论文中文题名: | 黄河流域低碳物流效率测度及空间集聚研究 |
姓名: | |
学号: | 20201221047 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 025200 |
学科名称: | 经济学 - 应用统计 |
学生类型: | 硕士 |
学位级别: | 经济学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 物流统计 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2023-06-13 |
论文答辩日期: | 2023-06-01 |
论文外文题名: | Measurement of Low Carbon Logistics Efficiency in the Yellow River Basin and Study on Spatial Agglomeration Effect |
论文中文关键词: | |
论文外文关键词: | Low Carbon Logistics Efficiency ; Spatial-temporal evolution ; Spatial Aggregation ; Three-stage DEA model |
论文中文摘要: |
<p>2023年2月以“碳中和区域发展”为主题的碳中和、碳达峰高峰论坛成功举行,各学界、政府等一致认为绿色化区域协同发展是当下经济社会高质量发展的必由之路,绿色发展已然成为发展趋势。随着物流产业的快速发展,物流业已经服务于人们生产生活的方方面面,已经成为人们日常生活不可或缺的一部分。但是物流业属于典型的高能耗、高污染、高排放产业,想要实现绿色、可持续发展,促进物流产业低碳转型升级势在必行。黄河是我国最重要的内陆河之一,连接我国东、中、西部地区,其发展已经同京津冀、粤澳港等的发展一样受到国家重视,而物流业能为区域经济良好发展奠定物资流通根基。因此本文以黄河流域为研究对象,分析黄河流域物流产业低碳化发展的现状,为黄河流域物流产业低碳化发展提供科学理论依据,来推动黄河流域整体健康、绿色发展。</p>
<p>首先,本文搜集整理了2010-2019年黄河流域沿线九省份物流效率相关数据,通过阅读大量文献,选取合适的投入和产出指标建立指标评价体系。其次,本文运用Pearson相关系数衡量投入和产出指标的相关性,进行物流空间效率分析,然后运用三阶段DEA模型对黄河流域沿线九省份的低碳物流效率进行测度,探讨环境因素和随机干扰对效率值的影响,并运用ArcGIS软件绘制了随时间变化的效率地图,依此分析观察期内物流效率的时空演化特征,接着建立空间散点坐标图,将黄河流域沿线九省份进行空间分类,最后运用空间自相关分析法对黄河流域低碳物流效率的空间效应特征进行分析。</p>
<p>研究发现,观察期内黄河流域低碳物流效率整体偏低,但呈现逐年稳步上升的趋势,限制黄河流域低碳物流效率值整体偏低的主要因素是技术;地区GDP的增加并不能提高低碳物流效率,反而从一定程度上会增加二氧化碳排放量,而社会消费品零售总额和科技水平能从一定程度上拉动消费生产,减少投入资源冗余,增加产出,提高利用率;在不考虑二氧化碳排放量等环境变量因素下,测算出的效率值往往高估于实际情况;高效率值的省份主要位于黄河下游,在东部存在连片现象,低效率值省份主要聚集在黄河上游的西部地区,总体来说东西部物流效率差异显著。</p>
﹀
|
论文外文摘要: |
<p>In February 2023, the Carbon Neutrality and Carbon Peak Summit Forum with the theme of "Carbon Neutral Regional Development" was successfully held, the digital carbon neutral regional development with the theme of "Green low-carbon, digital life" brings together professionals and brings together their thoughts. Logistics industry is an important circulating industry in our country, improving logistics efficiency is an important way to achieve the goal of "double carbon" and sustainable economic development. Due to the large amount of pollutants produced in the production process, the logistics industry ranks third in energy consumption after industry and manufacturing, according to the data, which is not satisfied with long-term economic development. As one of the most important inland rivers in China, it is an important river transport to promote the circulation of materials, so many policies have been issued to arouse attention, which has been attached great importance by the country. The logistics industry can stimulate consumption and production and improve regional economic vitality. Driven by the goal of "dual carbon", this paper analyzes the temporal and spatial changes of logistics efficiency from the global and local perspectives, and according to the research results, provides academic basis and valuable suggestions.</p>
<p>First of all, this paper collected relevant data including energy consumption and the number of people employed in the logistics industry through the statistical yearbook data of each province. Secondly, this paper uses Pearson correlation coefficient to judge whether the premise of the model is satisfied, the efficiency value of each stage is measured and compared of nine provinces in three stages, the influence of environmental exogenous <font color='red'>variable</font>s on input value was analyzed, and uses ArcGIS software to draw a time-varying efficiency map, according to which the spatiotemporal evolution characteristics of logistics efficiency during the observation period are analyzed. With ox axis as pure technical efficiency, oy axis as scale efficiency and oz axis as comprehensive efficiency, a three-dimensional spatial scatter coordinate graph was established. Finally, exploratory data analysis was used to analyze the spatial structure effects of nine provinces from the perspective of the whole and the local.</p>
<p>The study found that During the observation period, the average low-carbon logistics efficiency in the Yellow River Basin was 0.571, which was low overall, but showed a steady upward trend year by year, and the main factor limiting the overall low low-carbon logistics efficiency value in the Yellow River Basin was technology; the increase of regional GDP could not improve the efficiency of low-carbon logistics, but it will increase the production of greenhouse gases, while the total retail sales of consumer goods and the level of science and technology could drive consumption production to a certain extent, reduce the redundancy of input resources, increase output, and improve utilization; without considering environmental <font color='red'>variable</font>s such as carbon dioxide emissions, the measured efficiency values were often overestimated from the actual situation; the provinces with high efficiency values were mainly located in the east, there is a continuous phenomenon. In general, the logistics efficiency difference between the east and west is significant.</p>
﹀
|
参考文献: |
[1] 刘艳,王正荣,钱坤.我国绿色供应链研究的演变与新兴趋势——基于CSSCI文献的CiteSpace可视化分析[J].科技管理研究,2019,39(21):200-207. [2] 龚雪.中部六省物流效率评价[J].统计与决策,2019,(18):59-63. [3] 张济建,刘清等.长江经济带碳解锁效率研究—基于SE-DEA-Malmquist指数[J].华东经济管理,2021,35(06):1-10. [4] 魏国辰,乐雄平,孔令钦.长江经济带物流产业效率及其影响因素研究[J].数学的实践与认识,2018,48(9):41-47. [5] 尤美虹,颜梦玲,何美章.5G应用驱动下绿色物流能力拓展模式探析——以菜鸟、京东为例[J].商业经济研究,2020(19):103-106. [6] 王蕾,薛国梁,张红丽.基于DEA分析法的新疆北疆现代物流效率分析[J].资源科学, 2014,36(07):1425-1433. [7] 尤怀墨,方虹,翟柱玉,等.基于DEA和Tobit模型的中国光伏企业绿色发展效率研究[J].数学的实践与认识,2017,47(18):63-71. [9] 李俊杰,景一佳.基于SBM-GIS的绿色发展效率评价及时空分异研究——以中原城市群为例[J].生态经济,2019,35(09):94-101. [10]杨恺钧,毛博伟,胡菡.长江经济带物流业全要素能源效率——基于包含碳排放的SBM与GML指数模型[J].北京理工大学学报(社会科学版),2016,18(6):54-62. [11]高旭阔,张迪.考虑环境因素的城镇污水处理投资效率——基于三阶段DEA的方法[J].中国环境科学,2018,38(09):3594-3600. [12]张竞轶,张竞成.基于三阶段DEA模型的中国物流效率综合研究[J].管理世界,2016(8):178-179. [13]王海峰,田强,李金华,李晓丽.“一带一路”沿线省份物流效率及其影响因素的随机前沿分析[J].公路交通科技,2020,37(10):151-158. [14]于丽静,陈忠全.低碳视角下中国区域物流效率研究—基于SFA和PP的实证分析[J].生态经济,2017,33(04):43-48_91. [15]刘瑞娟,王建伟,黄泽滨.交通基础设施、空间溢出效应与物流产业效率—基于“丝绸之路经济带”西北5省区的实证研究[J].工业技术经济,2017,36(06):21-27. [16]易燕.我国物流产业绿色效率及区域空间特征—基于非期望产出的SBM模型[J].商业经济研究,2020(20):104-107. [17]曹鹏,白永平.中国省域绿色发展效率的时空格局及其影响因素[J].甘肃社会科学,2018(04):242-248. [18]刘宏笪,王晓霞,张济建,黄嘉梁.中国省域空间单元绿色治理效率测度及其空间格局特征分析—基于广义面板三阶段DEA模型分析[J].中国环境科学,2022,42(03):1477-1488. [19]田亚鹏,柳晓艺.基于超效率SBM-DEA和空间分析的区域绿色发展效率评价[J].统计与信息论坛,2021,36(08):56-65. [20]李娟,王琴梅.丝绸之路经济带核心区物流业效率及其收敛性分析[J].2018,33(10):121-128. [21]李楠.城市物流效率分析自适应DBN算法研究[J].计算机工程与运用,2017,53(12):9-15. [22]曹炳汝,孔泽云,邓莉娟.长江经济带省域物流效率及时空演化研究[J].地理科学,2019,39(12):1841-1848. [23]刘明,杨路明.区域物流的产业效率、空间互动与协调发展—基于全国277个地市级城市的数据实证[J].中国流通经济,2019,33(08):34-44. [41]黄晶,马蓓蓓,薛东前.基于SE-DEA模型的西安市土地利用效率及优化对策[J].干旱区研究,2015,32(03):630-636. [42]姚山季,马琳,来尧静.“一带一路”重点省份低碳物流效率测度[J].生态经济,2020,36(11):18-24. [43]仲云云,周雨倩.基于超效率DEA模型的长江经济带物流效率实证分析[J].2020,42(308):13-14. [44]李雷.兰州市物流效率的测度、评价与路径提升研究—基于DEA模型和Tobit回归模型的分析[J.]物流技术,2019,38(09):47-51. [45]高康,张步阔,王茂春,赵楠.基于超效率DEA-ESDA的中国西部物流效率空间格局及差异性研究[J].地域研究与开发,2019,38(06):6-10. [47]王育红,刘琪.基于Super-SBM模型的长江经济带物流效率测度研究[J].华东经济管理,2017,31(05):72-77. [48]刘渝,李莱.中国各省物流业碳排放的脱钩及影响因素研究[J].环境科学与技术,2018,41(5):177-181. [51]刘承良,管明明.低碳约束下中国物流业效率的空间演化及影响因素[J].地理科学,2017,37(12):1805-1814. [52]胡燕燕,曹卫东,黄琪,等.合肥市物流空间区位特征与形成机理[J].地域研究与开发,2016,35(3):58-63. [53]唐建荣,张鑫和.物流业发展的时空演化、驱动因素及溢出效应研究——基于中国省域面板数据的空间计量分析[J].财贸研究,2017,28(5):11-21. [56]钟昌宝,钱康.长江经济带省域物流效率及空间差异研究[J].北京交通大学学报(社会科学版),2017,16(2):120-127. [57]魏和清,李颖.我国绿色发展指数的空间分布及地区差异探析—基于探索性空间数据分析法[J].当代财经,2018(10):3-13. [58]康峻,王力,牛铮.基于局部空间自相关分析的时空数据融合[J].遥感技术与运用,2015,30(06):1176-1181. [59]刘洋,余建新,向冬蕾.基于局部空间自相关的思茅区耕地利用保护综合分区[J].水土保持研究,2020,27(01):183-188+196. |
中图分类号: | F222.1 |
开放日期: | 2023-06-14 |