- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 刘美娟    

学号:

 20201221047    

保密级别:

     

论文语种:

 chi    

学科代码:

 025200    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2023    

培养单位:

 西    

院系:

 理学院    

专业:

 应用统计    

研究方向:

     

第一导师姓名:

 张仲华    

第一导师单位:

 西安科技大学    

第二导师姓名:

 邹绍辉    

论文提交日期:

 2023-06-13    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Measurement of Low Carbon Logistics Efficiency in the Yellow River Basin and Study on Spatial Agglomeration Effect    

论文中文关键词:

 低碳物流效率 ; 三阶段DEA模型 ; 时空演变 ; 空间集聚    

论文外文关键词:

 Low Carbon Logistics Efficiency ; Spatial-temporal evolution ; Spatial Aggregation ; Three-stage DEA model    

论文中文摘要:
<p>20232&ldquo;&rdquo;绿绿绿西绿</p> <p>2010-2019沿线PearsonDEA沿线ArcGIS沿线</p> <p>GDP西西</p>
论文外文摘要:
<p>In February 2023, the Carbon Neutrality and Carbon Peak Summit Forum with the theme of &quot;Carbon Neutral Regional Development&quot; was successfully held, the digital carbon neutral regional development with the theme of &quot;Green low-carbon, digital life&quot; brings together professionals and brings together their thoughts. Logistics industry is an important circulating industry in our country, improving logistics efficiency is an important way to achieve the goal of &quot;double carbon&quot; and sustainable economic development.&nbsp;Due to the large amount of pollutants produced in the production process, the logistics industry ranks third in energy consumption after industry and manufacturing, according to the&nbsp;data, which is not satisfied with long-term economic development.&nbsp;As one of the most important inland rivers in China,&nbsp;it is an important river transport to promote the circulation of materials, so&nbsp;many policies have been issued to arouse attention, which has been attached great importance by the country. The logistics industry can stimulate consumption and production and improve regional economic vitality. Driven by the goal of &quot;dual carbon&quot;, this paper analyzes the temporal and spatial changes of logistics efficiency from the global and local perspectives, and according to the research results, provides academic basis and valuable suggestions.</p> <p>First of all, this paper collected relevant data including energy consumption and the number of people employed in the logistics industry through the statistical yearbook data of each province. Secondly, this paper uses Pearson correlation coefficient to judge whether the premise of the model is satisfied, the efficiency value of each stage is measured and compared of nine provinces in three stages, the influence of environmental exogenous <font color='red'>variable</font>s on input value was analyzed, and uses ArcGIS software to draw a time-varying efficiency map, according to which the spatiotemporal evolution characteristics of logistics efficiency during the observation period are analyzed. With ox axis as pure technical efficiency, oy axis as scale efficiency and oz axis as comprehensive efficiency, a three-dimensional spatial scatter coordinate graph was established. Finally, exploratory data analysis was used to analyze the spatial structure effects of nine provinces from the perspective of the whole and the local.</p> <p>The study found that During the observation period, the average low-carbon logistics efficiency in the Yellow River Basin was 0.571, which was low overall, but showed a steady upward trend year by year, and the main factor limiting the overall low low-carbon logistics efficiency value in the Yellow River Basin was technology; the increase of regional GDP could not improve the efficiency of low-carbon logistics, but it will increase the production of greenhouse gases, while the total retail sales of consumer goods and the level of science and technology could drive consumption production to a certain extent, reduce the redundancy of input resources, increase output, and improve utilization; without considering environmental <font color='red'>variable</font>s such as carbon dioxide emissions, the measured efficiency values were often overestimated from the actual situation; the provinces with high efficiency values were mainly located in the east, there is a continuous phenomenon. In general, the logistics efficiency difference between the east and west is significant.</p>
参考文献:

[1] 刘艳,王正荣,钱坤.我国绿色供应链研究的演变与新兴趋势——基于CSSCI文献的CiteSpace可视化分析[J].科技管理研究,2019,39(21):200-207.

[2] 龚雪.中部六省物流效率评价[J].统计与决策,2019,(18):59-63.

[3] 张济建,刘清等.长江经济带碳解锁效率研究—基于SE-DEA-Malmquist指数[J].华东经济管理,2021,35(06):1-10.

[4] 魏国辰,乐雄平,孔令钦.长江经济带物流产业效率及其影响因素研究[J].数学的实践与认识,2018,48(9):41-47.

[5] 尤美虹,颜梦玲,何美章.5G应用驱动下绿色物流能力拓展模式探析——以菜鸟、京东为例[J].商业经济研究,2020(19):103-106.

[6] 王蕾,薛国梁,张红丽.基于DEA分析法的新疆北疆现代物流效率分析[J].资源科学, 2014,36(07):1425-1433.

[7] 尤怀墨,方虹,翟柱玉,等.基于DEA和Tobit模型的中国光伏企业绿色发展效率研究[J].数学的实践与认识,2017,47(18):63-71.

[8] Battese G E, Coelli T J. A model for technical inefficiency effects in a stochastic frontier production function for panel data [J]. Empirical Economics,1995,20(2):325-332.

[9] 李俊杰,景一佳.基于SBM-GIS的绿色发展效率评价及时空分异研究——以中原城市群为例[J].生态经济,2019,35(09):94-101.

[10]杨恺钧,毛博伟,胡菡.长江经济带物流业全要素能源效率——基于包含碳排放的SBM与GML指数模型[J].北京理工大学学报(社会科学版),2016,18(6):54-62.

[11]高旭阔,张迪.考虑环境因素的城镇污水处理投资效率——基于三阶段DEA的方法[J].中国环境科学,2018,38(09):3594-3600.

[12]张竞轶,张竞成.基于三阶段DEA模型的中国物流效率综合研究[J].管理世界,2016(8):178-179.

[13]王海峰,田强,李金华,李晓丽.“一带一路”沿线省份物流效率及其影响因素的随机前沿分析[J].公路交通科技,2020,37(10):151-158.

[14]于丽静,陈忠全.低碳视角下中国区域物流效率研究—基于SFA和PP的实证分析[J].生态经济,2017,33(04):43-48_91.

[15]刘瑞娟,王建伟,黄泽滨.交通基础设施、空间溢出效应与物流产业效率—基于“丝绸之路经济带”西北5省区的实证研究[J].工业技术经济,2017,36(06):21-27.

[16]易燕.我国物流产业绿色效率及区域空间特征—基于非期望产出的SBM模型[J].商业经济研究,2020(20):104-107.

[17]曹鹏,白永平.中国省域绿色发展效率的时空格局及其影响因素[J].甘肃社会科学,2018(04):242-248.

[18]刘宏笪,王晓霞,张济建,黄嘉梁.中国省域空间单元绿色治理效率测度及其空间格局特征分析—基于广义面板三阶段DEA模型分析[J].中国环境科学,2022,42(03):1477-1488.

[19]田亚鹏,柳晓艺.基于超效率SBM-DEA和空间分析的区域绿色发展效率评价[J].统计与信息论坛,2021,36(08):56-65.

[20]李娟,王琴梅.丝绸之路经济带核心区物流业效率及其收敛性分析[J].2018,33(10):121-128.

[21]李楠.城市物流效率分析自适应DBN算法研究[J].计算机工程与运用,2017,53(12):9-15.

[22]曹炳汝,孔泽云,邓莉娟.长江经济带省域物流效率及时空演化研究[J].地理科学,2019,39(12):1841-1848.

[23]刘明,杨路明.区域物流的产业效率、空间互动与协调发展—基于全国277个地市级城市的数据实证[J].中国流通经济,2019,33(08):34-44.

[24]Iliyasu, A., Mohamed Z.A, 2016.Evaluating contextual factors affecting the technical efficiency of freshwater pond culture systems in peninsular Malaysia: A two-stage DEA approach.Aquac.Rep.3, 12-17.

[25]B. Starr Mc Mullen, Dong-Won Noh. Addendum to “Accounting for emission in the measurement of transit agency efficiency: A directional distance function approach ”[J].Transportation Research Part D,2007, 12(5):1-9.

[26]Straka M, Spirkova D, Filla M. Improved Efficiency of Manufacturing Logistics by Using Computer Simulation[J].International Journal of Simulation Modeling, Volume 20, Issue 3. 2021. PP 501-512.

[27]Markovits-Somogyi R, Boker Z. Assessing the Logistics Efficiency of European Countries by using DEA-PC Methodology[J].Transport,2014,29(2):137-145.

[28]Kottas A T, Madas M A. Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants [J].Journal of Air Transport Management, 2018, 70:1-17.

[29]Park H G, Lee Y J. The efficiency productivity analysis of lager logistics providers services in Korea [J].The Asian Journal of Shipping and Logistics.2015, 31(4):469-476.

[30]Almalki M, Alkahtani M.(2022),Allocation of Regional Logistics Hubs and Assessing Their Contribution to Saudi Arabia’s Logistics Performance Index Ranking, Sustainability. Volume 14, Issue 12, pp.7474-7474.

[31]Martin R, Paolo T, Philipp H.(2020),A positive planning approach to secure logistics facilities in urban areas, Transportation Research Procedia. Volume 46,Issue C,pp.69-76.

[32]Murillo K.P, Rocha E and Rodrigues M.F.(2019),Construction sectors efficiency analysis on seven European countries, Engineering Construction and Architectural Management,Vol.26 No.8,pp.1801-1819.

[33]Fried H O, Lovell C A K, Schmidt S S, et al. Accounting for the environmental effects and statistical noise in data environment analysis[J].Journal of Productivity Analysis,2002,17(12):157:174.

[34]Wang, Q.; Zhang, Y. Comprehensive Evaluation of the Silk Road Economic Belt “Core Zone” Logistics Efficiency and Differentiate Provincial and Country Comparison. Chin. J. Management. Sci. 2016, 24, 152–157.

[35]Guan, L.; Zhao, W. Evaluation of the efficiency of rural infrastructure supply based on DEA-Malmquist. Stat. Decis.-Mak. 2020, 36,172–175.

[36]Carayannis, E.G.; Grigoroudis, E.; Goletsis, Y. A multilevel and multistage efficiency evaluation of innovation systems: Amulti objective DEA approach. Expert Syst. Appl. 2016, 62, 63–80.

[37]Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management. Sci. 1984, 30, 1078–1092.

[38]Jondrow, J.; Lovell, C.K.; Materov, I.S.; Schmidt, P. On the estimation of technical inefficiency in the stochastic frontier production function model [J]. Economic. 1982, 19, 233–238.

[39]Yue, R. Three stage DEA model management inefficiency estimation note. Stat. Res. 2012, 29, 104–107.

[40]Chen, W.; Zhang, L.; Ma, T.; Liu, Q.A few studies on the three-stage DEA model. Syst. Eng. 2014, 32, 144–149.

[41]黄晶,马蓓蓓,薛东前.基于SE-DEA模型的西安市土地利用效率及优化对策[J].干旱区研究,2015,32(03):630-636.

[42]姚山季,马琳,来尧静.“一带一路”重点省份低碳物流效率测度[J].生态经济,2020,36(11):18-24.

[43]仲云云,周雨倩.基于超效率DEA模型的长江经济带物流效率实证分析[J].2020,42(308):13-14.

[44]李雷.兰州市物流效率的测度、评价与路径提升研究—基于DEA模型和Tobit回归模型的分析[J.]物流技术,2019,38(09):47-51.

[45]高康,张步阔,王茂春,赵楠.基于超效率DEA-ESDA的中国西部物流效率空间格局及差异性研究[J].地域研究与开发,2019,38(06):6-10.

[46]Zhao G, Dou Y. Research on promoting the conservation and utilization of agricultural water resources in in the Beijing-Tianjin-Hebei Region under the background of agricultural green development.E3S Web of Conferences, 2019, 118, PP 04001.

[47]王育红,刘琪.基于Super-SBM模型的长江经济带物流效率测度研究[J].华东经济管理,2017,31(05):72-77.

[48]刘渝,李莱.中国各省物流业碳排放的脱钩及影响因素研究[J].环境科学与技术,2018,41(5):177-181.

[49]Kang L, Wu C, Liao X. and Wang B.(2020),Safety performance and technology heterogeneity in China’s provincial construction industry, Safety Science,Vol.121,pp.83-92.

[50]Park S H, Pham T Y, Yeo GT. The impact of ferry disasters on operational efficiency of the South Korean coastal ferry industry: A DEA-Window analysis [J].The Asian Journal of Shipping and Logistics, 2018, 34(3):248-255.

[51]刘承良,管明明.低碳约束下中国物流业效率的空间演化及影响因素[J].地理科学,2017,37(12):1805-1814.

[52]胡燕燕,曹卫东,黄琪,等.合肥市物流空间区位特征与形成机理[J].地域研究与开发,2016,35(3):58-63.

[53]唐建荣,张鑫和.物流业发展的时空演化、驱动因素及溢出效应研究——基于中国省域面板数据的空间计量分析[J].财贸研究,2017,28(5):11-21.

[54]Tobler W.A computer movie simulating urban growth in the Detroit region [J].Economic Geography, 1970, 46(2):234-240.

[55]Goodchild M F, Shiren Y.A hierarchical spatial structure for global geographic information systems [J].CVGIP: Graphical Models and Image Processing, 1992, 54(1):31-44.

[56]钟昌宝,钱康.长江经济带省域物流效率及空间差异研究[J].北京交通大学学报(社会科学版),2017,16(2):120-127.

[57]魏和清,李颖.我国绿色发展指数的空间分布及地区差异探析—基于探索性空间数据分析法[J].当代财经,2018(10):3-13.

[58]康峻,王力,牛铮.基于局部空间自相关分析的时空数据融合[J].遥感技术与运用,2015,30(06):1176-1181.

[59]刘洋,余建新,向冬蕾.基于局部空间自相关的思茅区耕地利用保护综合分区[J].水土保持研究,2020,27(01):183-188+196.

中图分类号:

 F222.1    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式