- 无标题文档
查看论文信息

论文中文题名:

 有效应力对煤体瓦斯解吸渗流及变形特征影响研究与应用    

姓名:

 肖通    

学号:

 20220089044    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井瓦斯防治    

第一导师姓名:

 李树刚    

第一导师单位:

 西安科技大学    

第二导师姓名:

 林海飞    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Research and application of the influence of effective stress on coal gas desorption seepage and deformation characteristics    

论文中文关键词:

 解吸渗流特征 ; 有效应力 ; 三轴应力 ; 煤体变形 ; 瓦斯预抽    

论文外文关键词:

 Desorption seepage characteristics ; Effective stress ; Triaxial stress ; Coal deformation ; Gas pre-drainage    

论文中文摘要:

煤炭是我国主体能源,随着我国煤炭开采向深部发展,煤层高地应力、高瓦斯压力、低渗透性特征愈发显著,易造成瓦斯超限及煤与瓦斯突出事故。为降低瓦斯灾害,煤层钻孔预抽是防治瓦斯灾害的主要方法之一,其中钻孔布置与三维应力条件下煤体解吸渗流及变形特性有关。通过研究真三轴条件下不同有效应力对煤体瓦斯解吸渗流与变形影响规律,为煤层瓦斯高效预抽提供一定依据。

论文研发了煤体瓦斯吸附解吸与渗流全过程真三轴实验平台,实验平台主要由高压腔体、应力加载及控制系统、注气-吸附-解吸系统和数据采集及控制系统等组成。选择典型高瓦斯矿井煤样,探究了真三轴条件下有效应力对煤体瓦斯吸附解吸渗流及煤体变形特性的影响,得到了吸附量、解吸量、渗透率、形变量等不同实验参数,发现煤体瓦斯累计解吸量随解吸时间呈Langmuir型增长,煤体渗透率与有效应力呈负指数关系。

通过煤体瓦斯扩散渗流方程、变形控制方程、煤体破坏准则方程等,结合固体力学、流体动力学、渗流力学等基础理论,建立真三轴条件下煤体瓦斯解吸渗流及变形多物理场耦合模型。通过COMSOL Multiphysics数值模拟软件,研究不同有效应力作用下煤体瓦斯解吸渗流与变形特征,模拟结果与实验结果具有良好一致性,煤体瓦斯解吸量的绝对误差为0.0286,煤体渗透率的最大绝对误差为3.04,验证了数值模拟模型的可靠性。

通过数值模拟,分析了真三轴条件下不同有效应力对煤体瓦斯解吸渗流及变形特征的影响规律,揭示了煤体瓦斯解吸量、渗透率及三轴方向应变量与时间的变化关系,煤体瓦斯解吸量及变形量均与解吸时间之间呈类Langmuir型变化规律。随着有效应力从5.2 MPa增大至9.2 MPa,累计瓦斯解吸量下降43.75%;解吸体积应变下降幅度为87.22%;煤体渗透率下降幅度为82.59%;渗流体积应变下降幅度为87.53%。

以陕煤铜川矿业有限公司玉华煤矿1417工作面为工程背景,应用COMSOL数值模拟软件,优化煤层瓦斯预抽钻孔参数,分析了钻孔直径、布孔间距、抽采负压在不同有效应力条件下煤层瓦斯钻孔预抽效果。有效应力13.42 MPa下,钻孔直径的增大会使得有效抽采半径不断增大;布孔间距的增大使得有效抽采半径降低;抽采负压对钻孔有效抽采半径影响不显著。随着抽采时间的增加,钻孔有效抽采半径呈现增大的趋势,于抽采60 d后趋于平缓。确定瓦斯抽采直径为133 mm,布孔间距为6 m,抽采负压为22.55 kPa。通过现场工程实践,分析了现场不同钻孔抽采时间下瓦斯浓度、混合流量及抽采纯量的变化规律,验证了钻孔方案的合理性,保证了工作面的安全生产。

论文外文摘要:

With the deep development of coal mining in China, the characteristics of high ground stress, high gas pressure and low permeability of coal were becoming more and more significant. It was easy to cause coal and gas outburst. Coal seam drilling pre-drainage was one of the main methods to prevent gas disasters. The borehole layout was related to the desorption seepage and coal deformation characteristics under three-dimensional stress conditions. Studying the influence of different effective stresses on gas desorption seepage and deformation under true triaxial conditions can provide a basis for efficient pre-drainage of coal seam gas.

A true triaxial experimental platform for the whole process of coal gas adsorption, desorption and seepage was developed. It was mainly composed of high pressure chamber, stress loading-control system, gas injection-adsorption-desorption system and data acquisition control system. The influence of effective stress on gas adsorption-desorption seepage and coal deformation characteristics under true triaxial conditions was investigated by selecting typical high gas mine coal samples. Different experimental parameters such as adsorption capacity, desorption capacity, permeability and deformation were obtained. It was found that the cumulative desorption amount of gas increased exponentially with time. It was a negative exponential relationship between permeability and effective stress.

Through the coal gas diffusion seepage equation, deformation control equation, coal failure criterion equation, etc. Combined with solid mechanics, fluid dynamics, seepage mechanics and other basic theories. A multi-physical field coupling model of coal gas desorption seepage and deformation under true triaxial conditions was established. The gas desorption seepage and deformation characteristics under different effective stresses were studied by COMSOL Multiphysics numerical simulation software. The simulation results were in good agreement with the experimental results. The absolute error of coal gas desorption was 0.0286. The maximum absolute error of coal permeability was 3.04. The reliability of the numerical simulation model was verified.

Through numerical simulation, the variation law between different effective stresses and gas desorption-seepage-deformation characteristics under true triaxial conditions was analyzed. The relationship between gas desorption amount, permeability, triaxial strain and time was revealed. There was a quasi-Langmuir type variation law between gas desorption-deformation and time. As the effective stress increased from 5.2 MPa to 9.2 MPa, the cumulative gas desorption decreased by 43.75%. The desorption volume strain decreased by 87.22%. The permeability decreased by 82.59%. The decrease of seepage volume strain was 87.53%.

Taking the 1417 working face of Yuhua Coal Mine of Shaanxi Tongchuan Mining Co., Ltd. as the engineering background. Using COMSOL numerical simulation software. Optimize the drilling parameters of coal seam gas pre-drainage. The effects of borehole diameter, borehole spacing and negative pressure on the pre-drainage under different effective stress conditions were analyzed. Under the effective stress of 13.42 MPa, the increase of borehole diameter would increase the effective extraction radius. The increase of hole spacing reduced the effective extraction radius. The extraction negative pressure had no significant effect on the effective extraction radius. With the increase of extraction time, the effective extraction radius shown an increasing trend. It tended to be gentle after 60 d of extraction. The gas extraction diameter was determined to be 133 mm. The hole spacing was 6 m. The negative pressure of extraction was 22.55 kPa. Through field engineering practice, the variation law of gas concentration, mixed flow and extraction purity under different borehole extraction time was analyzed. The rationality of the drilling scheme was verified, and ensure the safe production of the working face.

参考文献:

[1] 钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(1):1-13.

[2] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(7):2197-2211.

[3] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1):1-6.

[4] 袁亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报, 2021, 46(3):716-725.

[5] 袁建梅, 杨德敏. 煤层气开发利用环境影响及对策建议[J]. 环境影响评价, 2019, 41(4):32-35+58.

[6] 叶兰. 我国瓦斯事故规律及预防措施研究[J]. 中国煤层气, 2020, 17(4): 44-47.

[7] 程远平, 雷杨. 构造煤和煤与瓦斯突出关系的研究[J]. 煤炭学报, 2021, 46(1):180-198.

[8] 周叡, 鲁秀芹, 张俊杰, 等. 沁水盆地樊庄区块煤层气开发生产规律分析[J]. 煤炭科学技术, 2018, 46(6):69-73+148.

[9] 康永尚, 邓泽, 皇甫玉慧, 等. 中煤阶煤层气高饱和超饱和带的成藏模式和勘探方向[J]. 石油学报, 2020, 41(12):1555-1566.

[10] 伊伟. 鄂尔多斯盆地韩城矿区中煤阶煤层气成藏模式[J]. 新疆石油地质, 2017, 38(2):165-170.

[11] 祝捷, 姜耀东, 孟磊, 等. 载荷作用下煤体变形与渗透性的相关性研究[J]. 煤炭学报, 2012, 37(6):984-988.

[12] 段淑蕾, 李波波, 李建华, 等. 含水煤岩渗透率演化规律及动态滑脱效应的作用机制[J]. 岩石力学与工程学报, 2022, 41(4):798-808.

[13] Li Z, Wei C, Leung J, et al. Numerical and experimental study on gas flow in nanoporous media[J]. Journal of Natural Gas Science and Engineering, 2015, 27:738-744.

[14] 聂百胜, 卢红奇, 李祥春, 等. 煤体吸附-解吸瓦斯变形特征实验研究[J]. 煤炭学报, 2015, 40(4):754-759.

[15] 马东民, 李来新, 李小平, 等. 大佛寺井田4号煤CH4与CO2吸附解吸实验比较[J].煤炭学报, 2014, 39(9):1938-1944.

[16] 祝捷,张敏,姜耀东, 等.煤吸附解吸CO2变形特征的试验研究[J]. 煤炭学报, 2015, 40(5):1081-1086.

[17] 唐明云, 张海路, 段三壮, 等. 基于Langmuir模型温度对煤吸附解吸甲烷影响研究[J]. 煤炭科学技术, 2021, 49(5):182-189.

[18] Long H, Lin H, Yan M, et al. Molecular simulation of the competitive adsorption characteristics of CH4, CO2, N2, and multicomponent gases in coal[J]. Powder Technology, 2021, 385:348-356.

[19] Pan J, Hou Q, Ju Y, et al. Coalbed methane sorption related to coal deformation structures at different temperatures and pressures[J]. Fuel, 2012, 102:760-765.

[20] Cai Y, Pan Z, Liu D, et al. Effects of Pressure and Temperature on Gas Diffusion and Flow for Primary and Enhanced Coalbed Methane Recovery[J]. Energy Exploration & Exploitation, 2014, 32(4):601-619.

[21] Zhao D, Zhao Y S, Feng Z C, et al. Experiments of Methane Adsorption on Raw Coal at 30-270°C [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011, 34(4):324-331.

[22] Zhang L, Ren T, Aziz N. Influences of temperature and moisture on coal sorption characteristics of a bituminous coal from the Sydney Basin, Australia[J]. International Journal of Oil, Gas and Coal Technology, 2014, 8(1):62-78.

[23] Zhou D, Feng Z, Zhao D, et al. Experimental meso scale study on the distribution and evolution of methane adsorption in coal[J]. Applied Thermal Engineering, 2017, 112:942-951.

[24] 尹金辉. 温度对煤样罐内煤体瓦斯解吸的影响[J]. 能源与环保, 2020, 42(8):19-22+32.

[25] 王圣程, 李海鉴. 不同温度压力下低渗煤体瓦斯的解吸规律[J]. 煤炭技术, 2020, 39(1):80-82.

[26] 刘珊珊, 孟召平. 等温吸附过程中不同煤体结构煤能量变化规律[J]. 煤炭学报, 2015, 40(6):1422-1427.

[27] 杨孝波, 许江, 周斌, 等. 煤与瓦斯突出发生前后煤层温度演化规律研究[J]. 采矿与安全工程学报, 2021, 38(1):206-214.

[28] 王振洋, 程远平. 构造煤与原生结构煤孔隙特征及瓦斯解吸规律试验[J]. 煤炭科学技术, 2017, 45(3):84-88.

[29] 肖晓春, 潘一山, 吕祥锋, 等. 含水煤岩变形破坏过程中瓦斯运移规律的实验研究[J]. 煤炭学报, 2012, 37(1):115-119.

[30] 李祥春, 李忠备, 张良, 等. 不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J]. 煤炭学报, 2019, 44(4):142-156.

[31] 何满潮, 王春光, 李德建, 等. 单轴应力-温度作用下煤中吸附瓦斯解吸特征[J]. 岩石力学与工程学报, 2010, 29(5):865-872.

[32] 唐巨鹏, 潘一山, 李成全, 等. 三维应力作用下煤层气吸附解吸特性实验[J]. 天然气工业, 2007, 27(7):35-38+133.

[33] 周动, 刘志祥, 冯增朝, 等. 甲烷在煤的微孔隙喉道通过性及其对解吸的影响机理[J]. 煤炭学报, 2019, 44(9):2797-2802.

[34] 刘纪坤, 任棒, 王翠霞. 中低阶煤孔隙结构特征及其对瓦斯解吸特性影响[J]. 煤炭科学技术, 2022, 50(12):1-9.

[35] 曹树刚, 张遵国, 李毅, 等. 突出危险煤吸附、解吸瓦斯变形特性试验研究[J]. 煤炭学报, 2013, 38(10):1792-1799.

[36] 肖晓春, 徐军, 潘一山, 等. 功率超声影响的煤中甲烷气促解规律实验研究[J]. 岩石力学与工程学报, 2013, 32(1):65-71.

[37] 郝建峰, 梁冰, 孙维吉, 等. 考虑吸附/解吸热效应的含瓦斯煤热-流-固耦合模型及数值模拟[J]. 采矿与安全工程学报, 2020, 37(6):1282-1290.

[38] Hou Y D, Huang S P, Han J, et al. Numerical Simulation of the Effect of Injected CO2 Temperature and Pressure on CO2-Enhanced Coalbed Methane[J]. Applied Sciences-Basel, 2020, 10(4):1385.

[39] 杨涛, 聂百胜. 煤粒吸附瓦斯过程中的温度变化研究[J]. 煤炭学报, 2015, 40(2):380-385.

[40] 张遵国, 齐庆杰, 曹树刚, 等. 煤层吸附He, CH4和CO2过程中的变形特性[J]. 煤炭学报, 2018, 43(9):2484-2490.

[41] 陈结, 潘孝康, 姜德义, 等. 三轴应力下软煤和硬煤对不同气体的吸附变形特性[J]. 煤炭学报, 2018, 43(1):149-157.

[42] Wang G, Liu Z, Hu Y, et al. Influence of gas migration on permeability of soft coalbed methane reservoirs under true triaxial stress conditions[J]. Royal Society Open Science, 2019, 6(10):190892.

[43] 李文鑫, 王刚, 杜文州, 等. 真三轴气固耦合煤体渗流试验系统的研制及应用[J]. 岩土力学, 2016, 37(7):2109-2118.

[44] 张遵国, 赵丹, 陈毅. 不同含水率条件下软煤等温吸附特性及膨胀变形特性[J]. 煤炭学报, 2020, 45(11):3817-3824.

[45] 周动, 王辰, 冯增朝, 等. 煤吸附解吸甲烷细观结构变形试验研究[J]. 煤炭学报, 2016, 41(9):2238-2245.

[46] 祝捷, 张敏, 传李京, 等. 煤吸附/解吸瓦斯变形特征及孔隙性影响实验研究[J]. 岩石力学与工程学报, 2016, 35(1):2620-2626.

[47] 王登科, 彭明, 付启超, 等. 瓦斯抽采过程中的煤层透气性动态演化规律与数值模拟[J]. 岩石力学与工程学报, 2016, 35(4):704-712.

[48] 臧泽升, 李忠辉, 钮月, 等. 不同瓦斯压力下煤体力学特性试验研究[J]. 中国安全科学学报, 2021, 31(3):90-95.

[49] Gao Z, Li B, Li J, et al. Coal permeability related to matrix-fracture interaction at different temperatures and stresses[J]. Journal of Petroleum Science and Engineering:2021, 200:108428.

[50] Ni X M, Li Q Z, Wang Y B, et al. Coal matrix deformation characteristics in the process of carbon dioxide displacing different gas saturation coal-bed methane[J]. Journal of Coal Science and Engineering, 2013, 19(3):303-308.

[51] 周银波, 李晓丽, 李晗晟, 等. 煤体吸附变形对3种气体渗透率演化的影响[J]. 煤矿安全, 2021, 52(11):16-21.

[52] 蒋长宝, 余塘, 段敏克, 等. 瓦斯压力和应力对裂隙影响下的渗透率模型研究[J]. 煤炭科学技术, 2021, 49(2):115-121.

[53] Eskandari G M, Zhang Y. Mechanics of shrinkage-swelling transition of microporous materials at the initial stage of adsorption[J]. International Journal of Solids and Structures, 2021, 222-223:111041.

[54] Sampath K, Perera M, Elsworth D, et al. Discrete fracture matrix modelling of fully-coupled CO2 flow-Deformation processes in fractured coal[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138:104644.

[55] 李波波, 高政, 杨康, 等. 考虑温度、孔隙压力影响的煤岩渗透性演化机制分析[J]. 煤炭学报, 2020, 45(2):626-632.

[56] 李波波, 成巧耘, 李建华, 等. 含水煤岩裂隙压缩特征及渗透特性研究[J]. 岩石力学与工程学报, 2020, 39(10):2069-2078.

[57] Du W, Zhang Y, Meng X, et al. Deformation and seepage characteristics of gas-containing coal under true triaxial stress[J]. Arabian Journal of Geosciences, 2018, 11(9):190.

[58] Meng Y, Li Z. Triaxial experiments on adsorption deformation and permeability of different sorbing gases in anthracite coal[J]. Journal of Natural Gas Science and Engineering, 2017, 46:59-70.

[59] Meng Y, Li Z. Experimental comparisons of gas adsorption, sorption induced strain, diffusivity and permeability for low and high rank coals[J]. Fuel, 2018, 234:914-923.

[60] Minaeian V, Dewhurst D N, Rasouli V. An Investigation on Failure Behaviour of a Porous Sandstone Using Single-Stage and Multi-stage True Triaxial Stress Tests[J]. Rock Mechanics and Rock Engineering, 2020, 53(8):3543-3562.

[61] 宋爽, 秦波涛, 刘杰, 等. 两向加卸载含瓦斯煤变形破裂数值模拟研究[J]. 煤矿安全, 2017, 48(12):28-32.

[62] 张翔. 含瓦斯煤失稳破坏及渗流特征试验与模拟研究[J]. 矿业研究与开发, 2020, 40(10):102-107.

[63] Duan M, Jiang C, Gan Q, et al. Study on Permeability Anisotropy of Bedded Coal Under True Triaxial Stress and Its Application[J]. Transport in Porous Media, 2020, 131(3):1007-1035.

[64] 姜德义, 袁曦, 陈结, 等. 吸附气体对突出煤渗流特性的影响[J]. 煤炭学报, 2015, 40(9):2091-2096.

[65] Cai Y, Liu D, Pan Z, et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel, 2013, 103:258-268.

[66] 王登科, 彭明, 魏建平, 等. 煤岩三轴蠕变-渗流-吸附解吸实验装置的研制及应用[J]. 煤炭学报, 2016, 41(3):644-652.

[67] 王刚, 刘志远, 王鹏飞, 等. 考虑瓦斯吸附作用的真三轴煤体剪切渗流特性试验研究[J]. 采矿与安全工程学报, 2019, 36(5):1061-1070.

[68] 郭平. 滑脱效应和基质变形对低渗透煤体渗流特性影响的试验研究[J]. 煤矿安全, 2016, 47(7):9-13.

[69] 汪吉林, 秦勇, 傅雪海. 多因素叠加作用下煤储层渗透率的动态变化规律[J]. 煤炭学报, 2012, 37(8):1348-1353.

[70] 陈帅, 李波波, 李建华, 等. 不同应力条件下页岩表观渗透率模型试验研究[J]. 煤炭科学技术, 2021, 49(7):169-178.

[71] 白鑫, 王登科, 田富超, 等. 三轴应力加卸载作用下损伤煤岩渗透率模型研究[J]. 岩石力学与工程学报, 2021, 40(8):1536-1546.

[72] 程远平, 刘洪永, 郭品坤, 等. 深部含瓦斯煤体渗透率演化及卸荷增透理论模型[J]. 煤炭学报, 2014, 39(8):1650-1658.

[73] 荣腾龙, 周宏伟, 王路军, 等. 开采扰动下考虑损伤破裂的深部煤体渗透率模型研究[J]. 岩土力学, 2018, 39(11):3983-3992.

[74] 祝捷, 王金鸽, 邵唐砂, 等. 考虑有效应力影响的煤岩毛细管束渗流模型[J]. 中国科技论文, 2022, 17(9):971-977+1007.

[75] 陶云奇. 含瓦斯煤THM耦合模型建立[J]. 煤矿安全, 2012, 43(2):9-12.

[76] Zhu W C, Wei C H, Liu J, et al. A model of coal-gas interaction under variable temperatures[J]. International Journal of Coal Geology, 2011, 86(3):213-221.

[77] 荣腾龙, 刘克柳, 周宏伟, 等. 采动应力下深部煤体渗透率演化规律研究[J]. 岩土工程学报, 2022, 44(6):1106-1114.

[78] 张春会, 赵莺菲, 郑晓明. 考虑温度和滑脱效应的煤渗流应力耦合模型[J]. 河北科技大学学报, 2015, 36(3):306-312.

[79] 李立功, 康天合. 滑脱系数动态变化对煤层气运移的影响[J]. 煤矿安全, 2019, 50(5):1-6.

[80] 公维宽, 王伟强. CT三维重构煤体结构及瓦斯渗流数值模拟[J]. 煤矿安全, 2020, 51(11):19-23.

[81] 张翔. 含瓦斯煤失稳破坏及渗流特征试验与模拟研究[J]. 矿业研究与开发, 2020, 40(10):102-107.

[82] 章飞, 张攀. 鄂尔多斯盆地低阶煤孔隙瓦斯微观渗流特征[J]. 煤矿安全, 2020, 51(8):17-22+27.

[83] 邵建立, 周斐, 薛彦超, 等. 岩体孔隙-裂隙双渗流数值模拟研究[J]. 煤矿安全, 2019, 50(9):1-4.

[84] 王开德, 宁洪进, 万纯新, 等. 煤层注水压力及渗透率分布规律数值模拟[J]. 煤矿安全, 2016, 47(5):181-184.

[85] 程远平, 俞启香, 周红星, 等. 煤矿瓦斯治理“先抽后采”的实践与作用[J]. 采矿与安全工程学报, 2006, 23(4):389-392+410.

[86] 赵阳升, 秦惠增, 白其峥. 煤层瓦斯流动的固-气耦合数学模型及数值解法的研究[J]. 固体力学学报, 1994, 15(1):49-57.

[87] 林柏泉, 宋浩然, 杨威, 等. 基于煤体各向异性的煤层瓦斯有效抽采区域研究[J]. 煤炭科学技术, 2019(6):139-145.

[88] 刘厅, 林柏泉, 邹全乐, 等. 基于煤层原始瓦斯含量和压力的割缝钻孔有效抽采半径测定[J]. 煤矿安全, 2014(8):8-11.

[89] 徐青伟, 王兆丰, 徐书荣, 等. 多煤层穿层钻孔瓦斯抽采有效抽采半径测定[J]. 煤炭科学技术, 2015(7):83-88.

[90] 梁冰, 袁欣鹏, 孙维吉. 本煤层顺层瓦斯抽采渗流耦合模型及应用[J]. 中国矿业大学学报, 2014, 43(2):208-213.

[91] 张超林, 王恩元, 许江, 等. 煤层瓦斯压力对瓦斯抽采效果的影响[J]. 采矿与安全工程学报, 2022, 39(3):634-642.

[92] 鲁义, 申宏敏, 秦波涛, 等. 顺层钻孔瓦斯抽采半径及布孔间距研究[J]. 采矿与安全工程学报, 2015, 32(1):156-162.

[93] 司鹄, 郭涛, 李晓红. 钻孔抽放瓦斯流固耦合分析及数值模拟[J]. 重庆大学学报, 2011, 34(11):105-110.

[94] 郝富昌, 刘明举, 孙丽娟. 基于多物理场耦合的瓦斯抽放半径确定方法[J]. 煤炭学报, 2013, 38(1):106-111.

[95] 张学博, 王豪, 杨明, 等. 抽采钻孔失稳坍塌对瓦斯抽采的影响机制研究及应用[J]. 煤炭学报, 2022:1-15.

[96] 龚选平, 薛生, 韩柏青, 等. 钻孔瓦斯抽采效果影响因素的响应面分析[J]. 煤矿安全, 2022, 53(11):176-183.

[97] 李子文, 林柏泉, 郭明功, 等. 基于一维径向流动确定钻孔瓦斯抽采有效影响半径[J]. 煤炭科学技术, 2014, 42(12):62-64.

[98] 马耕, 苏现波, 魏庆喜. 基于瓦斯流态的抽放半径确定方法[J]. 煤炭学报, 2009, 34(4):501-504.

[99] Liu Z, Cheng Y, Jiang J, et al. Interactions between coal seam gas drainage boreholes and the impact of such on borehole patterns[J]. Journal of Natural Gas Science and Engineering, 2017, 38:597-607.

[100] Zhao D, Liu J, Pan J. Study on gas seepage from coal seams in the distance between boreholes for gas extraction[J]. Journal of Loss Prevention in the Process Industries, 2018, 54:266-272.

[101] Zhang C, Xu J, Peng S, et al. Experimental study of drainage radius considering borehole interaction based on 3D monitoring of gas pressure in coal[J]. Fuel, 2019, 239:955-963.

[102] 刘延保. 极松软煤体高压吸附过程中变形特性试验研究[J]. 矿业安全与环保, 2016, 43(5):1-4+8.

[103] Aksu Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling[J]. Biochemical Engineering Journal, 2001, 7(1):79-84.

[104] Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat[J]. Water Research, 2000, 34(3):735-742.

[105] Sun W J, Lin H F, Li S G, et al. Experimental Research on Adsorption Kinetic Characteristics of CH4, CO2, and N2 in Coal from Junggar Basin, China, at Different Temperatures[J]. Natural Resources Research, 2021, 30(3):2255-2271.

[106] 程卫民, 李怀兴, 刘义鑫, 等. 真三维应力下煤岩水力润湿范围动态监测试验系统研制[J]. 岩石力学与工程学报, 2022, 41(2):240-253.

[107] 张遵国, 赵丹, 曹树刚, 等. 软煤吸附解吸变形差异性试验研究[J]. 采矿与安全工程学报, 2019, 36(6):1264-1272.

[108] 贾恒义, 王凯, 王益博, 等. 围压循环加卸载作用下含瓦斯煤样渗透特性试验研究[J]. 煤炭学报, 2020, 45(5):1710-1718.

[109] 许江, 曹偈, 李波波, 等. 煤岩渗透率对孔隙压力变化相应规律的试验研究[J]. 岩石力学与工程学报, 2013, 32(2):225-230.

[110] 陈田, 姚强岭, 杜茂, 等. 浸水次数对煤样裂隙发育损伤的实验研究[J]. 岩石力学与工程学报, 2016, 35(2):3756-3762.

[111] 张磊, 田苗苗, 薛俊华, 等. 液氮循环处理对不同含水率煤样渗流特性的影响[J]. 煤炭学报, 2021, 46(1):291-301.

[112] Lin H F, Huang M, Li S G, et al. Numerical simulation of influence of langmuir adsorption constant on gas drainage radius of drilling in coal seam [J]. International Journal of Mining Science and Technology, 2016, 26(3):377-382.

[113] Zhu W C, Wei C H, Liu J, et al. A model of coal-gas interaction under variable temperatures[J]. International Journal of Coal Geology, 2011, 86(2):213-221.

[114] 程远平, 董骏, 李伟, 等. 负压对瓦斯抽采的作用机制及在瓦斯资源化利用中的应用[J]. 煤炭学报, 2017, 42(6):1466-1474.

[115] Li S, Fan C, Han J, et al. A fully coupled thermal-hydraulic-mechanical model with two-phase flow for coalbed methane extraction[J]. Journal of Natural Gas Science and Engineering, 2016, 33:324-336.

[116] Wu Y, Liu J S, Elsworth D, et al. Development of anisotropic permeability during coalbed methane production [J]. Journal of Natural Gas Science & Engineering, 2010, 2(4):197-210.

[117] Si L, Li Z, Yang Y. Coal permeability evolution with the interaction between nanopore and fracture: Its application in coal mine gas drainage for Qingdong coal mine in Huaibei coalfield, China [J]. Journal of Natural Gas Science and Engineering, 2018, 56:523-535.

[118] 张培森, 赵成业, 侯季群, 等. 温度-应力-渗流耦合条件下红砂岩渗流特性试验研究[J]. 岩石力学与工程学报, 2020, 39(10):1957-1974.

[119] Detournay E, Cheng A. Fundamentals of poroelasticity [J]. Analysis & Design Methods, 1993, 2(1):113-171.

[120] 于不凡. 煤矿瓦斯灾害防治及利用技术手册 [M]. 北京:煤炭工业出版社, 2005.

[121] 魏晨慧. 热流固耦合条件下煤岩体损伤模型及其应用 [D]. 沈阳:东北大学, 2012.

[122] 张遵国, 陈毅, 唐朝, 等. 煤体CO2吸附/解吸变形特征及变形模型[J]. 煤炭学报, 2022, 47(8):3128-3137.

[123] 李树刚, 刘思博, 林海飞, 等. 分级循环加卸载煤体变形破坏特征试验研究[J]. 煤炭科学技术, 2021, 49(4):199-205.

[124] 魏彬. 煤体吸附/解吸变形各向异性特征与机理研究[D]. 焦作:河南理工大学, 2018.

[125] 陈宇超. 温度场-应力场-渗流场多场耦合作用下页岩裂隙渗流特性实验研究[D]. 重庆:重庆大学, 2017.

[126] 吴世跃. 煤层气与煤层耦合运动理论及其应用的研究[D]. 沈阳:东北大学, 2006.

[127] 杨新乐, 张永利, 李成全, 等. 考虑温度影响下煤层气解吸渗流规律试验研究[J]. 岩土工程学报, 2008, 30(12):1811-1814.

[128] 荣腾龙, 周宏伟, 王路军, 等. 采掘扰动与温度耦合影响下工作面前方煤体渗透率模型研究[J]. 岩土力学, 2019, 40(11):4289-4298.

[129] 蔺亚兵;申小龙;刘军;马东民;陈龙; 黄陇侏罗纪煤田地应力特征及其地质意义[J]. 采矿与安全工程学报, 2020, 4(37):819-827.

[130] 程远平, 付建华, 俞启香. 中国煤矿瓦斯抽采技术的发展[J]. 采矿与安全工程学报, 2009, 26(2):127-139.

[131] 谢雄刚, 李希建, 余照阳. 顺层钻孔预抽突出煤层瓦斯技术研究[J]. 煤炭科学技术, 2013, 41(1):78-81.

[132] 鲁义, 申宏敏, 秦波涛, 等. 顺层钻孔瓦斯抽采半径及布孔间距研究[J]. 采矿与安全工程学报, 2015, 32(1):156-162.

[133] 林海飞, 刘思博, 李树刚, 等. 稳压条件下煤体稳定特性钻孔倾角效应的试验研究[J]. 采矿与安全工程学报, 2021, 38(3):575-583.

[134] 刘佳佳, 贾改妮, 王丹, 等. 基于多物理场耦合的顺层钻孔瓦斯抽采参数优化研究[J]. 煤炭科学技术, 2018, 46(7):115-119+156.

[135] 林海飞, 季鹏飞, 孔祥国, 等. 顺层钻孔预抽煤层瓦斯精准布孔模式及工程实践[J]. 煤炭学报, 2022, 47(3):1220-1234.

中图分类号:

 TD712    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式