- 无标题文档
查看论文信息

论文中文题名:

 /    

姓名:

 苏洋    

学号:

 18120089002    

保密级别:

 2    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2022    

培养单位:

 西    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

     

第一导师姓名:

 罗振敏    

第一导师单位:

 西安科技大学    

第二导师姓名:

 陈晓坤    

论文提交日期:

 2022-06-23    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Study on deflagration inhibition of hydrogen / methane premixed gas by gas-solid two-phase medium    

论文中文关键词:

 氢气/甲烷 ; 爆燃抑制 ; 两相抑制剂 ; 层流火焰 ; 爆燃特性    

论文外文关键词:

 Hydrogen / methane ; deflagration suppression ; two-phase inhibitor ; laminar flame ; explosion characteristics    

论文中文摘要:
<p>/使/20L///////</p> <p>/使/30%//30%//GRI Mech 3.0//R38H+O<sub>2</sub>=O+OHR84OH+H<sub>2</sub>=H+H<sub>2</sub>O/OH/</p> <p>/15%//10%/70%//70%&phi;=0.7/</p> <p>/10%APP20%APP65g/m<sup>3</sup>225g/m<sup>3</sup>500g/m<sup>3</sup>500g/m<sup>3</sup>500g/m<sup>3</sup>CO<sub>2</sub>-CO<sub>2</sub>-5%CO<sub>2</sub>10%CO<sub>2</sub>30%15%CO<sub>2</sub>50%CO<sub>2</sub>-70%30%15%CO<sub>2</sub>30%70%/70%/</p> <p>/30%70%/OH/OH//OH</p>
论文外文摘要:
<p>Flammable gas explosion prevention and control is an important element in the field of industrial safety and production. Hydrogen/methane mixed fuel, as a key step towards hydrogen energy, have proven their effectiveness in utilisation, but have attracted the attention of many scholars in terms of their safe use. Therefore, this paper takes hydrogen / methane mixed fuel as the research object, using experimental research as the main and theoretical analysis as the auxiliary means to carry out the research. Therefore, this paper takes the hydrogen / methane premixed gas as the research object, and carries out the research by means of experimental research, theoretical analysis and numerical calculation. The experimental study on hydrogen / methane deflagration and explosion suppression was carried out by using 20L spherical explosive device combined with schlieren meter and spectrometer. By changing the volume fraction of inert gas, the mass concentration of powder and the ratio of gas / solid two-phase inhibitor, the effects of single-phase inert gas, powder and gas / solid two-phase inhibitor on hydrogen / methane deflagration characteristics were carried out. The variation rules of explosion limit parameters, pressure parameters, flame structure parameters, laminar flame propagation velocity and free radicals in the process of hydrogen / methane deflagration are analyzed, and the key control parameters of explosion suppression are obtained. the coupling effect of inert gas and powder on hydrogen / methane explosion is analyzed, and the synergistic mechanism of gas-solid two-phase medium inhibiting hydrogen / methane explosion is revealed. It provides scientific support for the development of explosion suppressants and explosion suppression technology in active explosion suppression devices.</p> <p>In terms of hydrogen / methane deflagration parameters, the explosion limit parameters, pressure parameters, flame structure parameters, laminar flame propagation velocity and free radicals in the deflagration process are obtained. With the addition of inert gas, the explosion upper limit of hydrogen / methane premixed gas decreases and the lower limit increases. When the hydrogen addition ratio is less than 30%, the explosion risk of hydrogen / methane premixed gas is less. Under the condition of rich oxygen, the higher the proportion of hydrogen in hydrogen / methane premixed gas, the easier it is to produce cellular flame. When the hydrogen addition ratio is more than 30%, the explosive destructive force begins to increase, and this law does not change with the change of hydrogen / methane premixed gas equivalent ratio. The hydrogen addition ratio in hydrogen / methane premixed gas plays a leading role in flame laminar propagation, while the change of equivalent ratio plays a secondary role. The laminar flame propagation velocity calculated in this paper is basically consistent with the laminar flow velocity of hydrogen / methane premixed gas calculated by GRI Mech 3.0. In the deflagration reaction kinetics of hydrogen / methane premixed gas, R38:H+O<sub>2</sub>=O+OH and R84:OH+H<sub>2</sub>=H+H<sub>2</sub>O are the key reaction steps in the deflagration process of hydrogen / methane premixed gas, which play a key role in the whole reaction. OH radical can be used as the key free radical in the process of hydrogen / methane deflagration.</p> <p>In the case of single inert gas suppression of hydrogen/methane deflagration, the hydrogen/methane premixed gas laminar flame is affected by buoyancy instability when the inert gas addition exceeds 15% in the presence of inert gas. Carbon dioxide suppresses the laminar flame propagation rate of hydrogen/methane premixed gases better than nitrogen. At 10% inert gas addition, the effect of inert gas addition on the peak hydrogen/methane premixed gas deflagration pressure is largely independent of changes in the proportion of hydrogen added. In the initial stages of flame development, the addition of inert gas reduces the rate of propagation of the stretching flame and the rate of stretching. The higher the inert gas addition ratio, the lower the initial stretching rate. The inert gas has less effect on the deflagration of hydrogen/methane premixed gases with hydrogen addition ratios above 70%. In terms of deflagration parameters such as deflagration limit, laminar burning rate and deflagration index, the hydrogen/methane premixed gas undergoes a sudden change at hydrogen addition ratios above 70%, that is, &phi; = 0.7 is the turning point in the explosive characteristics of the hydrogen/methane premixed gas.</p> <p>For the inhibition of hydrogen/methane deflagration by two-phase inhibitors, the best inhibition concentrations for pure methane were 65 g/m<sup>3</sup>, 225 g/m<sup>3</sup>, 500 g/m<sup>3</sup>, 500 g/m<sup>3</sup> and 500 g/m<sup>3</sup> for fumed silica, ammonium polyphosphate powder, pure dry water material, 10% APP modified dry water material and 20% APP modified dry water material, respectively. No complete inhibition under all operating conditions. For CO<sub>2</sub>-ammonium polyphosphate two-phase inhibitors, complete inhibition is not possible with less than 5% CO<sub>2</sub> addition, complete inhibition is possible with 10% CO<sub>2</sub> addition at less than 30% hydrogen addition, and complete inhibition is possible with 15% CO<sub>2</sub> addition at less than 50% hydrogen addition. In the CO<sub>2</sub> - dry water materials under the action of two-phase inhibitor, hydrogen addition ratio of 70% of the premixed gas deflagration index is small, that is, the danger is small; hydrogen addition ratio of less than 30%, the size of the deflagration index basically does not change, the explosion risk is basically unchanged; all three dry water materials are under the 15% CO<sub>2</sub> addition, when the hydrogen addition ratio of less than 30% can be completely inhibited. In addition, when the hydrogen addition ratio does not exceed 70%, the actual inhibition effect of the gas-solid two-phase inhibitor on the hydrogen/methane premixed gas is greater than the theoretical superposition value; the inhibition effect of the two-phase inhibitor on the hydrogen addition ratio of 70% of the hydrogen/methane premixed gas deflagration is equivalent to the inhibition effect of the two single-phase inhibitor superposition.</p> <p>Combined with the overall situation, the deflagration characteristics of hydrogen / methane premixed fuel can be divided into two turning points: 30% and 70% hydrogen addition according to deflagration limit, laminar propagation speed, explosion hazard and inhibitor inhibition effect. that is, the three stages are 0-30% hydrogen content in the premixed fuel, 30-70% and more than 70% respectively. Under the action of two-phase inhibitor, the radiation intensity of OH characteristic wavelength decreases during the deflagration of hydrogen / methane premixed fuel with different amount of hydrogen, which is shown by the gradual delay of the occurrence time of radiation signal, the decrease of the peak radiation intensity and the delay of peak time. The two-phase inhibitor reduces the production of OH during hydrogen/methane premixed gas deflagration, which directly reflects the inhibition of the hydrogen/methane deflagration reaction. In addition, there is a temporal agreement between the peak time of the pressure rise rate and the peak time of the OH radical signal during hydrogen/methane premixed gas deflagration and inhibition.</p>
参考文献:

[1] Dr. Petra E. Jongh, Adelhelm P. Nanosizing and Nanoconfinement: New Strategies Towards Meeting Hydrogen Storage Goals[J]. Chemsuschem, 2010, 3(12):1332-1348.

[2] D. Priambodo, Sunarko, W.W. Purwanto. Safety Investigation of Hazardous Materials Released from the Combined High Temperature Gas Cooled Reactor-Hydrogen Production Plant Using ALOHA Software[J]. Atom Indonesia, 2021, 47(1):31-38.

[3] Luo X , Wang J , Dooner M , et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy, 2015, 137:511-536.

[4] Ren J, Musyoka N M, Langmi H W, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review[J]. International Journal of Hydrogen Energy, 2017, 42(1):289-311.

[5] Prabhukhot P R, WaghMM, Gangal AC. A Review on Solid State Hydrogen Storage Material [J].AdvEnergy Power 2016;4(2):11-22.

[6] Veziroglu, Nejat T . Conversion to Hydrogen Economy[J]. Energy Procedia, 2012, 29(1):654-656.

[7] Grecea D , Pupazan G , Darie M , et al. Use of hydrogen as a source of clean energy[J]. E3S Web of Conferences, 2021, 239(6):00013.

[8] Su Yang, Luo Zhenmin, Wang Tao, Chen Xiaokun, Lu Kunlun. Effect of nitrogen on deflagration characteristics of hydrogen/methane mixture[J]. International Journal of Hydrogen Energy, 2022, 47: 9156-9168.

[9] Mueller-Langer F, Tzimas E, Kaltschmitt M, et al. Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term[J]. International Journal of Hydrogen Energy, 2007, 32(16):3797-3810.

[10] Midilli A , Ay M , Dincer I , et al. On hydrogen and hydrogen energy strategies: I: current status and needs[J]. Renewable & Sustainable Energy Reviews, 2005, 9(3):255-271.

[11] Chiari L, Zecca A. Constraints of fossil fuels depletion on global warming projections[J]. Energy Policy, 2011, 39(9):5026-5034.

[12] B Höhlein. Hydrogen and fuel cells - a vision of our future[C]. Luxembourg: Office for Official Publications of the European Communities 2003.

[13] Sun Y. Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art[J]. Energy Storage Mater 2018(10):168-98.

[14] Kudria S , Ivanchenko I , Tuchynskyi B. Resource potential for wind-hydrogen power in Ukraine[J]. International Journal of Hydrogen Energy, 2020, 46(1):157-168.

[15] Dodds P E , Staffell I , Hawkes A D. Hydrogen and fuel cell technologies for heating: A review[J]. International Journal of Hydrogen Energy, 2015, 40(5):2065-2083.

[16] Huang T.Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods[J]. Materials Today Energy, 2021, 19:100613.

[17] Zhang Yan. Pyro-electrolytic water splitting for hydrogen generation[J].Nano Energy, 2019, 58:183-191.

[18] 瞿国华.清洁油品概论[M].北京:中国石化出版社,2019.

[19] 程一步,王晓明,李杨楠,等.中国氢能产业2020年发展综述及未来展望[J].当代石油石化, 2021, 29(4):8.

[20] 瞿国华. 我国氢能产业发展和氢资源探讨[J]. 当代石油石化, 2020, 28(4):4-9.

[21] 杨丽. 国内首个站内天然气制氢加氢一体站试运行[J]. 城市燃气, 2021(9):2-7.

[22] 沈丹丹,高顶云,潘相敏,等. 氢能源利用安全性综述[J]. 上海节能, 2020(11):1-11.

[23] 黄逊青. 氢气归来:富氢天然气的利用前景[J]. 电器,2020(9):74-78.

[24] Karim G A . Hydrogen as a spark ignition engine fuel[J]. Hemijska Industrija, 2002, 56(5):569-577.

[25] De Falco M . Enriched methane: the first step towards the hydrogen economy[M]. Springer, 2015.

[26] Zheng C, Peng D, Chen S. A model for the laminar flame speed of binary fuel blends and its application to methane/hydrogen mixtures[J]. Journal of Engineering Thermophysics, 2012, 37(13):10390-10396.

[27] Klell M, Eichlseder H, Sartory M. Mixtures of hydrogen and methane in the internal combustion engine – Synergies, potential and regulations[J]. International Journal of Hydrogen Energy, 2012, 37(15):11531-11540.

[28] Pareja J, Burbano H J, Ogami Y. Measurements of the laminar burning velocity of hydrogen–air premixed flames[J]. International Journal of Hydrogen Energy, 2010, 35(4):1812-1818.

[29] Choi B C , Chung S H . Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air[J]. Combustion & Flame, 2012, 159(4):1481-1488.

[30] 毛宗强. 通向氢能经济的桥梁—从浅氢到全氢[J]. 武汉理工大学学报, 2007, 28(s1):6-10.

[31] Okafor E C, Hayakawa A, Nagano Y. Effects of hydrogen concentration on premixed laminar flames of hydrogen–methane–air[J]. International Journal of Hydrogen Energy, 2014, 39(5):2409-2417

[32] Mintz M, Folga S, Gillette J. Hydrogen : on the horizon or just a mirage [J]. 2002,(01): 911-921.

[33] Gondal I A, Sahir M H. Prospects of natural gas pipeline infrastructure in hydrogen transportation[J]. International Journal of Energy Research, 2012, 36(15):1338–1345.

[34] Rand D A J. A journey on the electrochemical road to sustainability[J]. Journal of Solid State Electrochemistry, 2011, 15(7-8):1579-1622.

[35] Veziroglu T N. Conversion to Hydrogen Economy[J]. Energy Procedia, 2012, 29(Complete):654-656.

[36] Sahaym U, Norton M G. Advances in the application of nanotechnology in enabling a ‘hydrogen economy’[J]. Journal of Materials Science, 2008, 43(16):5395-5429.

[37] Durbin D J , Malardier-Jugroot C . Review of hydrogen storage techniques for on board vehicle applications[J]. International Journal of Hydrogen Energy, 2013, 38(34):14595-14617.

[38] Iordache I ,Gheorghe A V ,Iordache M .Towards a hydrogen economy in Romania: Statistics, technical and scientific general aspects[J]. International Journal of Hydrogen Energy, 2013, 38(28):12231-12240.

[39] Veziroglu T N.21st Century's Energy:Hydrogen Energy System[J].Energy Conversion & Management, 2008, 49(7):1820-1831

[40] Dorofeev S B. Flame acceleration and explosion safety applications[J].Proceedings of the Combustion Institute, 2011, 33(2):2161-2175.

[41] Bernatik A , Libisova M . Loss prevention in heavy industry: risk assessment of large gasholders[J]. Journal of Loss Prevention in the Process Industries, 2004, 17(4):271-278.

[42] Dorofeev S B. Hydrogen flames in tubes: Critical run-up distances[J]. International Journal of Hydrogen Energy, 2009, 34(14):5832-58372.

[43] Liang Wenkai, Wang Yiru, Law Chung-K. Role of ozone doping in the explosion limits of hydrogen-oxygen mixtures: Multiplicity and catalyticity[J]. Combustion and Flame, 2019, 205:7-10.

[44] Lijuan Huang, Wang Yu, Pei Shufeng, et al. Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures[J]. Energy, 2019, 186:115840.

[45] Francis Oppong, Xu Cangsu, Li Xiaolu, et al. Laminar flame characteristics of 2-ethylfuran/air mixtures: Experimental and kinetic modelling investigations[J]. Fuel, 2022, 307:121785.

[46] Zhu Ruixuan, Zhao Majie, Zhang Huangwei. Numerical simulation of flame acceleration and deflagration-to-detonation transition in ammonia-hydrogen–oxygen mixtures[J]. International Journal of Hydrogen Energy, 2021, 46(1): 1273-1287.

[47] Wang Shimao, Cai Yunxiong, Guo Hai, et al. Effect of fuel concentration, inert gas dilutions, inert gas–water mist twin fluid medium dilutions, and end boundary condition on overpressure transients of premixed fuel vapor explosion[J]. Fuel, 2022, 309:122083.

[48] Robin-John Varghese, Kolekar Harshal, Kishore V-Ratna, et al. Measurement of laminar burning velocities of methane-air mixtures simultaneously at elevated pressures and elevated temperatures[J]. Fuel, 2019, 257:116120.

[49] Qianqian Li, Yan Zhiyu, Lin Wenjun, et al.Explosion characteristics of cyclic hydrocarbon-air mixtures at elevated temperature and pressures[J].Fuel, 2019, 253:1048-1055.

[50] Kai Sun Z-Y, Tian Yu-Chi. Turbulent combustion evolution of stoichiometric H2/CH4/air mixtures within a spherical space[J]. International Journal of Hydrogen Energy, 2019,45: 10613-10622.

[51] L Huang, Wang Y, Pei S, et al. Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures[J]. Energy, 2019, 186: 115840-115841.

[52] Wierzba I, Kilchyk V. Flammability limits of hydrogen–carbon monoxide mixtures at moderately elevated temperatures[J]. International Journal of Hydrogen Energy, 2001, 26(6):639-643.

[53] Tahtouh T, Halter F, Samson E, et al. Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane–air flames[J]. International Journal of Hydrogen Energy, 2009, 34(19):8329-8338.

[54] Okafor E C, Hayakawa A, Nagano Y. Effects of hydrogen concentration on premixed laminar flames of hydrogen–methane–air[J].International Journal of Hydrogen Energy, 2014, 39(5):2409-2417.

[55] Wu L, Kobayashi N, Li Z, et al. Emission and heat transfer characteristics of methane–hydrogen hybrid fuel laminar diffusion flame[J].International Journal of Hydrogen Energy, 2015, 40(30):9579-9589.

[56] Faghih M, Gou X, Chen Z. The explosion characteristics of methane, hydrogen and their mixtures: A computational study[J]. Journal of Loss Prevention in the Process Industries, 2015, 40(22):377-385.

[57] Ma Q, Zhang Q, Pang L. Effects of hydrogen addition on the confined and vented explosion behavior of methane in air[J]. Journal of Loss Prevention in the Process Industries, 2014, 27(1):65-73.

[58] MaQ J, ZhangQ, Chen J. Effects of hydrogen on combustion characteristics ofmethane in air[J]. International Journal of Hydrogen Energy, 2014, 39(21):11291-11298.

[59] MaQ J, ZhangQ, Pang L. Effects of hydrogen addition on the confined and vented explosion behavior of methane in air[J]. Journal of Loss Prevention in the Process Industries, 2014, 27: 66-73.

[60] SalzanoE, CammarotaF, Di Benedetto A. Explosion behavior of hydrogen–methane/air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(3): 444-117.

[61] Woolley R M, Fairweather M, Falle S A E G, et al. Prediction of confined, vented methane-hydrogen explosions using a computational fluid dynamic approach[J]. International Journal of Hydrogen Energy, 2013, 38(16):6904-6914.

[62] Ernesto Salzano, Francesco Cammarota et al. Explosion behavior of hydrogene/methane/air mixtures[J]. Journal of Loss Prevention in the Process Industries 2012,25: 443-447

[63] 李增华, 林柏泉, 张兰君,等.氢气的生成及对瓦斯爆炸的影响[J]. 中国矿业大学学报, 2008, 37(2):147-151.

[64] 王迎, 李勇, 王运生,等. 氢气浓度对氢气燃烧影响的实验研究[J]. 科技视界, 2016(13):15-16.

[65] 陈昊,郭进,王金贵,洪溢都,等.破膜压力对氢气-甲烷-空气泄爆的影响[J/OL].爆炸与冲击:1-11[2022-03-23].http://kns.cnki.net/kcms/detail/51.1148.o3.20211230.1442.006.html

[66] Riahi Z, Mergheni M A, Sautet J C. Experimental study of natural gas flame enriched by hydrogen and oxygen in a coaxial burner[J]. Applied Thermal Engineering, 2016, 108:287-295.

[67] Yu M, Zheng K, Zheng L. Effects of hydrogen addition on propagation characteristics of premixed methane/air flames[J].Journal of Loss Prevention in the Process Industries,2015,34:1-9.

[68] Zheng K, Yu M, Zheng L. Effects of hydrogen addition on methane-air deflagration in obstructed chamber[J]. Experimental Thermal & Fluid Science, 2016, 80:270-280.

[69] Kai Zheng, Minggao Yu, Ligang Zheng. Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts[J]. International Journal of Hydrogen Energy,2016,23:1-13

[70] Halter F, Chauveau C, Djebaïli-Chaumeix N. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures[J]. Proceedings of the Combustion Institute, 2005, 30(1):201-208.

[71] Sarlia V D, Benedettob A D. Laminar burning velocity of hydrogen–methane/air premixed flames[J]. International Journal of Hydrogen Energy, 2007, 32(5):637-646.

[72] 李孝斌, 崔沥巍, 张瑞杰,等.甲烷爆炸初期关键自由基化学发光与爆炸压力的耦合关系分析[J].含能材料,2020,28(08):779-785.

[73] Zhang T , Liu H , Han Z , et al. Experimental study on the synergistic effect of fire extinguishing by water and potassium salts[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2): 857-867.

[74] Hu Erjiang , Huang Zuohua. Numerical study on laminar burning velocity and NO formation of premixed methane–hydrogen–air flames[J]. International Journal of Hydrogen Energy, 2009, 34(15):6545-6557.

[75] Coward H F , Jones G W . Limits of Flammability of Gases and Vapors [J]. Journal of the Franklin Institute, 1928, 203(1):161-161.

[76] Saito N , Ogawa Y , Saso Y. Flame-extinguishing concentrations and peak concentrations of N2, Ar, CO2, and their mixtures for hydrocarbon fuels[J]. Fire Safety Journal, 1996, 27(3):185-200.

[77] Senecal J A . Flame extinguishing in the cup-burner by inert gases[J]. Fire Safety Journal, 2005, 40(6):579-591.

[78] Qiao L , Gan Y , Nishiie T. Extinction of premixed methane/air flames in microgravity by diluents: Effects of radiation and Lewis number[J]. Combustion and Flame, 2010, 157(8):1446-1455.

[79] Zahedi P , Yousefi K . Effects of Pressure and Carbon Dioxide, Hydrogen and Nitrogen Concentration on Laminar Burning Velocities and NO formation of Methane–air Mixtures[J]. Journal of Mechanical Science and Technology, 2014, 28(1):377-386.

[80] Galmiche B , Halter F , Foucher F. Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames[J]. Energy & Fuels, 2011, 25(3):948-954.

[81] Halter F , Foucher F , Landry L , et al. Effect of Dilution by Nitrogen and/or Carbon Dioxide on Methane and Iso-Octane Air Flames[J]. Combustion Science and Technology, 2009, 181(6):813-827.

[82] Halter F , Chauveau C , Djeba Li-Chaumeix N , et al. Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures[J]. Proceedings of the Combustion Institute, 2005, 30(1):201-208.

[83] Tahtouh T , Halter F , Mouna M-Rousselle C . Measurement of laminar burning speeds and Markstein lengths using a novel methodology[J]. Combustion and Flame, 2009, 156(9):1735-1743.

[84] Tahtouh T , Halter F , Samson E. Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane–air flames[J]. International Journal of Hydrogen Energy, 2009, 34(19):8329-8338.

[85] Lachaux T , Halter F , Chauveau C. Flame front analysis of high-pressure turbulent lean premixed methane–air flames[J]. Proceedings of the Combustion Institute, 2005, 30(1):819-826.

[86] 张尊华, 曾璇, 梁俊杰,等. N2、CO2和H2O稀释对天然气层流燃烧速度的影响[J]. 大连海事大学学报, 2019, 45(01):120-131.

[87] 何昆, 李孝斌, 石英杰,等. 初始温度对CO2抑爆作用的影响[J]. 爆炸与冲击, 2016, 36(3):429-432.

[88] 路长, 王鸿波, 张运鹏,等. 氮气幕对瓦斯爆炸进行阻爆实验[J]. 化工进展, 2019, 38(07):3056-3064

[89] 张迎新, 吴强, 刘传海,等. 惰性气体N2/CO2抑制瓦斯爆炸实验研究[J]. 爆炸与冲击, 2017(5):906-912

[90] M. Bundy, A. Hamins, Ki Yong Lee. Suppression limits of low strain rate non-premixed methane flames[J]. Combustion & Flame, 2003, 133(3):299-310.

[91] 程方明, 邓军. 一氧化碳影响二氧化碳惰化甲烷爆炸的实验研究[J]. 西安科技大学学报, 2016(03):315-319.

[92] Wang Z H , Weng W B , He Y. Effect of H2/CO ratio and N2/CO2 dilution rate on laminar burning velocity of syngas investigated by direct measurement and simulation[J]. Fuel, 2015, 141:285-292.

[93] Zhang Y , Shen W , Zhang H , et al. Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames[J]. Fuel, 2015, 157:115-121.

[94] 钱海林,王志荣,蒋军成,等.N2/CO2 混合气体对甲烷爆炸的影响[J].爆炸与冲击,2012,32(4): 445-448.

[95] Hermanns R T E, Konnov A A, Bastiaans R J M. Laminar burning velocities of diluted hydrogen-oxygen-nitrogen mixtures[J].. Energy Fuels, 2007, 21: 1977-1981.

[96] Yang Zhang, Wenfeng Shen, Hai Zhang, Yuxin Wu, Junfu Lu. Effects of inert dilution on the propagation and extinction of lean premixed syngas/air flames[J]. Fuel,2015,(157): 115–121

[97] P.G. Holborn ,Modelling the mitigation of hydrogen deflagrations in a vented cylindrical rig with water fog and nitrogen dilution [J]. International journal of hydrogen energy, 2013, 38: 3471-3487.

[98] 胡耀元,钟依均,应桃开,等. H2, CO, CH4多元爆炸性混合气体支链爆炸阻尼效应[J].化学学报,2004,62(10):956-962.

[99] Azatyan V V , Shebeko Y N , Shebeko A Y. A numerical modelling of an influence of CH4, N2, CO2 and steam on a laminar burning velocity of hydrogen in air[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(2):331-336.

[100] Santosh, K, Paidi, et al. Effect of N2/CO2 dilution on laminar burning velocity of H2–air mixtures at high temperatures[J]. International Journal of Hydrogen Energy, 2013,38(31):13812-13821.

[101] Tang C,Zheng J,Huang Z. Study on nitrogen diluted propane–air premixed flames at elevated pressures and temperatures[J]. Energy Conversion & Management, 2010, 51(2):288-295.

[102] Zhang C,Hu G.Comparative study on the effects of nitrogen and carbon dioxide on methane/air flames[J]. Energy, 2016, 106:431-442.

[103] Zhang W , Zheng C , Kong W. Effects of diluents on the ignition of premixed H2/air mixtures[J]. Combustion & Flame, 2012, 159(1):151-160.

[104] X.Y. Cao, J.J. Ren, Y.H. Zhou, Q.J. Wang, X.L. Gao, M.S. Bi, Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive[J]. Journal of Hazardous Materials, 285 (2015) 311–318.

[105] Y. Wang, Y.S. Cheng, M.G. Yu, Y. Li, J.L. Cao, L.G. Zheng, H.W. Yi, Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with coreshell structure[J]. Journal of Hazardous Materials, 335 (2017) 84–91.

[106] B. Jiang, Z. Liu, M. Tang, K. Yang, P. Lv, B. Lin, Active suppression of premixed methane/air explosion propagation by non-premixed suppressant with nitrogen and ABC powder in a semi-confined duct[J]. Journal of Natural Gas Science and Engineering. 29 (2016) 141–149.

[107] Luo Zhenmin., Wang Tao, Cheng Fangming, et al. Experimental study on the suppression of gas explosion using the gas–solid suppressant of CO2 /ABC powder[J].Loss Prev. Process Ind,30 (2014) 17–23.

[108] Liu Yong, Liu Xiaotian, Li Xiaoqing Numerical investigation of hydrogen detonation suppression with inert particle in pipelines[J].International Journal of Hydrogen Energy, 41 (2016) 21548–21563.

[109] Chelliah H.K,Wanigarathne P.C., Lentati, A.M. , et al. Effect of sodium bicarbonateparticle size on the extinction condition of non-premixed counterflow flames[J]. Combust. Flame 2003, 134,261–272.

[110] Amyotte, P.R. Solid inertants and their use in dust explosion prevention and mitigation.[J]. Loss Prev. ProcessInd. 2006, 19, 161–173.

[111] Chen Zhihua, Fan Baochun, Jiang Xiaohai. Suppression effects of powder suppressants on the explosions of oxyhydrogengas[J]. Loss Prev. Process Ind. 2006, 19, 648–655.

[112] Luo Z, Ge L., Deng J, Cheng F. Inhibitory effect study on nanometer powders to gas explosion in coalmine[J]. Journal of Hunan University of Science & Technology. 2009, 24, 19–23.

[113] Wen H,Wang Q, Deng J, Luo Z. Effect of the concentration of Al(OH)3 ultra-fine powders on the pressure of methane explosion[J]. Journal of China Coal Society. 2009, 34, 1479–1482.

[114] Liao Guangxuan. Experimental study on the suppression of methane/air diffusion flame by iron-modified zeolite powders[J]. Science China Chemistry,2012, 22:53–57.

[115] Liu Qingming, Hu Yongli, Bai Chunhua, et al. Methane/coal dust/air explosions and their suppression by solid particlesuppressing agents in a large-scale experimental tube[J]. Loss Prev. Process Ind. 2013, 26, 310-316.

[116] Zhang Yiming, Wang Yan, Zheng Ligang, et al. Effect of pristine palygorskite powders on explosion characteristics of methane-air premixed gas[J]. Energies 2018, 11(10):1-12.

[117] Koshiba Y, Iida K., Ohtani H. Fire extinguishing properties of novel ferrocene/surfynol 465 dispersions[J]. Fire Safety Journal 2015, 72, 1–6.

[118] Wang Xinqun., Wang Ting, Xu Haishun, et al. Modification of commercial BC dry chemical powders suppressant and experiments on suppression of methane-air explosion[J]. CIESC Journal. 2015, 66, 5171-5178.

[119] Wang Yan, Cheng Yishen, Yu Minggao, et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure[J]. Journal of Hazardous Materials. 2017, 335, 84-91.

[120] Zhang Yiming, Wang Yan, Meng Xiangqing, et al.The suppression characteristics of NH4H2PO4/redmud composite powders on methane explosion[J].Applied science.2018,8(9): 8091433.

[121] Zheng Ligang, Li Gang, Wang Yan, et al. Effect of blockage ratios on the characteristics of methane/air explosion suppressed by BC powder[J]. Journal of Hazardous Materials. 2018, 355, 25-33.

[122] Song Y., Zhang Q.,Wu W, et al. Interaction between gas explosion flame and deposited dust[J]. Process Safety and Environmental Protection. 2017, 111, 775-784.

[123] Jiang H., Bi M., Li B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion[J]. Journal of Hazardous Materials. 2019, 361, 273-282.

[124] Gan B., Li B., Jiang H, et al. Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives[J]. Journal of Hazardous Materials. 2018, 351, 346-355.

[125] Kordylewski W ,Amrogowicz J .Comparison of NaHCO3 and NH4H2PO4 effectiveness as dust explosion suppressants[J]. Combustion & Flame, 1992, 90(3-4):344-345.

[126] 文虎, 曹玮. 超细磷酸铵盐干粉抑制瓦斯爆炸的实验研究[J]. 煤矿安全, 2011(7):1-3+7.

[127] 张宇明, 邹高万, 郜冶,等. ABC干粉对爆燃火焰传播抑制实验[J]. 哈尔滨工程大学学报, 2012, 33(04):449-453.

[128] 张宇明, 邹高万, 郜冶,等. ABC干粉对爆炸超压的抑制[J]. 燃烧科学与技术, 2012(5):456-460.

[129] 王理翔, 敖燕环, 马吉,等. ABC干粉抑爆剂在中尺度管道应用效果研究[J]. 中国设备工程, 2018(16):230-232.

[130] 王燕, 伊宏伟, 孟祥卿,等. 蒙脱石粉体对瓦斯爆炸特性参数的影响研究[J]. 北京理工大学学报, 2019(2):111-117.

[131] 王燕,程义伸.核-壳型KHCO3/赤泥复合粉体的甲烷抑爆特性[J]. 煤炭学报, 2017(3):653-658.

[132] 程方明, 邓军, 罗振敏,等. 硅藻土粉体抑制瓦斯爆炸的实验研究[J]. 采矿与安全工程学报, 2010, 27(4):604-607.

[133] 余明高, 王天政, 游浩. 粉体材料热特性对瓦斯抑爆效果影响的研究[J]. 煤炭学报, 2012, 37(05):830-835.

[134] 余明高, 孔杰, 王燕,等.改性赤泥粉体抑制瓦斯爆炸的实验研究[J]. 煤炭学报, 2014, 39 (07) : 1289 - 1295.

[135] Hu W , Qiu-Hong W , Jun D , et al. Effect of the concentration of Al(OH)ultrafine powder on the pressure of methane explosion[J]. Journal of China Coal Society, 2009, 34(11):1479-1482.

[136] 王秋红, 邓军, 罗振敏,等. 超细氢氧化镁粉体抑制甲烷-空气混合物爆炸效能研究[J]. 中国安全科学学报, 2014, 24(12):5.

[137] Cao X , Ren J , Bi M. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist[J]. Journal of Hazardous Materials, 2016, 324(PT.B):489-497..

[138] Cao X , Ren J , Bi M. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive[J]. Journal of Loss Prevention in the Process Industries, 2016, 43:352-360.

[139] Cao X , Ren J , Zhou Y. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive[J]. Journal of Hazardous Materials, 2015, 285:311-318.

[140] 余明高, 安安, 赵万里,等. 含添加剂细水雾抑制瓦斯爆炸有效性试验研究[J]. 安全与环境学报, 2011(4):149-153.

[141] Yu M, Wan S, Xu Y. Suppressing methane explosion overpressure using a charged water mist containing a NaCl additive [J]. Journal of Natural Gas Science & Engineering, 2016, 29:21-29.

[142] 徐永亮,王兰云,余明高,等.感应式荷电细水雾对瓦斯爆炸传播速度的影响[J].中南大学学报自然科学版, 2016(8):2884-2890.

[143] Yu M, Wan S, Xu Y. The influence of the charge-to-mass ratio of the charged water mist on a methane explosion[J]. Journal of Loss Prevention in the Process Industries, 2016, 41:68-76.

[144] Parra T, Castro F, Méndez C. Extinction of premixed methane–air flames by water mist[J]. Fire Safety Journal, 2004, 39(7):581-600.

[145] 毕明树,张鹏鹏. 细水雾抑制瓦斯爆炸的实验研究[J]. 采矿与安全工程学报, 2012,03(3):440-443.

[146] Zhang P, Zhou Y, Cao X. Enhancement effects of methane/air explosion caused by waterspraying in a sealed vessel[J]. Journal of Loss Prevention in the Process Industries, 2014,29(1):313–318.

[147] Zhang P, Zhou Y, Cao X. Mitigation of methane/air explosion in a closed vessel by ultrafine water fog[J]. Safety Science, 2014, 62(2):1–7.

[148] 秦文茜,王喜世,谷睿,等.超细水雾作用下瓦斯的爆炸压力及升压速率[J]. 燃烧科学与技术, 2012, 18(1):90-95.

[149] 谷睿,王喜世,许红利,等. 超细水雾抑制甲烷爆炸的实验研究(英文)[J]. 火灾科学, 2010, 19(2):51-59.

[150] Xu H, Wang X, Gu R, et al. Experimental Study on Characteristics of Methane-Coal Dust Mixture Explosion and Its Mitigation by Ultra-Fine Water Mist[J]. Journal of Engineering for Gas Turbines & Power, 2011, 134(6):061401-061406.

[151] Xu H, Li Y, Zhu P, et al. Experimental study on the mitigation via an ultra-fine water mist of methane/coal dust mixture explosions in the presence of obstacles[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4):815–820.

[152] Wang F, Yu M , Wen X ,et al. Suppression of methane/air explosion in pipeline by water mist[J]. Journal of Loss Prevention in the Process Industries, 2017,49: 791-796.

[153] Wang F, Chen W , Wen X ,et al. Numerical simulation and mechanism analysis of gas explosion suppression by ultrasonic water mist[J]. Energy Sources Part A Recovery Utilization & Environmental Effects, 2019,41(23):1-13.

[154] Cao Xingyan,Bi Mingshu,et al.Experimental research on explosion suppression affected by ultrafine water mist containing different additives.[J]. Journal of hazardous materials, 2019,368: 613-620.

[155] Cao Xingyan, Ren J , Zhou Y , et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive[J]. Journal of Hazardous Materials, 2015, 285:311-318.

[156] 郎需庆, 陶彬, 张玉平,等.双相流灭火系统在储罐灭火中的试验研究[J].消防科学与技术, 2015(1):79-81.

[157] 李雷雷, 梁跃强, 徐德宇,等.惰气发生装置在矿井火灾处理中的应用[J].煤矿安全, 2015, 46(10):150-152.

[158] 裴蓓,李杰,余明高,等.CO2-超细水雾对瓦斯/煤尘爆炸抑制特性研究[J].中国安全生产科学技术,2018,14(08):54-60.

[159] 裴蓓, 余明高, 陈立伟,等. CO2-双流体细水雾抑制管道甲烷爆炸实验[J].化工学报,2016, 67(7):3101-3108.

[160] 余明高, 朱新娜, 裴蓓,等. 二氧化碳-超细水雾抑制甲烷爆炸的实验研究[J].煤炭学报,2015, 40(12):2843-2848.

[161] 余明高, 杨勇, 裴蓓,等. N2-双流体细水雾抑制管道瓦斯爆炸实验研究[J].爆炸与冲击, 2017(2)194-200.

[162] 郭成成, 王飞, 刘红威,等. 惰性气体-细水雾抑制瓦斯爆炸对比分析[J].煤矿安全(06)164-167.

[163] 杨春丽, 刘艳, 胡玢,等. 氮气和水蒸气对瓦斯爆炸基元反应的影响及抑爆机理分析[J]. 高压物理学报, 2017(03):96-103.

[164] Chow W.K.; Ni X.M. Developments and prospective application of gas-solid hybrid composite powders in fire suppression[J].Appl. Fire Sci. 2009, 19, 311-323.

[165] Linteris G.T.; Rumminger M.D.; Babushok, V.I. Flame inhibition by ferrocene and blends of inert and catalytic agents[J]. Proc. Combust. Inst. 2000, 28, 2965–2972.

[166] Yan Wang,Xiangqing Meng,Wentao Ji,Bei Pei,Chendi Lin,Hao Feng,Ligang Zheng. The Inhibition Effect of Gas–Solid Two-Phase Inhibitors on Methane Explosion[J]. Energies,2019,12(3):1-10.

[167] Deng J.;Tian Z.;Luo Z.;et al. Experimental Research on Suppressing Gas Explosion by Mg(OH)2/CO2[J].Saf. Coal Mines 2013, 44, 4-10.

[168] Luo Z., Wang T., Tian Z.et al. Experimental study on the suppression of gas explosion using the gas-solid suppressant of CO2/ABC powder[J]. Loss Prev. Process Ind. 2014, 30, 17–23.

[169] Jiang B., Liu Z., Tang M., et al. Active suppression of premixed methane/air explosion propagation by non-premixed suppressant with nitrogen and ABC powder in a semi-confined duct[J]. Journal of Natural Gas Science and Engineering. 2016, 29, 141–149.

[170] Shao Hao, Jiang Shuguang,et al.Influence of vacuum degree on the effect of gas explosion suppression by vacuum chamber[J]. Journal of loss prevention in the process industries, 2015,38: 214-223.

[171] Cui Chuanbo, Shao Hao, Jiang Shuguang, et al. Experimental study on gas explosion suppression by coupling CO2 to a vacuum chamber[J]. Powder Technology, 2018, 335:42-53.

[172] Nie B , Yang L , Wang J . Experiments and Mechanisms of Gas Explosion Suppression with Foam Ceramics[J]. Combustion ence & Technology, 2016, 188(10-12):2117-2127.

[173] Cui Y Y , Wang Z R , Zhou K B , et al. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines[J]. Journal of Loss Prevention in the Process Industries, 2016, 45:69-77.

[174] Zhuang, CJ ,Wang Z R ,Zhou K B, et al. Explosion suppression of porous materials in a pipe-connected spherical vessel[J]. Journal of Loss Prevention in the Process Industries, 65:104106.

[175] Yang Z , Zhao K , Song X ,et al. Effects of mesh aluminium alloys and propane addition on the explosion-suppression characteristics of hydrogen-air mixture[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34998-35013.

[176] Zhou Shangyong, Gao Jiancun, Luo Zhenmin, et al.Effects of mesh aluminium alloy and aluminium velvet on the explosion of H2/air, CH4/air and C2H2/air mixtures[J]. International Journal of Hydrogen Energy.2021,46(28): 14871-14880.

[177] Y. Saso. Roles of inhibitors in global gas-phase combustion kinetics[J]. Proceedings of the Combustion Institute, 2002, 29(1):337-344.

[178] X. Hu, Q. Yu, J. Liu, et al. Investigation of laminar flame speeds of CH4/O2/CO2, mixtures at ordinary pressure and kinetic simulation[J]. Energy, 2014, 70(3):626-634.

[179] 胡栋,袁长迎,李萍,等.惰性物对爆炸的遏制[J]. 安全与环境学报, 2003, 3(4):11-13.

[180] 王连聪, 陈洋. 封闭空间水及CO2对瓦斯爆炸反应动力学特性的影响分析[J]. 煤矿安全, 2011, 42(7):16-20.

[181] 杨春丽, 刘艳, 胡玢,等. 氮气和水蒸气对瓦斯爆炸基元反应的影响及抑爆机理分析[J]. 高压物理学报, 2017, 31(3):301-308.

[182] Trevion,C,Mendez,F.Reduced kinetic mechanism for methane ignition[J].Symposium (International) on Combustion, 1992, 24: 121-127.

[183] Medvedev, Telegin. Statistical analysis of kinetics of an adiabatic thermal explosion [J].Combustion, Explosion and Shock Waves, 2009 , 45(3): 274-277.

[184] He Z ,Li X B ,Liu L M, et al. The intrinsic mechanism of methane oxidation under explosion condition: A combined ReaxFF and DFT study[J]. Fuel, 2014, 124:85-90.

[185] 邓军,李会荣,杨迎,侯爽,文振翼.瓦斯爆炸微观动力学及热力学分析[J].煤炭学报, 2006, 31(4): 488-491.

[186] 罗振敏, 邓军, 郭晓波,等. 基于 Gaussian 的瓦斯爆炸微观反应机理[J].辽宁工程技术大学学报, 2008, 27(3): 321-328.

[187] 罗振敏, 张江, 王涛,等. CO/CH4链式爆炸反应机理研究[J]. 兵工学报, 2017(S1):54-64.

[188] 罗振敏, 康凯, 任军莹,等. NH3对甲烷链式爆炸的微观作用机理[J]. 煤炭学报, 2016, 41(04):876-883.

[189] 梁运涛.封闭空间瓦斯爆炸过程的反应动力学分析[J].中国矿业大学学报, 2010, 39(2): 196-200.

[190] 梁运涛, 王连聪, 罗海珠,等. 定容燃烧反应器中瓦斯爆炸反应动力学计算模型[J].煤炭学报, 2015, 40(08): 1853-1858.

[191] 梁运涛, 曾文.定容燃烧弹中瓦斯爆炸的反应动力学模拟[J]. 燃烧科学与技术, 2010, 16(4): 375-381.

[192] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟[J]. 化工学报, 2009, 60(7): 1700-1706.

[193] Liang Yuntao , Zeng Wen.Numerical study of the effect of water addition on gas explosion[J]. Journal of Hazardous Materials, 2010, 174(1-3):386-392.

[194] 贾宝山,王小云,温海燕,等.煤矿巷道内CO抑制瓦斯爆炸的反应动力学模拟研究[J].爆破,2013,30(01):35-40+85.

[195] 贾宝山,温海燕,梁运涛,等.受限空间瓦斯爆炸与氢气促进机理研究[J]. 中国安全科学学报, 2012, 22(2): 81.

[196] 贾宝山,胡如霞,皮子坤,等. 采空区遗煤自燃产生的C2H4促进瓦斯爆炸特性[J]. 辽宁工程技术大学学报, 2015(6): 677-682.

[197] 陆卫东,贾宝山,李守国,等. CO2气体对瓦斯爆炸的阻尼效应研究[J]. 煤矿安全, 2016, 47(9): 1-3.

[198] 贾宝山, 李艳红, 曾文,等. 定容体系中氮气影响瓦斯爆炸反应的动力学模拟[J]. 过程工程学报, 2011, 11(5): 812-817.

[199] 叶彬, 李萍, 张昌华,等. 正庚烷燃烧反应中间自由基的光谱测量[J]. 光谱学与光谱分析, 2012,32(4): 898-901.

[200] 李迎, 李萍, 肖海波, 等. 瞬态光谱法测量环氧丙烷爆轰温度[J]. 光谱学与光谱分析, 2008,28(3): 490-493.

[201] 王利东, 李萍, 张昌华, 等. 正癸烷燃烧反应中OH,CH和C2自由基的瞬态发射光谱[J].光谱学与光谱分析, 2012,32(5): 1166-1169.

[202] 张传钊, 李萍, 赵岩, 等. 二甲苯点火延迟时间和燃烧发射光谱测量[J]. 推进技术, 2014(03): 392-396.

[203] Ketelaar J A A, Haas C, Hooge F N, et al. Far infrared emission spectrum of flames[J]. Physica XXI, 1955, 695-700.

[204] 葛红. 基于火焰光谱分析及图像处理的生物质燃烧监测研究[D].华北电力大学(北京),2020.

[205] 李成兵, 吴国栋, 经福谦. 水蒸气抑制甲烷燃烧和爆炸实验研究与数值计算[J]. 中国安全科学学报, 2009, 19(1): 118-124.

[206] 朱传杰, 林柏泉. 基于化学反应动力学的瓦斯爆炸对冲火焰叠加特征的研究[J]. 煤炭学报, 2011, 36(1): 114-118.

[207] 李孝斌, 李会荣, 何昆,等. 甲烷爆炸感应期内CN/CH/CHO/CH2O/NCN特征光谱分析[J]. 煤炭学报, 2014, 39(10): 2042-2046.

[208] 李孝斌, 李会荣, 何昆,等. 甲烷爆炸感应期内C2自由基及其特征光谱分析[J]. 西安科技大学学报, 2015, 35(2): 248-252.

[209] 胡二江. 天然气—氢气混合燃料结合EGR的发动机和预混层流燃烧研究[D]. 西安交通大学, 2010.

[210] P Brequigny, Halter F. Lewis number and Markstein length effects on turbulent expanding flames in a spherical vessel[J]. Experimental Thermal and Fluid Science, 2016, 73:33-41.

[211] Liu X ,Yao M ,Wang Y, et al. Experimental and kinetic modeling study of a rich and a stoichiometric low-pressure premixed laminar 2,5-dimethylfuran/oxygen/argon flames[J]. Combustion and Flame, 2015, 162(12):4586-4597.

[212] GB/T 12474-2008,空气中可燃气体爆炸极限测定方法[S]. 北京:中国标准出版社,2008.

[213] Kondo S, Urano Y, Tokuhashi K. Prediction of flammability of gases by using F-number analysis[J]. Journal of Hazardous Materials, 2001, 82(2): 113-128.

[214] Huang Z., Zhang Y. , Zeng K., et al.. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures[J]. Combustion and Flame, 2006:146(1/2):.302-311.

[215] Liu L , Luo Z , Wang T . Effects of Initial Temperature on the Deflagration Characteristics and Flame Propagation Behaviors of CH4 and Its Blends with C2H6, C2H4, CO, and H2[J]. Energy & Fuels, 2020, 35(1):785–795.

[216] Bradley D, Gaskell P H,Gu X J, et al. Burning velocities,Markstein lengths and flame quenching for spherical methane-air flames:A computational study[J].Combustion and Flame, 1996, 104(1-2):176-198.

[217] 陈先锋,樊傲,袁必和,等.干水材料对瓦斯爆燃抑制的实验研究[J]. 爆炸与冲击, 2019, 39(11):1-11.

中图分类号:

 X932    

开放日期:

 2024-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式