- 无标题文档
查看论文信息

论文中文题名:

 聚氯乙烯分子结构缺陷的稳定化修饰和可再生自修复性能研究    

姓名:

 寇孟颖    

学号:

 22213225052    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 材料与化工    

研究方向:

 通用高分子材料的高性能化功能化    

第一导师姓名:

 李侃社    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-12    

论文答辩日期:

 2025-05-30    

论文外文题名:

 Research on Stabilization Modification of Molecular Defects and Renewable Self-Healing Performance in PVC    

论文中文关键词:

 PVC ; 热稳定性 ; 呋喃环 ; Diels-Alder反应 ; 自修复    

论文外文关键词:

 PVC ; thermal stability ; furan ring ; Diels-Alder reaction ; self-repairing    

论文中文摘要:

中国作为全球聚氯乙烯(PVC)第一生产与应用大国,其产能产量约占全球45%,且PVC是维持氯碱工业氯平衡的关键产品。然而,PVC固有的热稳定性不足和循环利用困难严重制约了其可持续发展。本文针对PVC分子链中不稳定氯原子(结构缺陷)导致的热稳定性差这一问题,提出一种基于分子结构修饰与可逆交联协同提升PVC性能的策略,选取三种呋喃基化合物通过化学反应替换PVC分子链上不稳定的氯原子,从分子层面消除热降解主要引发点,改善其热稳定性;通过合成双马型钙锌热稳定剂与引入的呋喃环发生热可逆Diels-Alder反应,在PVC内部形成可逆共价交联网络,实现PVC材料的可逆共价交联增强和可修复循环利用,协同实现PVC制品的高性能化与功能化,为其可持续发展提供新途径。本论文主要研究内容与结果如下:
(1)通过一锅法成功实现了糠醇、糠酸与PVC之间的亲核取代反应,糠醛与PVC之间的瑞福马斯基反应;通过红外,拉曼,核磁表征,证明成功制备了接枝改性PVC材料(Fa-g-PVC、Fm-g-PVC和FF-g-PVC)。三种改性PVC材料经刚果红测试,静态热稳定时间分别延长8.08 min、7.59 min和5.74 min,延迟了PVC脱HCl的时间;热解第一阶段因呋喃甲氧基/呋喃甲羧基/呋喃甲羟基取代不稳定氯后主链稳定性增强,PVC主链的脱HCl反应被抑制(Cl含量减少)最大失重率降低;通过热降解动力学参数计算,Fa-g-PVC和Fm-g-PVC热降解第一阶段脱HCl反应活化能提高,热稳定性得到提升。
(2)基于生物基呋喃(二烯体)与马来酸酐(亲双烯体)的热可逆D-A动态反应,成功合成了双马型钙锌热稳定剂,通过单因素试验法得出糠醛与PVC反应的最优条件,与自制双马型钙锌热稳定剂和FF-g-PVC形成自修复体系。通过元素分析、熔点测定、红外光谱确定了产物的合成,通过改变钙锌热稳定剂不同质量确定最佳配比;通过红外和核磁氢谱表征自修复前后的分子结构,证实了D-A动态交联网络的可逆形成;通过SEM观察到自修复后的PVC也由脆性断裂转变为延性断裂;热重分析表明其热稳定性获得提升;对合成的PVC样板进行力学性能测试,经热处理一次后的样品拉伸强度修复率为56.81%,实现了PVC材料的自修复。
 

论文外文摘要:

As the world’s leading producer and consumer of polyvinyl chloride (PVC), China accounts for approximately 45% of global production capacity and output. PVC serves as a crucial product for maintaining chlorine balance in the chlor-alkali industry. However, its inherent thermal instability and recycling challenges severely constrain sustainable development. This study addresses the poor thermal stability caused by labile chlorine atoms (structural defects) in PVC molecular chains. We propose a synergistic strategy combining molecular structural modification with reversible cross-linking to enhance PVC performance. Three furan-based compounds were selected to substitute unstable chlorine atoms on PVC chains through chemical reactions, eliminating primary thermal degradation initiation sites at the molecular level and improving thermal stability. Simultaneously, a bismaleimide calcium-zinc thermal stabilizer was synthesized to undergo thermally reversible Diels-Alder reactions with the introduced furan rings. This forms reversible covalent cross-linking networks within PVC, enabling reinforcement and repairable recyclability. The synergistic approach achieves both high-performance functionalization of PVC products and provides a novel pathway toward sustainable development. The main research contents and results of this thesis are as follows:
(1) The nucleophilic substitution reactions between furfural, furfonic acid and PVC, as well as the Rovema-Smak reaction between furfural and PVC were successfully achieved using the one-pot method. Through infrared, Raman and nuclear magnetic resonance characterization, it was proved that the graft-modified PVC materials (Fa-g-PVC, Fm-g-PVC and FF-g-PVC) were successfully prepared. After being tested with Congo red, the static thermal stability times of the three modified PVC materials were extended by 8.08 min, 7.59 min and 5.74 min respectively, delaying the time of PVC losing HCl; in the first stage of thermal decomposition, due to the instability of the chlorine after the substitution of furan methoxy/furan monocarboxylate/furan methoxy group on the main chain, the stability of the PVC main chain was enhanced, and the HCl removal reaction of the main chain was inhibited (the content of Cl decreased) and the maximum weight loss rate decreased; through the calculation of thermal degradation kinetic parameters, the activation energy of the HCl removal reaction in the first stage of thermal degradation of Fa-g-PVC and Fm-g-PVC increased, and the thermal stability was improved.
(2) Based on the thermally reversible D-A dynamic reaction of bio-based furan (diene) and maleic anhydride (dienophile), a bis-maleimide calcium-zinc heat stabilizer was successfully synthesized. The optimal conditions for the reaction between furfural and PVC were obtained through single-factor experiment method, and a self-repairing system was formed with the self-maleimide calcium-zinc heat stabilizer and FF-g-PVC. The synthesis of the product was determined by elemental analysis, melting point determination and infrared spectroscopy. The optimal ratio was determined by changing the mass of calcium-zinc heat stabilizer; the molecular structure before and after self-repair was characterized by infrared and nuclear magnetic resonance hydrogen spectra, confirming the reversible formation of D-A dynamic crosslinking network; SEM observation showed that the PVC after self-repair also changed from brittle fracture to ductile fracture; Thermogravimetric analysis indicates that its thermal stability has been enhanced; mechanical properties of the PVC sample after thermal treatment once were tested, and the repair rate of tensile strength was 56.81% after one-time thermal treatment, achieving the self-repair of PVC materials.
 

参考文献:

[1] Lima R, Silva J, Vasconcelos M, et al. Bibliometric survey of the PVC production-Part I: the continuous polymerization challenge [J]. Polímeros, 2023, 33(2): 1678-5169.

[2] Khan S, Iqbal A. Organic polymers revolution: Applications and formation strategies, and future perspectives [J]. Polymer Science and Engineering, 2023, 6(1): 3125.

[3] 蓝凤祥. 世界聚氯乙烯工业技术进展 [J]. 聚氯乙烯, 2001, (03): 1-17.

[4] 邴涓林, 孔涛, 吴晓坤. “十三五”期间中国PVC产业回顾和展望 [J]. 聚氯乙烯, 2021, 49(10): 1-7.

[5] Kim J, Lee J, Jo C, et al. Development of low cost carbon fibers based on chlorinated polyvinyl chloride (CPVC) for automotive applications [J]. Materials & Design, 2021, 204(6): 109682.

[6] 姜铁竹, 张彬彬, 杨雷, 等. 不同挥发分的氯化聚乙烯对PVC改性的影响 [J]. 聚氯乙烯, 2024, 52(04): 25-27.

[7] Safarpour M, Safikhani A, Vatanpour V. Polyvinyl chloride-based membranes: A review on fabrication techniques, applications and future perspectives [J]. Separation and Purification Technology, 2021, 279(2): 119678.

[8] Li R, Lu S, Tian G, et al. Effect of isomer and defect structure on the thermal stability of polyvinyl chloride: An experiment and molecular dynamics simulation [J]. Polymer Degradation and Stability, 2022, 198: 109894.

[9] 郭珺, 王在花, 杨英. 聚氯乙烯在化学建材领域的发展现状及前景分析 [J]. 石油化工技术与经济, 2024, 40(06): 14-17.

[10] Ferguson C T J, Parkatzidis K. Emerging horizons in polymer applications[J]. Materials Horizons, 2025, 12: 2040-2044.

[11] Saleh T A, Ahmed A S, Hussein A K, et al. Modified poly (vinyl chloride) by unique heterocyclic molecule and examine its photo-stability in existence of nano-metallic oxides [J]. Journal of Polymer Research, 2024, 31(2): 42.

[12] Li J, Liu H, Qin Y, et al. Preparation and performance of magnetic carbon nanotubes modified PVC substrate composite nanofiltration membranes [J]. Environmental Chemical Engineering, 2024, 12(2): 112273.

[13] Cuccato D, Dossi M, Moscatelli D, et al. A density functional theory study of poly (vinyl chloride)(PVC) free radical polymerization [J]. Macromolecular Symposia, 2011, 302(1): 100-109.

[14] Elgharbawy A. Poly vinyl chloride additives and applications-a review [J]. Risk Analysis and Crisis Response, 2022, 12(3): 143-151.

[15] Rasko D A, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease [J]. Nature reviews Drug discovery, 2010, 9(2): 117-128.

[16] Tahira B E, Khan M I, Saeed R, et al. A review: thermal degradation and stabilization of poly (vinyl chloride) [J]. Research, 2014, 1(6): 732-750.

[17] 李宁宁. 氯乙烯聚合反应过程及工艺流程模拟的研究 [J]. 辽宁化工 ,2024, 53(02): 3 03-306.

[18] Li R , Lu S , Tian G ,et al. Effect of isomer and defect structure on the thermal stability of polyvinyl chloride: An experiment and molecular dynamics simulation [J]. Polymer Degradation and Stability, 2022(198): 109894.

[19] Abreu C M R, Fonseca A C, Rocha N M P, et al. Poly (vinyl chloride): current status and future perspectives via reversible deactivation radical polymerization methods [J]. Progress in Polymer Science, 2018, 87: 34-69.

[20] 徐敏, 雷俊伟, 高瑞通, 等. 聚氯乙烯热解动力学及热解产物组成研究 [J]. 石油学报(石油加工), 2024, 40(02): 462-471.

[21] Morsy A, Anwar A, Anwar H, et al. Utilizing a blend of expandable graphite and calcium/zinc stearate as a heat stabilizer environmentally friendly for polyvinyl chloride [J]. SPE Polymers, 2024, 5(1): 45-57.

[22] Li D , Liu P .Trends and prospects for thermal stabilizers in polyvinyl chloride [J]. Vinyl & Additive Technology, 2022, 28(4): 669-688.

[23] Yu J, Sun L, Ma C, et al. Thermal degradation of PVC: A review [J]. Waste management, 2016, 48: 300-314.

[24] Wypych G. PVC degradation and stabilization [J]. PVC Degradation & Stabilization, 2008: 167-203.

[25] Kuznetsov S M, Sagitova E A, Prokhorov K A, et al. Raman spectroscopic detection of polyene-length distribution for high-sensitivity monitoring of photo-and thermal degradation of polyvinylchloride [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 252: 119494.

[26] 陈虹茹, 邹琴. 光降解塑料性能的快速测定 [J]. 广州化工, 2024, 52(21): 68-71.

[27] Kuznetsov S M, Sagitova E A, Prokhorov K A, et al. Dependence of C=C stretching wavenumber on polyene length in degraded polyvinyl chloride: a comparative empirical, classical mechanics, and DFT study [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 282: 121653.

[28] Geddes W C. Mechanism of PVC degradation [J]. Rubber Chemistry and Technology, 1967, 40(1): 177-216.

[29] Yu J, Sun L, Ma C, et al. Thermal degradation of PVC: A review[J]. Waste management, 2016, 48: 300-314.

[30] Gerald Scott, Menashe Tahan, Joseph Vyvoda. The effect of thermal processing on PVC-I. Chemical and physical changes in unstabilized PVC [J]. European Polymer Journal, 1978, 13: 377-383.

[31] Troitskii B B, Troitskaya L S, Myakov V N, et al. Mechanism of the thermal degradation of poly (vinyl chloride) [J]. Polymer Science: Polymer Symposia. New York: Wiley Subscription Services, Inc., A Wiley Company, 1973, 42(3): 1347-1361.

[32] Troitskii B B, Troitskaya L S, Denisova V N, et al. Kinetics of initial stage of the thermal dehydrochlorination of poly (vinyl chloride) [J]. Polymer Journal, 1978, 10(4): 377-385.

[33] 梁国伟, 梁国超, 梁源德. PVC用热稳定剂的制备及性能研究 [J]. 山西化工, 2024, 44(04): 21-23.

[34] 肖明, 李玉芳. 热稳定剂在聚氯乙烯中的应用研究进展 [J]. 精细与专用化学品, 2025, 33(03): 33-35.

[35] Chelil O, Belhaneche-Bensemra N, GARCIA D L, et al. Preparation of epoxidized sunflower oil metal soap derivatives and their use as heat stabilizers for polyvinyl chloride [J]. Turkish Journal of Chemistry, 2019, 43(2): 582-593.

[36] Benaniba M T, Belhaneche-Bensemra N, Gelbard G. Stabilization of PVC by epoxidized sunflower oil in the presence of zinc and calcium stearates [J]. Polymer Degradation and Stability, 2003, 82(2): 245-249.

[37] Ghani H, Yousif E, Ahmed D S, et al. Tin complexes of 4-(benzylideneamino) benzenesulfonamide: Synthesis, structure elucidation and their efficiency as PVC photostabilizers [J]. Polymers, 2021, 13(15): 2434.

[38] Ali M M, El-Hiti G A, Yousif E. Photostabilizing efficiency of poly (vinyl chloride) in the presence of organotin (IV) complexes as photostabilizers[J]. Molecules, 2016, 21(9): 1151.

[39] Liu Z, Fan J, Feng J, et al. Study on the use of rare earth stabilizer as poly (vinyl chloride) stabilizer [J]. Journal of Vinyl and Additive Technology, 2020, 26(4): 536-547.

[40] Wang M, Wu T, Bu Q, et al. Rare earth Ce based metal organic framework as efficient synergistic thermal stabilizer for PVC: Preparation and thermal stabilization behavior [J]. Thermochimica Acta, 2022, 718: 179365.

[41] 梁斌, 张磊, 于永玲, 等. 变温聚合工艺对聚合反应速率及PVC树脂性能的影响 [J].合成树脂及塑料, 2013, 30(01): 19-21.

[42] 肖露云. PVC硬管加工工艺分析与控制 [J]. 科技资讯, 2008, (05): 25.

[43] Lieberzeit P, Bekchanov D, Mukhamediev M. Polyvinyl chloride modifications, properties, and applications [J]. Polymers for Advanced Technologies, 2022, 33(6): 1809-1820.

[44] 刘祥贵, 方伟, 舒洪斌, 等. 水滑石填充PVC复合材料的制备及性能研究 [J]. 中国塑料, 2021, 35(07): 63-68.

[45] Rusu M, Sofian N, Ibanescu C, et al. Mechanical and Thermal Properties of Copper-Powder-Filled High Density Polyethylene Composites [J]. Polymers and Polymer Composites, 2024, 8(6): 427-435.

[46] Deshmukh S P, Rao A C, Gaval V R, et al. Mica-Filled PVC Composites: Effect of Particle Size, Filler Concentration, and Surface Treatment of the Filler, on Mechanical and Electrical Properties of the Composites [J]. Thermoplastic Composite Materials, 2011, 24(5): 583-599.

[47] Singh R, Nazim M, Kini G P, et al. Perovskite-Based Photovoltaics for Artificial Indoor Light Harvesting: A Critical Review [J]. Solar RRL, 2023, 7(1): 1-25.

[48] 陆初典, 杨爱梅, 李华宇, 等. 不同碳酸钙填充PVC压延膜性能探究 [J]. 塑料工业, 2023, 51(S1): 98-102.

[49] Liang C, Zheng S, Chen Z, et al. Study on surface modification of ground calcium carbonate with novel modifier and its PVC filling performance [J]. Powder Technology, 2022, 412: 118028.

[50] Hashmi S U M, Iqbal M A, Malik M, et al. Synthesis and characterization of polyvinyl chloride matrix composites with modified scrap iron for advanced electronic, photonic, and optical systems [J]. Nanomaterials, 2022, 12(18): 3147.

[51] Kausar A .A review of filled and pristine polycarbonate blends and their applications [J]. Plastic Film & Sheeting, 2018, 34(1): 60-97.

[52] Boraei S B A, Bakhshandeh B, Mohammadzadeh F, et al. Clay-reinforced PVC composites and nanocomposites [J]. Heliyon, 2024, 10(7): e29196.

[53] Bormashenko E, Legchenkova I, Navon-Venezia S, et al. Investigation of the Impact of Cold Plasma Treatment on the Chemical Composition and Wettability of Medical Grade Polyvinylchloride [J]. Applied Sciences, 2021, 11(1): 300.

[54] Zhang C, Chai R, Chen T, et al. High rubber elasticity and thermal conductivity in plasticized polyvinyl chloride film with flame retardancy and smoke suppression properties [J]. Journal of Applied Polymer Science, 2025, 142(5): e56426.

[55] Liu B, Wang Y, Gao Y, et al. Effect of the matrix plasticization behavior on mechanical properties of PVC/ABS blends [J]. Journal of Polymer Engineering, 2017, 37(3): 239-245.

[56] Dumitrascu N, Balau T, Tasca M, et al. Corona discharge treatment of the plastified PVC films obtained by chemical grafting [J]. Materials Chemistry & Physics, 2000, 65(3): 339-344.

[57] You J, Jiang Z, Jiang H, et al. A “Plasticizing-Foaming-Reinforcing” approach for creating thermally insulating PVC/polyurea blend foams with shape memory function [J]. Chemical Engineering Journal, 2022, 450: 138071.

[58] Hammiche D, Boukerrou A, Guermazi N, et al. Effects of types of PVC-g-MA on wettability and dynamical behavior of polyvinyl Chloride/Alfa composites [J]. Materials Today: Proceedings, 2020, 36: 10-15.

[59] Tang Q, Liu M, Liu B, et al. Acrylonitrile-styrene-acrylate particles with different acrylonitrile contents for improving the toughness of poly (vinyl chloride) resin [J]. Journal of Applied Polymer Science, 2024, 141(12): e55108.

[60] Liu Y, Duan H. Electrocatalysis enables polyvinyl chloride functionalization [J]. Chemistry, 2025, 11(2): 1-3.

[61] Hammiche D, Boukerrou A, Djidjelli H, et al. Effects of Some PVC-Grafted Maleic Anhydrides (PVC-g-MAs) on the Morphology, and the Mechanical and Thermal Properties of (Alfa Fiber) Reinforced PVC Composites [J]. Vinyl & Additive Technology, 2013, 19(4): 226-232.

[62] Yan H, Wei C, Wang Z, et al. Electromechanical Performances of Polyvinyl Chloride Gels Using (Polyvinyl Chloride-Co-Vinyl Acetate) (P(VC-VA)) Synergistic Plasticization [J]. Polymers, 2024, 16: 1-12.

[63] Liu H, Liu Y, Qin Y, et al. Amphiphilic surface construction and properties of PVC-g-PPEGMA/PTFEMA graft copolymer membrane [J]. Applied Surface Science, 2021, 545: 1-14.

[64] She J, Gao H, Song Z, et al. Improvement of persistent hydrophilicity and pore uniformity of polyvinyl chloride ultrafiltration membranes by in-situ crosslinking reaction assisted phase separation [J]. Membrane Science, 2023, 684: 121884.

[65] She J, Gao H, Song Z, et al. ‘Green’fabrication of PVC ultrafiltration membranes with high-flux and improved hydrophilicity by in-situ interpenetration of hydrophilic crosslinking networks [J]. Membrane Science, 2024, 693: 122383.

[66] Van der Zwaag S, Grande A M, Post W, et al. Review of current strategies to induce self-healing behaviour in fibre reinforced polymer based composites [J]. Materials science and technology, 2014, 30(13): 1633-1641.

[67] Paolillo S, Bose R K, Santana M H, et al. Intrinsic self-healing epoxies in polymer matrix composites (PMCs) for aerospace applications [J]. Polymers, 2021, 13(2): 201.

[68] Dong Yu Z, Min Zhi R, Ming Qiu Z. Self-healing polymeric materials based on microencapsulated healing agents: From design to preparation [J]. Progress in Polymer science, 2015, 49: 175-220.

[69] Sun Y, Wang S, Dong X, et al. Optimized synthesis of isocyanate microcapsules for self-healing application in epoxy composites [J]. High Perform Polym, 2020, 32: 669-680.

[70] An S, Yoon S S, Lee M W. Self-healing structural materials [J]. Polymers, 2021, 13(14): 2297.

[71] Willocq B, Bose R K, Khelifa F, et al. Healing by the Joule effect of electrically conductive poly (ester-urethane)/carbon nanotube nanocomposites [J]. Journal of Materials Chemistry A, 2016, 4(11): 4089-4097.

[72] Mangialetto J, Gorissen K, Vermeersch L, et al. Hydrogen-Bond-assisted Diels–Alder kinetics or self-healing in reversible polymer networks? A combined experimental and theoretical study [J]. Molecules, 2022, 27(6): 1961.

[73] McReynolds B T, Mojtabai K D, Penners N, et al. Understanding the effect of side reactions on the recyclability of furan-Maleimide resins based on thermoreversible Diels-Alder network [J]. Polymers, 2023, 15(5): 1106.

[74] Chen S, Feng Y, Zhang Z Y, et al. Catalyzed Michael addition, polycondensation, and the related performance of Diels-Alder self-healing crosslinked polyamides [J]. Polymer Engineering & Science, 2022, 62(4): 1269-1280.

[75] Uzaki M, Shibata M. Preparation and properties of self-healing tung oil-based polymer networks driven by thermo-reversible Diels-Alder reaction [J]. Journal of Polymer Research, 2022, 29(11): 453.

[76] Zhao J, Chen S, Zhao J, et al. Synthesis and properties of strong and tough Diels-Alder self-healing crosslinked polyamides [J]. Polymer Research, 2021, 28: 1-9.

[77] Liang S, Wang P, Sun Z, et al. Microcrack self‐healing capability of waterborne polyurethane/polyacrylate composites with dynamic disulfide bond [J]. Applied Polymer Science, 2023, 140(16): e53744.

[78] Wen J, Wang L, Li R, et al. Design and properties of dynamic self‐healing polyurea molecule based on disulfide bonds [J]. Applied Polymer Science, 2023, 140(6): e53436.

[79] Deng Y, Zhang Q, Feringa B L, et al. Toughening a self-healable supramolecular polymer by ionic cluster‐enhanced iron-carboxylate complexes [J]. Angewandte Chemie, 2020, 132(13): 5316-5321.

[80] Li B, Cao P F, Saito T, et al. Intrinsically self-healing polymers: from mechanistic insight to current challenges [J]. Chemical Reviews, 2022, 123(2): 701-735.

[81] Diba M, Spaans S, Ning K, et al. Self‐healing biomaterials: from molecular concepts to clinical applications [J]. Advanced Materials Interfaces, 2018, 5(17): 1800118.

[82] Lee J K, Hong S J, Liu X, et al. Characterization of dicyclopentadiene and 5-ethylidene-2-norbornene as self-healing agents for polymer composite and its microcapsules [J]. Macromolecular Research, 2004, 12: 478-483.

[83] Cuvellier A, Torre-Muruzabal A, Kizildag N, et al. Coaxial electrospinning of epoxy and amine monomers in a pullulan shell for self-healing nanovascular systems [J]. Polym Testing, 2018, 69: 146-156.

[84] Lee M W, Sett S, An S, et al. Self-healing nanotextured vascular-like materials: Mode I crack propagation [J]. ACS Applied Materials & Interfaces, 2017, 9(32): 27223-27231.

[85] Utrera-Barrios S, Verdejo R, López-Manchado M A, et al. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: A review [J]. Materials Horizons, 2020, 7(11): 2882-2902.

[86] Blaiszik B J, Sottos N R, White S R. Nanocapsules for self-healing materials [J]. Composites Science and Technology, 2008, 68(3-4): 978-986.

[87] Keller M W, White S R, Sottos N R. A self‐healing poly (dimethyl siloxane) elastomer [J]. Advanced Functional Materials, 2007, 17(14): 2399-2404.

[88] Kwon H J, Lee E J, Kim M R, et al. Encapsulation of peroxide initiator in a polyurea shell: Its characteristics and effect on MMA polymerization kinetics [J]. Macromolecular research, 2019, 27: 198-204.

[89] White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymer composites [J]. Nature, 2001, 409(6822): 794-797.

[90] Van Tittelboom K, De Belie N. Self-healing in cementitious materials—A review [J]. Materials, 2013, 6(6): 2182-2217.

[91] Kwak S Y, Giraldo J P, Lew T T S, et al. Polymethacrylamide and carbon composites that grow, strengthen, and self‐repair using ambient carbon dioxide fixation [J]. Advanced Materials, 2018, 30(46): 1804037.

[92] Toohey K S, Sottos N R, Lewis J A, et al. Self-healing materials with microvascular networks [J]. Nature materials, 2007, 6(8): 581-585.

[93] Briou B, Améduri B, Boutevin B. Trends in the Diels-Alder reaction in polymer chemistry [J]. Chemical Society Reviews, 2021, 50(19): 11055-11097.

[94] Chen X, Dam M A, Ono K, et al. A thermally re-mendable cross-linked polymeric material [J]. Science, 2002, 295(5560): 1698-1702.

[95] Cordier P, Tournilhac F, Soulié-Ziakovic C, et al. Self-Healing and Thermoreversible Rubber from Supramolecular Assembly [J]. Nature, 2008, 451, 977-980.

[96] Burattini S, Greenland W, Merino H, et al. A Healable Supramolecular Polymer Blend Based on Aromatic Π-Π Stacking and Hydrogen-Bonding Interactions [J]. American Chemical Society, 2010, 132, 12051-12058.

[97] 孙佳莹. PVC的热稳定及可修复性能研究 [D]. 西安科技大学, 2019.

[98] Edo G I, Ndudi W, Ali A B M, et al. Poly (vinyl chloride)(PVC): an updated review of its properties, polymerization, modification, recycling, and applications [J]. Materials Science, 2024: 1-44.

[99] Miao H, Ling H, Shevchenko N, et al. Generation of Organozinc Nucleophiles Based on the Biomass-Derived Platform Molecule 5-(Chloromethyl)furfural [J]. Organometallics, 2021, 40(23): 3952-3957.

[100] Dilman A D, Levin V V. Advances in the chemistry of organozinc reagents [J]. Tetrahedron Letters, 2016, 57(36): 3986-3992.

[101] Zhao K, Wen B, Tang Q, et al. Recent catalytic innovations in furfural transformation [J]. Green Chemistry, 2024, 26(19): 9957-9992.

[102] Dilman A D, Levin V V. Advances in the chemistry of organozinc reagents [J]. Tetrahedron Letters, 2016, 57(36): 3986-3992.

[103] Li D, Liu S, Gu L, et al. Preparation of rare earth complexes with curcumin and their stabilization for PVC [J]. Polymer Degradation and Stability, 2021, 184: 109480.

[104] Chen S, Zhao C. Production of highly symmetrical and branched biolubricants from lignocellulose-derived furan compounds [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(32): 10818-10826.

[105] Nafie L A, Yu G S, Qu X, et al. Comparison of IR and Raman forms of vibrational optical activity [J]. Faraday Discussions, 1994, 99: 13-34.

[106] 孙立科, 林洋, 关彦军, 等. PVC合成树脂技术及性能改进研究进展 [J]. 化工新型材料, 2024, 52(12): 74-80.

[107] Lee T, Oh J I, Baek K, et al. Compositional modification of pyrogenic products using CaCO3 and CO2 from the thermolysis of polyvinyl chloride (PVC) [J]. Green Chemistry, 2018, 20(7): 1583-1593.

[108] Edo G I, Ndudi W, Ali A B M, et al. Poly (vinyl chloride)(PVC): an updated review of its properties, polymerization, modification, recycling, and applications [J]. Journal of Materials Science, 2024: 1-44.

[109] Wu J, Papanikolaou K G, Cheng F, et al. Kinetic study of polyvinyl chloride pyrolysis with characterization of dehydrochlorinated PVC [J]. ACS Sustainable Chemistry & Engineering, 2024, 12(19): 7402-7413.

[110] Al-Yaari M, Dubdub I. Pyrolytic behavior of polyvinyl chloride: kinetics, mechanisms, thermodynamics, and artificial neural network application [J]. Polymers, 2021, 13(24): 4359.

[111] 游泽宇, 余敏, 傅仁利, 等. 巯基点击自增塑型PVC的制备及增塑性能研究[J]. 生物质化学工程, 2025,59(02): 9-14.

[112] Li D, Liu P. Trends and prospects for thermal stabilizers in polyvinyl chloride [J]. Vinyl & Additive Technology, 2022, 28(4): 669-668.

[113] Goyal H, Chen T Y, Chen W, et al. A review of microwave-assisted process intensified multiphase reactors [J]. Chemical Engineering Journal, 2022, 430: 133183.

[114] 倪清兰, 李进, 陆伟, 等.不同配比的CaSt2和ZnSt2对软质PVC性能的影响 [J].化工技术与开发, 2020, 49 (11): 18-20.

中图分类号:

 TQ325.3    

开放日期:

 2025-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式