- 无标题文档
查看论文信息

题名:

 低透硬煤层水射流割缝-注氮驱替联合促抽瓦斯技术应用研究    

作者:

 张星    

学号:

 21220226106    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 085700    

学科:

 工学 - 资源与环境    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯防治    

导师姓名:

 双海清    

导师单位:

 西安科技大学    

提交日期:

 2024-06-18    

答辩日期:

 2024-06-01    

外文题名:

 Study on mechanism and application of water jet slotting-nitrogen injection displacement combined gas drainage in low permeability hard coal seam    

关键词:

 水射流割缝 ; 注氮驱替 ; 瓦斯抽采 ; 气体运移 ; 影响半径    

外文关键词:

 Water jet slotting ; nitrogen injection displacement ; gas extraction ; gas migration ; radius of influence    

摘要:

随着煤炭开采向深部转移,煤层渗透性降低,煤层瓦斯含量和压力升高,瓦斯抽采愈发困难,影响矿井安全生产。高压水射流割缝技术可以有效增透低渗硬煤层,但后续存在钻孔瓦斯流量衰减快的问题。注气驱替技术可以有效强化瓦斯抽采,但易受限于煤层透气性,注入气体无法在煤层有效运移。因此提出水射流割缝-注氮驱替联合促抽瓦斯工艺,在水射流割缝快速提高煤层透气性基础上,注入驱替气体。割缝扰动拓展了煤层裂隙网络发育,扩大了注气影响范围,且注入气体可以为煤层气提高运移动力,研究对于煤矿瓦斯防治工作具有一定指导意义。本文以某矿工作面为例,通过实验研究不同因素下煤体对混合气体竞争吸附影响规律,通过数值模拟研究不同钻孔和注气条件对普通、割缝煤层注气驱替促抽瓦斯效果影响规律,设计高压水射流割缝-注氮驱替联合促抽瓦斯工艺,并通过现场工业性试验考察联合工艺实际效果。

通过穿透实验研究不同因素下煤体对混合气体竞争吸附影响规律。结果表明,压力升高,N2和CH4吸附比例升高,煤将气体吸附进孔隙的能力增强。煤体含水率增大,两种气体穿透时间和浓度峰值比均呈现递减趋势。

通过COMSOL数值模拟软件分别研究钻孔直径、布孔间距、抽采负压和注气压力对普通、割缝煤层注气驱替瓦斯效果影响。结果表明,增大钻孔直径或抽采负压可以提高驱替效果,但增大注气压力或减小布孔间距提升效果更大。当布置钻孔直径113 mm、布孔间距3 m、抽采负压20 kPa、注气压力2 MPa时,驱替效果和经济效益最佳。割缝煤层中注气的主要影响区域集中在缝槽区域,瓦斯压力下降空间呈椭圆形。

分析了高压水射流割缝-注氮驱替联合促抽瓦斯工艺原理,割缝卸压促进注气置换效果,割缝拓展的裂隙网络有利于煤层中气体渗流。设计了高压水射流割缝-注氮驱替联合促抽瓦斯设备和工艺体系,并通过现场预试验进行割缝参数研究,最终确定割缝半径为0.8 m,割缝宽度为3 cm,割缝压力为80 MPa,割缝时间为14 min。

结合实验室实验及数值模拟结果在某典型低透煤层工作面布置4组对照钻孔,观测各组钻孔实际抽采过程中瓦斯浓度、混合流量变化,进一步对比验证高压水射流割缝-注氮驱替联合促抽瓦斯工艺的优越性。现场试验结果表明,割缝注氮组瓦斯抽采总量是割缝组的1.49倍,是注氮组的1.65倍,是普通组的2.44倍。割缝注氮组在注气后,瓦斯抽采总量增长速率明显高于其他组。本研究相关结论可对低透硬煤层瓦斯防治工作提供一定借鉴和参考,对保障矿井的安全高效生产具有重要意义。

外文摘要:

With the transfer of coal mining to the deep, the permeability of coal seam decreases, the gas content and pressure of coal seam increase, and the gas extraction becomes more and more difficult, which affects the safety production of mine. The high-pressure water jet slotting technology can effectively increase the permeability of low-permeability hard coal seams, but there is a subsequent problem of rapid attenuation of borehole gas flow. Gas injection displacement technology can effectively strengthen gas extraction, but it is easy to be limited by the permeability of coal seam, and the injected gas cannot migrate effectively in coal seam. Therefore, a water jet slotting-nitrogen injection displacement combined gas drainage process is proposed. Based on the rapid improvement of coal seam permeability by water jet slotting, the displacement gas is injected. Slotting disturbance expands the development of coal seam fracture network and expands the influence range of gas injection, and gas injection can improve the migration power of coalbed methane. The research has certain guiding significance for coal mine gas prevention and control. Taking the working face of a mine as an example, this paper studies the influence of coal on the competitive adsorption of mixed gas under different factors through experiments, and studies the influence of different drilling and gas injection conditions on the effect of gas injection displacement and gas drainage in ordinary and slotted coal seams through numerical simulation. The high-pressure water jet slotting-nitrogen injection displacement combined gas drainage process was designed, and the actual effect of the combined process was investigated through field industrial tests.

The competitive adsorption law of mixed gas in coal with different water content under different gas injection pressure was studied by competitive adsorption experiment. The results show that the adsorption ratio of N2 and CH4 increases with the increase of pressure, and the ability of coal to adsorb gas into pores is enhanced. With the increase of coal moisture content, the penetration time and concentration peak ratio of the two gases show a decreasing trend.

Through COMSOL numerical simulation software, the effects of borehole diameter, hole spacing, drainage negative pressure and gas injection pressure on gas displacement by gas injection in ordinary and slotted coal seams were studied respectively. The results show that increasing the diameter of the borehole or the negative pressure of the extraction can improve the displacement effect, but increasing the gas injection pressure or reducing the spacing of the holes has a greater effect. When the borehole diameter is 113 mm, the hole spacing is 3 m, the extraction negative pressure is 20 kPa, and the gas injection pressure is 2 MPa, the displacement effect and economic benefit are the best. The main influence area of gas injection in slotted coal seam is concentrated in the slot area, and the space of gas pressure drop is elliptical.

The principle of high-pressure water jet slotting-nitrogen injection displacement combined gas drainage technology is analyzed. The slotting pressure relief promotes the effect of gas injection replacement, and the fracture network expanded by slotting is beneficial to gas seepage in coal seam. The high-pressure water jet slotting-nitrogen injection displacement combined gas drainage equipment and process system were designed, and the slotting parameters were studied through field pre-test. Finally, the slotting radius was determined to be 0.8 m, the slotting width was 3 cm, the slotting pressure was 80 MPa, and the slotting time was 14 min.

Combined with laboratory experiments and numerical simulation results, four groups of control boreholes were arranged in a typical low-permeability coal seam working face, and the changes of gas concentration and mixed flow rate in the actual extraction process of each group of boreholes were observed, and the advantages of high-pressure water jet slotting-nitrogen injection displacement combined with gas drainage technology were further compared and verified. The field test results show that the total amount of gas extraction in the slotted nitrogen injection group is 1.49 times that of the slotted group, 1.65 times that of the nitrogen injection group, and 2.44 times that of the ordinary group. After gas injection, the growth rate of total gas extraction in the slotted nitrogen injection group was significantly higher than that in other groups. The relevant conclusions of this study can provide some reference and reference for the gas prevention and control work of low permeability hard coal seam, and it is of great significance to ensure the safe and efficient production of the mine.

参考文献:

[1] 王双明, 刘浪, 朱梦博, 等. “双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报, 2024, 49(01): 152-171.

[2] 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[R]. 北京: 国家统计局, 2024.

[3] 王双明, 申艳军, 宋世杰, 等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报, 2023, 48(07): 2599-2612.

[4] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(07): 2197-2211.

[5] Chao X, Sibo M, Kai W, et al. Stress and permeability evolution of high-gassy coal seams for repeated mining[J]. Energy, 2023, 284.

[6] Wang L, Lu Z, Chen D, et al. Safe strategy for coal and gas outburst prevention in deep-and-thick coal seams using a soft rock protective layer mining[J]. Safety Science, 2020, 129.

[7] Chen Dongdong, Jiang Zaisheng, Ma Xiang, et al. Evolution law and engineering application on main stress difference for a novel stress relief technology in two ribs on deep coal roadway [J]. Journal of Central South University, 2023, 30(07): 2266-2283.

[8] Lu Y, Ge Z, Yang F, et al. Progress on the hydraulic measures for grid slotting and fracking to enhance coal seam permeability[J]. International Journal of Mining Science and Technology, 2017, 27(5): 867-871.

[9] Dingqi L. Hydraulic drill hole reaming technology with large flow and draining of coal mine gas[J]. International Journal of Mining Science and Technology, 2019, 29(6): 925-932.

[10] Lu W, He C. Numerical simulation of the fracture propagation of linear collaborative directional hydraulic fracturing controlled by pre-slotted guide and fracturing boreholes[J]. Engineering Fracture Mechanics, 2020, 235.

[11] Guo D, Lv P, Zhao J, et al. Research progress on permeability improvement mechanisms and technologies of coalbed deep-hole cumulative blasting[J]. International Journal of Coal Science Technology, 2020, 7(2): 1-8.

[12] Xianfeng L, Xueqi J, Yue N, et al. Alterations in coal mechanical properties and permeability influenced by liquid CO2 phase change fracturing[J]. Fuel, 2023, 354.

[13] Chaojun F, Hao S, Zhijie Z, et al. Strain evolution in coal seam exposed to injected gas with different species for enhanced CBM extraction: a numerical observation[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1):85-89.

[14] Ziwen L, Hongjin Y, Yansong B, et al. Numerical study on the influence of temperature on CO2-ECBM[J]. Fuel, 2023, 348.

[15] Ruizhe W, Shugang L, Haifei L, et al. Experimental study on the influence of ultrasonic excitation duration on the pore and fracture structure and permeability of coal body[J]. Geoenergy Science and Engineering, 2023, 231(PB).

[16] Huang J, Xu G, Chen Y, et al. Simulation of microwave’s heating effect on coal seam permeability enhancement[J]. International Journal of Mining Science and Technology, 2019, 29(5): 785-789.

[17] 袁亮, 王恩元, 马衍坤, 等. 我国煤岩动力灾害研究进展及面临的科技难题[J]. 煤炭学报, 2023, 48(05): 1825-1845.

[18] 刘洪永, 程远平, 赵长春, 等. 保护层的分类及判定方法研究[J]. 采矿与安全工程学报, 2010, 27(04): 468-474.

[19] 程详, 赵光明, 李英明, 等. 软岩保护层开采覆岩采动裂隙带演化及卸压瓦斯抽采研究[J]. 采矿与安全工程学报, 2020, 37(03): 533-542.

[20] 薛俊华, 肖健, 杜轩宏, 等. 我国煤矿保护层开采卸压瓦斯抽采现状及发展趋势[J]. 煤田地质与勘探, 2023, 51(06): 50-61.

[21] 杨威, 贾茹, 李希建, 等. 采煤工作面“爆注”一体化防突理论与技术[J]. 中国矿业大学学报, 2021, 50(04): 764-775.

[22] 蔡峰, 刘泽功, 张朝举, 等. 高瓦斯低透气性煤层深孔预裂爆破增透数值模拟[J]. 煤炭学报, 2007,50(05): 499-503.

[23] Junwei Y, Xigui Z, Chengwei L, et al. Study on improving the gas extraction efficiency by deep-hole pre-split blasting in Wulunshan Coal Mine, Guizhou[J]. Frontiers in Earth Science, 2022, 10.

[24] Haojun W, Min G, Xiaodong W, et al. Effect and Response of Coal and Rock Media Conditions on Deep-Hole Pre-Splitting Blasting Techniques for Gas Drainage[J]. Energies, 2022, 15(22): 8733-8733.

[25] 张嘉凡, 程树范, 高壮, 等. 煤岩液态二氧化碳爆破开采实践与模拟[J]. 煤炭科学技术, 2020, 48(S1): 24-27.

[26] 张东明, 白鑫, 尹光志, 等. 低渗煤层液态CO2相变定向射孔致裂增透技术及应用[J]. 煤炭学报, 2018, 43(07): 1938-1950.

[27] Wang H, Cheng Z, Zou Q, et al. Elimination of coal and gas outburst risk of an outburst-prone coal seam using controllable liquid CO2 phase transition fracturing[J]. Fuel, 2021, 284.

[28] Zheng S, Haifeng W, Bing L, et al. The effect of leakage characteristics of liquid CO2 phase transition on fracturing coal seam: Applications for enhancing coalbed methane recovery[J]. Fuel, 2022, 308.

[29] 张震, 刘高峰, 李宝林, 等. CO2相变致裂煤的纳米孔隙尺度改造效应[J]. 岩石力学与工程学报, 2023, 42(03): 672-684.

[30] Zhu J, Yang Z, Li X, et al. Application of microwave heating with iron oxide nanoparticles in the in-situ exploitation of oil shale[J]. Energy Science Engineering, 2018, 6(5): 548-562.

[31] Guozhong H, Chao S, Jinxin H, et al. Evolution of Shale Microstructure under Microwave Irradiation Stimulation[J]. Energy & Fuels, 2018, 32(11): 11467-11476.

[32] Xuexiang F, Zengmin L, Chunpeng Z, et al. Influences of controlled microwave field irradiation on physicochemical property and methane adsorption and desorption capability of coals: Implications for coalbed methane (CBM) production[J]. Fuel, 2021, 301.

[33] He L, Xiaolong W, Jiexin L, et al. Study on the dynamics mechanism of methane diffusion in coal under microwave heating[J]. Fuel, 2023, 331.

[34] Jiexin L, Xiaolong W, He L, et al. Molecular insights into the methane adsorption capacity of coal under microwave irradiation based on solid-state 13C-NMR and XPS[J]. Fuel, 2023, 339.

[35] 林柏泉, 钟玉婷, 曹轩, 等. 循环微波辐射下煤体孔裂隙结构演化特征[J]. 西安科技大学学报, 2021, 41(06): 964-972.

[36] 胡国忠, 杨南, 朱健, 等. 微波辐射下含水分煤体孔渗特性及表面裂隙演化特征实验研究[J]. 煤炭学报, 2020, 45(S2): 813-822.

[37] 黎力, 梁卫国, 李治刚, 等. 注热CO2驱替增产煤层气试验研究[J]. 煤炭学报, 2017, 42(08): 2044-2050.

[38] Quanmin J. The main controlling factors of coal seam injection heat enhanced extraction technology[J]. IOP Conference Series: Earth and Environmental Science, 2021, 781(2).

[39] Quanmin J. Numerical analysis of coal seam heat injection[J]. IOP Conference Series: Earth and Environmental Science, 2021, 651(3): 032.

[40] Linjie H, Zengchao F ,Dong Z, et al. Engineering practice of underground heat injection-enhanced gas extraction in low-permeability coal seams[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(3): 6823-6836.

[41] 胡林杰, 冯增朝, 周动, 等. 注热强化煤层气抽采的试验研究及工业应用[J]. 煤炭科学技术, 2022, 50(12): 194-205.

[42] 马会腾, 翟成, 徐吉钊, 等. 基于NMR技术的超声波频率对煤体激励致裂效果的影响[J]. 煤田地质与勘探, 2019, 47(04): 38-44.

[43] 李树刚, 王瑞哲, 林海飞, 等. 超声波功率对煤体力学损伤特性及能量演化的实验研究[J/OL]. 煤炭科学技术, 1-12 [2024-05-30]. https://doi.org/10.13199/j.cnki.cst.2022-1596.

[44] 林海飞, 韩双泽, 杨二豪, 等. 脉冲超声对煤的孔隙结构及瓦斯解吸特性影响的实验研究[J]. 采矿与安全工程学报, 2022, 39(06): 1235-1245.

[45] 林海飞, 仇悦, 韩双泽, 等. 脉冲超声波激励对煤的孔隙全尺度改造效应[J]. 煤田地质与勘探, 2023, 51(08): 139-149.

[46] 林海飞, 仇悦, 王瑞哲, 等. 多级脉冲超声波激励含水煤体瓦斯解吸特征的试验研究[J]. 煤炭学报, 2024, 49(03): 1403-1413.

[47] Peng L, Ang L, Shimin L, et al. Experimental evaluation of ultrasound treatment induced pore structure and gas desorption behavior alterations of coal[J]. Fuel, 2022, 307.

[48] Shang D, Yin G, Zhao Y, et al. Local Asymmetric Fracturing to Construct Complex Fract-ure Network in Tight Porous Reservoirs during Subsurface Coal Mining: An Experimental Study[J]. Journal of Natural Gas Science and Engineering, 2018, 59343-353.

[49] Zhang, Hao, Cheng, et al. A Novel In-Seam Borehole Discontinuous Hydraulic Flushing Technology in the Driving Face of Soft Coal Seams: Enhanced Gas Extraction Mechanism and Field Application[J]. Rock Mechanics and Rock Engineering, 2021, 55(2): 1-23.

[50] Yiyu Lu, Yangkai Zhang, Jiren Tang, et al. Switching mechanism and optimisation research on a pressure-attitude adaptive adjusting coal seam water jet slotter[J]. International Journal of Mining Science and Technology, 2022, 32(06): 1167-1179.

[51] 李晓红, 卢义玉, 赵瑜, 等. 高压脉冲水射流提高松软煤层透气性的研究[J]. 煤炭学报, 2008, 33(12): 1386-1390.

[52] 李晓红, 王晓川, 康勇, 等. 煤层水力割缝系统过渡过程能量特性与耗散[J]. 煤炭学报, 2014, 39(08): 1404-1408.

[53] 张洋凯, 卢义玉, 汤积仁, 等. 增压式脉冲水射流多脉冲特性试验研究[J]. 中国矿业大学学报, 2024, 53(01): 132-140.

[54] Lin B, Zou Q, Liang Y, et al. Response characteristics of coal subjected to coupling static and waterjet impact loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103155-167.

[55] Yabin G, Peizhuang H, Fei W, et al. Study on the Characteristics of Water Jet Breaking Coal Rock in a Drilling Hole[J]. Sustainability, 2022, 14(14): 8258-8258.

[56] Jiren T, Long C, Wenchuan L, et al. Investigation on jet diffusion mechanism with applications to enhancing efficiency in forming directional fractures[J]. Energy, 2023, 262.

[57] Si G, Durucan S, Shi J, et al. Parametric Analysis of Slotting Operation Induced Failure Zones to Stimulate Low Permeability Coal Seams[J]. Rock Mechanics and Rock Enginee-ring, 2019, 52(1): 163-182.

[58] Yongpeng F, Longyong S, Zhonggang H, et al. Numerical simulation of sectional hydraulic reaming for methane extraction from coal seams[J]. Journal of Natural Gas Science and Engineering, 2021,95.

[59] Szott W, Słota-Valim M, Gołąbek A, et al. Numerical studies of improved methane drainage technologies by stimulating coal seams in multi-seam mining layouts[J]. Internat-ional Journal of Rock Mechanics and Mining Sciences, 2018, 108157-168.

[60] Zou Q, Liu H, Cheng Z, et al. Effect of Slot Inclination Angle and Borehole-Slot Ratio on Mechanical Property of Pre-cracked Coal: Implications for ECBM Recovery Using Hydr-aulic Slotting[J]. Natural Resources Research, 2019, 29(3): 1-25.

[61] Xue Y, Si H, Chen G. The fragmentation mechanism of coal impacted by water jets and abrasive jets[J]. Powder Technology, 2020, 361849-859.

[62] Fei H, Jianyu M, Dan L, et al. Comparative investigation of the damage of coal subjected to pure water jets, ice abrasive water jets and conventional abrasive water jets[J]. Powder Technology, 2021, 394909-925.

[63] 黄飞, 焦杨洋, 米建宇, 等. 冰粒磨料射流冰粒加速规律及破碎煤岩数值模拟[J]. 煤炭学报, 2022, 47(09): 3260-3269.

[64] 杨宏民, 张铁岗, 王兆丰, 等. 煤层注氮驱替甲烷促排瓦斯的试验研究[J]. 煤炭学报, 2010, 35(05): 792-796.

[65] 杨宏民, 冯朝阳, 陈立伟. 煤层注氮模拟实验中的置换-驱替效应及其转化机制分析[J]. 煤炭学报, 2016, 41(09): 2246-2250.

[66] Gang B, Jun S, Zunguo Z, et al. Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study[J]. Energy, 2022, 238.

[67] Luo C, Zhang D, Lun Z, et al. Displacement behaviors of adsorbed coalbed methane on coals by injection of SO2/CO2 binary mixture[J]. Fuel, 2019, 247356-367.

[68] Bocong L, Hu W, Xiaojiao C, et al. Competitive adsorption law of multi-component gases during CO2 displacement of CH4 in coal seams[J]. Journal of CO2 Utilization, 2023, 76.

[69] Zhou Y, Li Z, Zhang R, et al. CO2 injection in coal: Advantages and influences of temperature and pressure[J]. Fuel, 2019, 236493-500.

[70] Xinliang F. Simulation study on dynamic characteristics of gas diffusion in coal under nitrogen injection[J]. Scientific Reports, 2022, 12(1): 18865-18865.

[71] Yang B, Hai-Fei L, Shu-Gang L, et al. Experimental study on kinetic characteristics of gas diffusion in coal under nitrogen injection[J]. Energy, 2022, 254(PA):

[72] Lin J, Ren T, Cheng Y, et al. Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study[J]. Energy, 2019, 188116115-116115.

[73] Liu T, Lin B, Fu X, et al. Experimental study on gas diffusion dynamics in fractured coal: A better understanding of gas migration in in-situ coal seam[J]. Energy, 2020, 195117005-117005.

[74] 宋鑫, 舒龙勇, 王斌, 等. 低瓦斯赋存高强度开采煤层驱替促抽技术研究[J]. 采矿与安全工程学报, 2023, 40(04): 847-856.

[75] Wansheng M, Hu W, Shixing F, et al. Pilot test of high-pressure water jet slotting with liquid CO2 injection to displace CH4 and improve coal seam permeability[J]. Fuel, 2023, 351.

[76] Yu S, Baiquan L, Ting L, et al. Modeling and optimization of recovery enhancement efficiency by CO2/N2 mixture displacement in stimulated coal seams by destressing boreholes[J]. Geoenergy Science and Engineering, 2023, 221.

[77] Haoran G, Kai W, Gongda W, et al. Underground coal seam gas displacement by injecting nitrogen: Field test and effect prediction[J]. Fuel, 2021, 306.

[78] Xin Y, Gongda W, Feng D, et al. N2 injection to enhance coal seam gas drainage (N2-ECGD): Insights from underground field trial investigation[J]. Energy, 2022, 239(PC):

[79] 林海飞, 季鹏飞, 孔祥国, 等. 我国低渗煤层井下注气驱替增流抽采瓦斯技术进展及前景展望[J]. 煤炭学报, 2023, 48(02): 730-749.

[80] Walker P L, Verma s K, Rivera-Utrilla J, et al. Densities, porosities and surface areas of coal macerals as measured by their interaction with gases, vapours and liquids[J]. Fuel, 1988, 67(12): 1615-1623.

[81] Garrido J, Linares-Solano A, Martin-Martinez M J, et al. Use of nitrogen vs. carbon dioxide in the characterization of activated carbons[J]. Langmuir, 2002, 3(1): 76-81.

[82] Sing K W, Everett D H, Haul R A W. et al. Reporting physisorption data gas/solid systems with special reference to the determination of surface area and porosity[J] Pure and Applied Chemistry, 1985, 57(4): 603-619.

[83] 李希建, 沈仲辉, 刘钰, 等. 黔西北构造煤与原生结构煤孔隙结构对吸解特性影响实验研究[J]. 采矿与安全工程学报, 2017, 34(01): 170-176.

[84] 李树刚, 李泽帆, 刘鹏, 等. 煤对N2/CH4/CO2混合气体竞争吸附特征与机理研究[J]. 中国矿业大学学报, 2023, 52(03): 446-456.

[85] Li S, Fan C, Han J, et al. A fully coupled thermal-hydraulic-mechanical model with two-phase flow for coalbed methane extraction[J]. Journal of Natural Gas Science and Engine-ering, 2016, 33324-336.

[86] 白刚, 周西华, 魏士平, 等. 低渗煤层注CO2增抽瓦斯数值模拟与应用[J]. 煤田地质与勘探, 2019, 47(03): 77-84.

[87] 王永康. 注二氧化碳驱替甲烷实验及数值模拟分析[D]. 徐州: 中国矿业大学出版社, 2016.

[88] 张浩浩, 李胜, 高宏, 等. 平煤十矿底板巷穿层钻孔瓦斯抽采模拟研究[J]. 中国安全生产科学技术, 2018, 14(09): 38-43.

[89] 冯启言, 周来, 陈中伟, 等. 煤层处置CO2的二元气-固耦合数值模拟[J]. 高校地质学报, 2009, 15(01): 63-68.

[90] Fang H, Zhu J. New Approach for Simulating Groundwater Flow in Discrete Fracture Network[J]. Journal of Hydrologic Engineering, 2018, 23(7):

[91] 李胜, 张浩浩, 范超军, 等. 考虑基质瓦斯渗流的煤层流固耦合模型[J]. 中国安全科学学报, 2018, 28 (03): 114-119.

[92] 卢义玉, 黄杉, 葛兆龙, 等. 我国煤矿水射流卸压增透技术进展与战略思考[J]. 煤炭学报, 2022, 47(09): 3189-3211.

中图分类号:

 TD712    

开放日期:

 2028-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式