论文中文题名: | 基于深度学习的视频文本描述研究及煤矿应用 |
姓名: | |
学号: | 18208052011 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081203 |
学科名称: | 工学 - 计算机科学与技术(可授工学、理学学位) - 计算机应用技术 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 计算机图形图像处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-21 |
论文答辩日期: | 2021-06-03 |
论文外文题名: | Research on video captioning based on deep learning and its application in coal mine |
论文中文关键词: | |
论文外文关键词: | Video captioning ; Deep learning ; Attention mechanism ; Coal mine scene ; BERT model |
论文中文摘要: |
~视频文本描述是一个具有挑战性的任务,它涵盖了计算机视觉和自然语言处理两个方面,其主要目标是将视觉内容转换为准确而简洁的文字描述。视频文本描述在很多领域都具有广阔应用前景,特别是在煤矿领域已经得到越来越多人的关注,把视频文本描述的技术运用到煤矿井下,降低了检索煤矿视频的难度和时间,对于煤矿井下监控视频智能化的研究具有重大意义。由于视频底层的视觉特征与高级语义之间存在着很大差异,本文通过结合视频的特征提取、视觉文本检测对基于深度学习的视频文本描述方法进行改进,主要的研究内容如下: |
论文外文摘要: |
~Video captioning is a challenging task. It covers two aspects of computer vision and natural language processing. Its main goal is to convert visual content into accurate and concise text descriptions. Video captioning has broad application prospects in many fields, especially in the coal mine field, which has attracted more and more people’s attention. The application of video captioning technology to coal mines reduces the difficulty and time of retrieving coal mine videos. The research of underground monitoring video intelligence is of great significance. Due to the big difference between the visual features and high-level semantics at the bottom of the video, this article combines video feature extraction and visual text detection to improve the video text description method based on deep learning. The main research contents are as follows: |
中图分类号: | TP391.413 |
开放日期: | 2021-06-22 |