- 无标题文档
查看论文信息

论文中文题名:

 消防水枪/炮射流轨迹预测模型与实验研究    

姓名:

 白杨阳    

学号:

 20220089053    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 消防科学与技术    

第一导师姓名:

 刘长春    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Model and experimental study on predicting the trajectory of fire water gun/ cannon jets    

论文中文关键词:

 消防水枪/炮 ; 水射流 ; 射流轨迹 ; 模型预测 ; 等效直径    

论文外文关键词:

 Firefighting water gun/cannon ; water jet ; jet trajectory ; model prediction ; equivalent diameter    

论文中文摘要:

随着自动化消防水枪/炮的发展和广泛应用,对射流轨迹的准确预测提出了更高的要求。根据传统抛体理论建立的预测模型难以很好的处理初速度相同但流量不同的射流轨迹问题,此外,风是影响射流轨迹的重要因素之一,但相关预测模型研究较少,本文针对以上问题开展了相关研究。近些年高压多孔射流成为消防水枪/炮领域的热点,本论文也对这种射流方式开展了实验和理论研究。

首先,本文基于对水射流外部射流破碎和射流结构特性的分析讨论,提出了消防水射流外部射流流场呈水柱卷吸空气柱向前运动的流态特点,为后面快速计算模型的建立奠定了理论基础。之后考虑在无风和横向风的状态条件下,假设射流流场横截面轴向速度呈“礼帽分布”,通过建立水射流轨迹质量和动量守恒方程,分析推导最终确定了包括求解水柱速度和空气柱速度等共十二个变量对应十二个方程的快速计算模型。在此基础上推荐了适用的空气卷吸系数a0和气液速度比β。由于建立完毕的射流运动计算方程很难直接求解出来,因此借助Excel软件中的VB语言环境对射流轨迹进行轨迹重现。

其次,通过水射流轨迹实验研究了负压吸入式消防水枪水射流的工作参数(出口压力、出口流量及射流仰角)对射流轨迹表征参数(射程、射高及最大射高点水平距离)的影响规律,发现无论是单孔喷嘴还是多孔喷嘴,射流出口等效直径越大,随着同等出口压力梯度的增大变化,射流轨迹表征参数的增量变化越大;随着同等射流仰角梯度的增大,45°之前轨迹表征参数的变化幅度小于45°之后的变化幅度;射流出口等效直径近乎相同的情况下,射流轨迹表征参数的差异度不超过5%,为快速预测模型适用范围的扩大提供了依据。同时将不同工况下的水射流轨迹表征参数和据此得到的水射流轨迹拟合曲线与快速预测模型得到的结果进行了比较,射流轨迹表征参数的误差在60°以下的射流仰角不超过10%,轨迹形态吻合良好。

最后,借助Fluent仿真环境,建立了基于DPM模型的三维水射流流场,对不同横向风速条件下的射流流场进行了仿真模拟,将模拟得到的结果与快速预测模型得到的结果进行比较剖析,两种预测结果较为吻合。

论文外文摘要:

With the development and wide application of automated fire fighting water guns/guns, higher requirements are put forward for the accurate prediction of jet trajectory. The prediction model based on the traditional parabolic theory is difficult to deal with the problem of jet trajectory with the same initial velocity but different flow rates. In addition, the lateral wind is one of the important factors affecting the jet trajectory, but the relevant prediction model is less researched, and this paper conducts a relevant study for the above problems. In recent years, high-pressure multi-hole jet has become a hot spot in the field of fire fighting water guns/guns, and this thesis also carries out experimental and theoretical research on this type of jet.

First of all, based on the analysis and discussion of the external jet fragmentation and jet structure characteristics of the water jet, this paper proposes the external jet flow field of the fire water jet is a column of water curling air column forward movement of the flow characteristics, for the establishment of a rapid calculation model later laid the theoretical foundation. After considering the state conditions in the absence of wind and lateral wind, assuming that the cross-sectional axial velocity of the jet flow field is "saltire distribution", through the establishment of water jet trajectory mass and momentum conservation equations, analysis and derivation finally determined a total of twelve variables including the solution of the water column velocity and air column velocity corresponding to the twelve equations of the rapid calculation model. On this basis, the applicable air coefficient of suction a0 and air-liquid velocity ratio β. Since it is difficult to solve the calculated equations of jet motion directly after the establishment, the trajectory of the jet trajectory is reproduced with the help of the VB language environment in the Excel software.

Secondly, through the water jet trajectory experiments studied the DC orifice plate water jet working parameters (outlet pressure, outlet flow and jet elevation angle) on the jet trajectory characterization parameters (range, shot height and the maximum shot height point horizontal distance) of the influence law, found that whether single-hole nozzle or multi-hole nozzle, the larger the equivalent diameter of the jet outlet, with the same outlet pressure gradient increases the change, the greater the change in the jet trajectory characterization parameters; with the same jet elevation angle gradient, the change in the trajectory characterization parameters before 45° is smaller than the change after 45°; with the same equivalent diameter of the jet outlet gradient, the greater the change in the trajectory characterization parameters. The greater the incremental change of the parameters; with the increase of the same jet elevation gradient, the change of the parameters of the trajectory characterization before 45° is less than the change after 45°; the equivalent diameter of the jet outlet is nearly the same, the difference of the parameters of the jet trajectory characterization does not exceed 5%, which provides a basis for the expansion of the scope of application of the rapid prediction model. At the same time, the water jet trajectory characterization parameters under different working conditions and the water jet trajectory fitting curves obtained from them were compared with the results obtained from the fast prediction model, and the errors of the jet trajectory characterization parameters did not exceed 10% for the jet elevation angle below 60°, and the trajectory patterns were in good agreement.

Finally, with the Fluent simulation environment, a three-dimensional water jet flow field based on the DPM model was established, and the jet flow field under different lateral wind speed conditions was simulated, and the results obtained from the simulation were compared and analyzed with those obtained from the fast prediction model, and the two prediction results were in good agreement.

参考文献:

[1] Xin Y, Thumuluru S, Jiang F, et al. An Experimental Study of Automatic Water Cannon Systems for Fire Protection of Large Open Spaces[J]. Fire Technology, 2014, 50(2):233-248.

[2] Kolaitis DI, Asimakopoulou EK, Founti MA. Fire protection of light and massive timber elements using gypsum plasterboards and wood based panels: A large-scale compartment fire test[J]. Construction & Building Materials, 2014, 73(dec.30):163-170.

[3] Hu GL, Chen WG. Hydraulic performance research of PS100 type fixed fire water monitor[J]. Machinery Design & Manufacture, 2010(11):87-89.

[4] 杨庆. 大空间展览建筑性能化防火设计研究[D]. 重庆: 重庆大学,2005.

[5] Hao C, William C, Pittman A, Hatanaka A, et al. Integration of process safety engineering and fire protection engineering for better safety performance[J]. Journal of loss prevention in the process industries,2015,3774-81.

[6] 国家市场监督管理总局、国家标准化管理委员会. 消防炮:GB 19156-2019[S]. 2019.

[7] 王万通. 基于射流机理的直流水枪充实水柱特性研究[J]. 今日消防,2021,6(8):17-20.

[8] Chen X, Li X. An automatic jet fire extinguishing device based on video[C]// 2015 International Conference on Mechatronics, Electronic, Industrial and Control Engineering. 2015.

[9] 张静, 陈生国, 张平, 等. 稳流器结构对消防直流水枪水力学性能的影响[J]. 沈阳化工大学学报, 2020(003):034.

[10] Cao LL, Che BX, Hu LJ, et al. Design method of water jet pump towards high cavitation performances[J]. IOP Conference Series: Materials Science and Engineering, 2016, 129:012067.

[11] Liu H, Wang Z, Cheng M, et al. Development and Application Status of High Pressure Water Jet Cutting Technology[J]. Machine Tool & Hydraulics, 2018,46(21):173-179.

[12] 林志立, 卢钱杰, 易新华, 等. 高压水射流技术的发展与应用[J]. 中国科技产业,2021(5):46-47.

[13] 桂小玲. 高压水射流技术在煤层气开发中的应用研究现状及发展趋势[J]. 能源与环保,2018,40(8):1-4,9.

[14] Beaglehole H. Fire in the Hills: A History of Rural Firefighting. 2012,.

[15] Liu ZQ. Effects of automatic fire water cannon performance parameters on the jet trajectory [J]. Fire Science and Technology, 2015,34(11):1471-1474.

[16] Yuan XM, Wang C, Zhao B, et al. Review of hydraulic performance of fire water monitor[J]. Journal of Machine Design, 2017,34(01):1-8.

[17] Yuan DQ. Performance analysis of guide vane in long-range fire- fighting water cannon[J]. Journal of Drainage & Irrigation Machinery Engineering, 2017, 35(4):333-339.

[18] Zhu J, Li W, Lin D, et al. Real-Time Monitoring of Jet Trajectory during Jetting Based on Near-Field Computer Vision[J]. Sensors, 2019, 19(3).

[19] Iyogun CO. Trajectory of liquid jets exposed to a low subsonic cross airflow[D]. University of Manitoba (Canada). 2006.

[20] Topi S, Jukka V, Simo H, et al. Modeling and Simulation of High Pressure Water Mist Systems[J]. Fire technology,2014,50(3):483-504.

[21] Jung IS, Park TG, Chung HT. Parametric Study on Water Mist Nozzles for Fire Suppression System Based on CFD Methods[J]. Journal of lass-Korea, 2010, 15: 124-130.

[22] Funada T, Joseph DD, Yamashita S. Stability of a liquid jet into incompressible gases and liquids[J]. International Journal of Multiphase Flow, 2004, 30(11):1279-1310.

[23] Yoon SH, Kim DY, Dong KK, et al. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic[J]. Korean Society of Mechanical Engineers, 2011(7).

[24] 童丕荣. 直流式消防水炮喷嘴内流动特性的数值研究 [J]. 科技创新导报, 2017, 14(16):2.

[25] 谢志超. 基于CFD的消防水炮水力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

[26] 琚学振. 消防炮射流关键技术研究[D]. 哈尔滨: 哈尔滨工业大学.

[27] 胡爱闽. 直流喷雾隔爆型消防水炮炮头结构设计及流场仿真分析[J]. 机械设计与制造, 2013(10):3.

[28] 刘平安, 廖小东, 程雯玉, 等. 基于Fluent的消防炮流线型喷嘴高度设计[J]. 机床与液压, 2015, 43(1):5.

[29] 刘平安, 廖小东, 王铨. 两种不同结构的消防炮性能对比分析[J]. 机械研究与应用, 2013, 26(5):4.

[30] Zhou J, Li GR. Study and Simulation for Optimization Plan of the Liquamatic Fire Water Cannon with Self-Swinging Device[J]. Advanced Materials Research, 2012, 468-471(468-471): 944-948.

[31] 王红霞. 消防水枪整流装置的分析及试验研究[J]. 装备维修技术, 2007(2):4.

[32] 向清江, 施哲夫, 李红, 等. 远射程消防水炮流道内3种稳流器的对比[J]. 排灌机械工程学报, 2015, 33(3):6.

[33] Miyashita T, Sugawa O, Imamura T, et al. Modeling and analysis of water discharge trajectory with large capacity monitor[J]. Fire Safety Journal, 2014, 63:1-8.

[34] Miyashita T, Sugawa O, Wada Y, et al. Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting[J]. Japan Association for Fire Science and Engineering, 2012(1).

[35] Hatton AP, Leech CM, Osborne MJ. Computer simulation of the trajectories of large water jets[J]. International Journal of Heat & Fluid Flow, 1985, 6(2):137-141.

[36] Aghajani H, Dembele S, Wen JX. Analysis of a semi-empirical sprinkler spray model[J]. Fire Safety Journal, 2014, 64:1-11.

[37] 崔海涛. 仿真数据驱动的事故三维模拟技术研究[D]. 青岛: 中国海洋大学.

[38] Jing C, Min Z. Image Segmentation and Recognition Algorithm for the Fire Cannon's Jet Trajectory[J]. Electronic Science and Technology, 2010,23(03):43-45+49.

[39] Alcan G, Ghorbani M, Kosar A, et al. A new visual tracking method for the analysis and characterization of jet flow[J]. Flow Measurement and Instrumentation, 2016, 51:55-67.

[40] McNeil, Lattimer BY. Robotic Fire Suppression Through Autonomous Feedback Control[J]. Fire Technol 53, 1171–1199 (2017).

[41] Lattimer BY. Autonomous Fire Suppression System for Use in High and Low Visibility Environments by Visual Servoing[J]. Fire Technology, 2016, 52(5):1-26.

[42] 袁德飞. 基于视频的消防水炮闭环控制技术研究[D]. 大连: 大连海事大学, 2017.

[43] 兰天, 孔令真, 陈家庆, 等. 基于图像处理的低速横流中液体射流轨迹提取方法研究[J]. 实验流体力学, 2020(004):034.

[44] Xu Y, Wang JJ. Digital particle image velocimetry study on parameter influence on the behavior of impinging synthetic jets[J]. Experimental Thermal and Fluid Science (EXP THERM FLUID SCI), 2018, 100:S0894177718301316-.

[45] Chen XJ, Yang YM. Jet trajectory model and positioning compensation method for fire water cannon[J]. Chinese Journal of Engineering Design, 2016,23(06):558-563+611.

[46] 项帆, 王雨时, 闻泉, 等. 无控弹丸刚体外弹道学应用综述[J]. 探测与控制学报, 2021, 43(4):13.

[47] Lin SP, Reitz RD. Drop and spray formation from a liquid jet[J]. Annu.rev.fluid Mech, 1998, 30(1):85-105.

[48] Zhang M, Liu X, Wang X, et al. Fire Water Monitor Trajectories Based on Turbulence Breakup Model[J]. Journal of Testing and Evaluation, 2019, Online:1-18.

[49] 万峰, 陈晓阳, 闵永林, 等. 基于相似理论的消防炮射流轨迹模拟实验的设计[J]. 上海大学学报:自然科学版, 2008, 14(6):4.

[50] Xu Q, Guo L, Chang L, et al. Velocity field characteristics of the turbulent jet induced by direct contact condensation of steam jet in crossflow of water in a vertical pipe[J]. International Journal of Heat & Mass Transfer, 2016, 103:305-318.

[51] 闵永林, 陈晓阳, 陈池, 等. 考虑俯仰角的消防水炮射流轨迹理论模型[J]. 机械工程学报, 2011, 47(11):5.

[52] 廖小东, 刘平安, 程雯玉. 基于MATLAB的消防炮射流轨迹研究[J]. 消防科学与技术, 2014, 33(10):4.

[53] 孙靖. 定流量消防水炮射流流场数值模拟与轨迹研究[D]. 秦皇岛: 燕山大学.

[54] 向清江, 薛林, 许正典, 等. 消防水炮无风状态射流轨迹的预测方法[J]. 水动力学研究与进展:A辑, 2017, 32(3):6.

[55] 沈忠厚. 水射流理论与技术[J]. 中国安全科学学报, 1999(S1):1.

[56] 国家市场监督管理总局、国家标准化管理委员会. 消防水枪:GB 8181-2005[S]. 2005.

[57] Ma Y, Zhu DZ, Rajaratnam N, et al. Experimental Study of the Breakup of a Free-Falling Turbulent Water Jet in Air [J]. Journal of Hydraulic Engineering, 2016, 142(10):06016014.

[58] Geskin ES, Meng P, Tismeneskiy L, et al. Mathematical Modeling and Experimental Verification of Stationary Waterjet Cleaning Process[J]. Journal of Manufacturing Science & Engineering, 1998, 120(3):571-579.

[59] N, Peters, et al. Scaling of buoyant turbulent jet diffusion flames[J]. Combustion & Flame, 1991, 206-214.

[60] Madni, IK, Pletcher PH. Heat Transl[M]. 1977:99.

[61] 詹姆士昆棣瑞著. 火灾学基础[M]. 化学工业出版社, 2010:95.

[62] 王储, 袁晓明, 杨志刚, 等. 消防水炮射流轨迹理论模型研究[J]. 燕山大学学报, 2020, 44(5):8.

[63] Menchini CP, Dierdorf D, Kalberer JL, et al. The Development and Design of a Prototype Ultra High Pressure P-19 Firefighting Vehicle[M]. 2007.

[64] 史兴堂. 消防炮射程及影响因素研究[D]. 上海: 上海交通大学, 2001.

[65] 张鸣远, 景思睿, 李国君. 高等工程流体力学[M]. 西安: 西安交通大学出版社, 2006:153.

[66] HK Versteeg, W Malalasekera, et al. An introduction to computational fluid dynamics: Finite volume method[M]. Longman Scientific & Technical, 1995.

中图分类号:

 X932    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式