging directly affecting the combustion characteristics of wood in ancient buildings. Therefore, this study takes the typical wood of ancient buildings as the research object, puts forward the evaluation index system of wood biological aging degree. The pyrolysis kinetic characteristics of aging wood were analyzed. The combustion characteristics of wood with different aging degrees were mastered, the relationship between macroscopic parameters and microscopic characteristics was determined, and the influence mechanism of different biological aging degrees on wood combustion was revealed, which provided a theoretical basis for fire risk prediction and fire safety assessment of ancient buildings. Firstly, according to the aging characteristics of ancient architectures, combined with GBT13942.1-2009 standard, pine, fir, poplar and elm with different degrees of biological aging were prepared, and the basic physical properties of different wood biological aging were analyzed. With the deepening of biological aging, the surface of wood changed from yellow to grayish brown, the ash content of cork was less than that of hardwood, and the surface of cork cell wall was obviously torn. The cellulose and hemicellulose of hardwood were partially degraded, the ability of bacteria to absorb nutrients and water was weakened, the micro-groups were reduced, the growth nutrients of gloeophyllum trabeum are lost, the wood aging was delayed, the crystallinity was reduced, and the thermal diffusion and thermal conductivity of softwood were enhanced. The establishment of an index system for fir can determine the criteria for determining the degree of biological aging. Secondly, the pyrolysis kinetic characteristics of wood with different biological aging degrees were revealed. Studies have shown that the degree of biological aging was deepened, the internal components of wood were gradually consumed, the difficulty of carbon combustion reaction was reduced, the reaction time was shortened, and the heat release of severely aging fir was significantly higher than that of mildly aging fir. Hemicellulose in mildly aging wood was completely degraded, and cellulose in moderately aging wood was difficult to decompose. The activation energy increased, the wood components were decomposed, the cell pores became larger, the energy required for pyrolysis decreased, and the average activation energy decreased. The change of mechanism function of mild, moderate and severe aging wood was consistent with the evaluation criteria. The linear relationship between the pre-exponential factor and the activation energy of wood with different biological aging degrees was good, and the kinetic compensation effect was obvious. Then, the variation law of key combustion parameters under biological aging was analyzed. With the deepening of biological aging, the performance of maintaining the original size and shape during wood combustion gradually weakened, the heat release rate and ignition time gradually decreased, and the severe biological aging degree would make fir change from hot-thick material to hot-thin material. With the increase of radiation intensity, the appearance time of wood mass loss peak, heat release peak, CO and CO2 formation rate peak after biological aging gradually advanced with the deepening of biological aging degree, and the strength increased. Under different radiation intensities, the surface temperature of moderately and severely aging fir was greater than that of slightly aging fir. With the increase of aging degree, the combustion was enhanced and the fire risk was increased. Finally, the relationship between macro-micro parameters of wood with different degrees of biological aging was clarified. In the mild and moderate aging stages, O-H and H-O-H functional groups were the main sources of heat release, and the hydrogen bond breakage of O-H groups causes a large amount of heat release. The chemical bond between the O-H group in the lignin molecule and the fir cellulose was broken to produce more active functional groups. The change trend of the smoke production was constantly fluctuating, and the H-O-H was gradually destroyed, which reduces the hardness and durability of the wood. The C-O-C and C-O groups were broken on a large scale during the combustion reaction in the later stage of fir aging, and participated in the oxidation reaction to generate carbon and oxygen gases, which reduced the structural stability and calorific value of fir. |
参考文献: |
徐卫民,曾丽荣.陕西省文化遗产时空分布格局及形成因素研究——以全国重点文物保护单位为例[J].西北大学学报(自然科学版),2021,51(03):438-446. 王秀伟,郭智婳.红色革命遗址及革命纪念建筑物的空间分布格局与影响因素——基于315处全国重点文物保护单位的研究[J].南方文物,2021(02):102-110. 袁春燕,郎雨佳,王坤,等.砖木结构古建筑不同风速下火灾蔓延规律研究[J].消防科学与技术,2021,40(05):643-648. 袁春燕,郑高凯,郎雨佳,等.考虑不同场景的砖木结构古建筑火灾特征研究[J].中国安全生产科学技术,2019,15(10):158-164. 吴俊奇,张婧,曾雪华.新时期我国古建筑消防安全的现状及对策研究[J].给水排水,2017,53(04):85-90. 孙威,韦善阳,田筱,许石青,石美.贵州少数民族村寨火灾风险综合评价[J].中国安全科学学报,2020, 30(10):126-133. 张斌,马星霞,蒋明亮,李晓文.古建筑木构件有机型防腐防虫剂制备及其效果[J].林业科学,2021, 57(08):167-175. 娄万里,任海青.木结构建筑的特征及在我国的发展前景[J].木材工业,2015,29(05):20-23. 杨忠,任海青,江泽慧.生物腐朽对湿地松木材力学性质影响的研究[J].北京林业大学学报,2010,32(03):146-149. 田慧峰,张欢,孙大明,等.中国大陆绿色建筑发展现状及前景[J].建筑科学,2012,28(04):1-7+68. 王雪亮,张帆,李瑞政,等.加速腐朽环境下木构件的强度退化时变模型[J].武汉理工大学学报,2015,37(06):76-80. 赵博识,于志明,漆楚生,等.木材微生物变色与调控研究现状和展望[J].林产工业,2019,46(08):1-4. 许萍,刘壮壮,秦嘉琦,等.基于Fluent模拟降雨对木结构古建筑室内温湿度的影响[J].林产工业,2021,58(08):85-89+92. 许士玉,王婧,李淑君.杉木提取物对木材腐朽菌的抑制性能[J].东北林业大学学报,2012,40(11):120-122+150. 李贤斌,濮凡,邹丽,等.古建筑木板壁结构对室内火蔓延过程影响研究[J].中国安全科学学报,2019,29(11):45-50. 邢东,李坚,王思群.基于CONE法的热处理杨木燃烧特性研究[J].林产工业,2020,57(03):15-18+24. 刘欣,徐晔,王秋玉.白桦木材抗腐和易腐植株主要化学成分的比较[J].北京理工大学学报,2010,30(03):348-352. 李安鑫,吕建雄,蒋佳荔.木材细胞壁结构及其流变特性研究进展[J].林业科学,2017,53(12):136-143. 吴芳,范龙飞,刘世良,等.中国山西省大型木材腐朽菌多样性研究[J].菌物学报,2017,36(11):1487-1497. 王洁,唐宁,张边江.水青树生物学特性及培育技术研究进展[J].分子植物育种,2019,17(08):2701-2704. 岳小泉,王立海,徐庆波.腐朽对木材微观结构和金属元素含量的影响[J].西北林学院学报,2017,32(06):234-239. 戴玉成.中国木本植物病原木材腐朽菌研究[J].菌物学报,2012,31(04):493-509. 马星霞,蒋明亮,王洁瑛.气候变暖对中国木材腐朽及白蚁危害区域边界的影响[J].林业科学,2015,51(11):83-90. 岑晓倩,张亚庆,陈林碧,等.毛竹和重组竹腐朽前后的表面颜色及耐腐性能[J].森林与环境学报,2021,41(03):331-336. 陈妍,简立燕,陈凤,等.倒木木材腐朽真菌高产纤维素酶培养条件优化[J].森林与环境学报,2021,41(04):382-387. 一言,陈昀.全国重点文物保护单位统计特征分析与研究[J].东南文化,2021(04):6-15. Schwarze FWMR. Wood decay under the microscope [J]. Fungal Biology Reviews, 2007, 21(04):133−170. 葛晓雯,王立海,侯捷建,等.褐腐杨木微观结构, 力学性能与化学成分的关系研究[J].北京林业大学学报,2016,38(10):112−122. 程献宝.初期褐腐对杉木宏观和组织力学性能的影响[D].中国林业科学研究院,2011. 李伟,李贤军,王望,等.木材腐朽机理研究现状及展望[J].世界林业研究,2022,35(02):64-69. 杨忠,江泽慧,任海青.木材加速腐朽试验方法的研究[J].木材工业.2007,(04):12-14. 刘文斌.故宫古建筑木构件化学成分及抗弯强度的变化与腐朽的相关性研究[D].北京林业大学, 2006. 黄荣凤,伍艳梅,李华,等.古建筑旧木材腐朽状况皮罗钉检测结果的定量分析贝林业科学,2010, 46(10):114-118. 孙天用.小兴安岭红松活立木树干腐朽定量检测及与立地条件关系[D].东北林业大学, 2015. 刘元初,刘莹莹,魏庆健,等.热处理温度对麻栎木材尺寸稳定性的影响[J].东北林业大学学报,2022,50(11):99-101+118. 许琪.重组竹无损检测评价及耐腐性试验研究[D].东南大学,2019. 陈凯文,彭辉,蒋佳荔,等.热处理木材光变色机理及防治方法的研究进展[J].木材科学与技术,2022,36(02):11-17. Schweingruber FH, Brner A. Wood decay [M]. 2018. 洪澎涛,郭妍,胡海清.基于热重分析的大兴安岭乔灌木树种燃烧性[J].中南林业科技大学学报,2022,42(11):80-93. 张恒,甄雅星,李佳艳,等.内蒙古大兴安岭典型乔灌树种及其地表死可燃物热解特性[J].林业科学,2020,56(07):104-114. 刘波,时章明,何金桥,等.生物质残余物燃烧特性热重分析[J].中南大学学报(自然科学版),2015,46(03):1118-1122. 高飞飞,辛颖,王新然,等.东北地区五种阔叶木树叶热解实验研究[J].消防科学与技术,2020,39(02):164-166. 郎盼盼,刘鹏,李艳玲等.不同木屑类生物质热解动力学与热力学参数研究[J].林产工业,2022,59(07):30-37+52. 张润禾,王体朋,陆强等.大叶黄杨木质素的高效提取及热解特性研究[J].太阳能学报,2018,39(09):2656-2659. 袁诚,翟胜丞,章一蒙等.红外光谱结合热重法对考古木材降解状况的分析[J].光谱学与光谱分析,2020,40(09):2943-2950. 李智,颜述,李静.大理传统木构建筑构件热解特性研究[J].消防科学与技术,2018,37(08):1044-1046. 怀超平,刘芳,董佩文等.木材热重试验及动力学分析[J].消防科学与技术,2020,39(06):757-760. 刘家豪,辛颖,薛伟等.基于热重分析的帽儿山地区6种乔木燃烧性研究[J].森林工程,2023,39(01):54-62. 洪澎涛,郭妍,胡海清.基于热重分析的大兴安岭乔灌木树种燃烧性[J].中南林业科技大学学报,2022,42(11):80-93. 张今奇,李向晨,李显玉等.5种乔木可燃物不同升温速率下的热重研究[J].消防科学与技术,2022,41(12):1732-1736. 吴三军,赵泽航,刘磊等.利用快速升温大尺寸热重分析对松木热解特性的研究[J].燃烧科学与技术,2020,26(04):325-331. 杨华美,蒋菊,刘望,等.纤维素/木质素共热解过程中的气相反应[J].河北大学学报(自然科学版),2022,42(03):273-280. 方书起,蒋璐瑶,李攀,等.不同预处理生物质的热解及催化热解特性研究[J].华中科技大学学报(自然科学版): 2021,1-6. 孙堂磊.木质纤维素类生物质定向热解产物分布规律及实验研究[D].河南农业大学,2021. 范宇阳,雷鸣,孔祥琛,等.枫木木质素热解自由基演变规律研究[J].太阳能学报,2022,43(11):352-357. 田杰,娄瑞,薛香玉,等.纳米木质素的热解特性及其反应动力学分析[J].林产化学与工业,2021,41(06):97-104. 李社锋,方梦祥,舒立福,等.几种常用木材热解(燃烧)后的烟气析出规律试验研究[J].能源工程,2006(02):6-11. 胡皓玮,祁桢尧,时敬军,等.不同外部辐射热流下小尺寸原木燃烧特性实验研究[J].清华大学学报(自然科学版),2022,62(06):1023-1030. 余明高,杨克,贾海林,等.超细水雾抑制受限空间木材燃烧的实验研究[J]. 热科学与技术,2009,8(02):156-163. 沈德魁,余春江,方梦祥,等.热辐射下常用木材热解的动力学与燃烧特性[J]. 燃烧科学与技术,2008,14(05):446-452. 邓军,宋佳佳,赵婧昱,等.自然老化木材燃烧过程热行为特性研究[J].中国安全科学学报,2022,32(02):83-89. 李文珠,章亮,于子绚,等.竹炭/聚氯乙烯复合板材的性能[J].林业工程学报,2021,6(01):50-57. 陈玲,黄润州,刘秀娟,等.木橡塑复合材料的燃烧降解特性[J].林业科技开发,2015,29(04):90-94. 徐青峰.胡桃木板材下表面火蔓延过程研究[D].西安科技大学,2018. 董洋,艾梁辉,刘俊邦,刘平.阻燃聚脲弹性体的制备及性能[J].高分子材料科学与工程,2023:1-11. |
中图分类号: | TU998.1 |
开放日期: | 2024-06-19 |