论文中文题名: |
废旧含卤塑料在亚临界流体中的脱卤研究
|
姓名: |
于旋
|
学号: |
18209215076
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085229
|
学科名称: |
工学 - 工程 - 环境工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
地质与环境学院
|
专业: |
环境工程
|
研究方向: |
固体废弃物处置与资源化
|
第一导师姓名: |
修福荣
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-15
|
论文答辩日期: |
2021-06-03
|
论文外文题名: |
A study dehalogenation of waste halogen-containing Plastics by using subcritical fluid
|
论文中文关键词: |
含卤塑料 ; 亚临界甲醇 ; 亚临界水 ; PVC ; 多溴联苯醚 ; 脱溴 ; 脱氯
|
论文外文关键词: |
halogen-containing plastics ; subcritical methanol ; subcritical water ; Polyvinyl chloride ; polybrominated diphenyl ethers ; debromination ; dechlorination
|
论文中文摘要: |
︿
塑料污染控制已成为全球最值得关注的环境问题之一。作为典型的含卤塑料,聚氯 乙烯(PVC)及多溴联苯醚树脂分别广泛应用于建筑设施管道、生活消费塑料制品及电子 工业中。随着各种塑料产品更新换代加快,待处理的废旧含卤塑料数量急剧增加。传统 的处置方式容易引发土壤和地下水的污染,甚至产生氯代或溴代二噁英等高毒性物质。 废旧含卤塑料实现其无害化脱毒及资源化回收的关键是安全高效脱卤,本文以含多溴联 苯醚的废旧印刷线路板(WPCBs)及含氯废旧 PVC 塑料为研究对象,分别构建了亚临界 甲醇(SubCM)和亚临界水(SubCW)脱卤体系,实现了 WPCBs 及废旧 PVC 的低温高效脱 卤,为含卤塑料废弃物的脱卤脱毒提供了新的方案。主要结论如下: (1)WPCBs 中多溴联苯醚在亚临界甲醇中的脱溴。亚临界甲醇温度升高、停留时 间增加和固液比的降低有利于提高多溴联苯醚的去除效率,最佳参数条件为:200 o C, 60 分钟, 1:20 g/mL。最佳条件下对多溴联苯醚总量的去除率可达 91.3%。NaOH 的引入可 进一步强化多溴联苯醚的去除,亚临界甲醇+NaOH (4 g/L)体系对多溴联苯醚总量的去除 率可达 98.8%。经过亚临界甲醇处理后,高溴化的多溴联苯醚在低于 200 o C 时降解为 2,3',4',6-四溴二苯醚和 2,4,4'-三溴二苯醚。温度超过 200 o C 时,2,3',4',6-四溴二苯醚和 2,4,4'-三溴二苯醚可进一步脱溴生成 4-溴二苯醚和二苯醚。亚临界甲醇+NaOH 体系可 显著降低多溴联苯醚的脱溴温度。亚临界甲醇和亚临界甲醇+NaOH体系可分别在300 o C 和 250 o C 下实现 WPCBs 中多溴联苯醚的完全脱溴。根据降解产物的表征分析,亚临界 甲醇和亚临界甲醇+NaOH 体系对多溴联苯醚的脱溴降解路径没有显著差异。 (2)废旧 PVC 在亚临界水-粉煤灰/煤矸石(SubCW-CFA/CG)体系中的脱氯。采用 粉煤灰及煤矸石作为 PVC 脱氯强化剂,引入亚临界水体系,构建了废旧 PVC 的亚临界 水-粉煤灰/煤矸石脱氯体系。升高温度、增加粉煤灰/煤矸石添加量和降低固液比有利 于脱氯。停留时间过长导致废旧 PVC 基体碳化,形成多孔结构,导致脱除的氯被重新 固定。最佳脱氯参数条件为:220 o C,60 分钟,粉煤灰/煤矸石:0.4 g,1:30 g/mL。在最 佳参数条件下,亚临界水-粉煤灰/煤矸石体系对废旧 PVC 的脱氯效率分别达到 96%和 97.34%。傅里叶红外光谱和元素分析表明废旧 PVC 的脱氯包括两种路径:直接脱氯化氢 和羟基取代。直接脱氯化氢导致多烯结构的生成,C-Cl 键的羟基取代导致了 C=O 稳定 结构的形成,C=O 稳定结构的形成进一步促进了脱氯过程。 (3)废旧 PVC 在亚临界水-零价铁粉(SubCW-Fe)体系中的脱氯。将零价铁粉引入 亚临界水中,利用亚临界水独特的物化性质和零价铁的强还原性,构建了废旧 PVC 的 亚临界水-零价铁脱氯体系。升高温度、降低固液比、适当的铁粉添加量和适宜的停留 时间,能有效促进脱氯。最佳脱氯参数条件:200 ℃, 60 分钟,1:30 g/mL,Fe:0.4 g (PVC:Fe=4:1),脱氯效率可达 96.02%。脱除的氯全部以无机氯的形式转移至水相,消除 了氯的环境风险。采用 XRD 分析和傅里叶红外分析研究了废旧 PVC 在亚临界水-零价 铁粉体系中的脱氯机制。脱氯过程包含两个路径:直接脱氯化氢和羟基取代。直接脱氯 化氢导致生成多烯结构,羟基取代形成更稳定的碳氧双键(C=O)结构,并进一步促进了 脱氯过程。 (4) PVC 和废旧 LCD 面板的亚临界水共处理体系。将另一类固体废物 LCD 面板 引入 PVC 的亚临界水脱氯体系,同时实现了 PVC 低温高效脱氯和废旧 LCD 面板中有 机物的高效剥离去除。废旧 LCD 面板中大量的金属氧化物可以显著提高 PVC 的脱氯效 率,同时脱除的氯化氢对 LCD 面板中金属氧化物的浸出具有一定的促进作用。升高共 处理温度、增加停留时间、适当的 PVC-LCD 质量比和较低的固液比能有效提高脱氯效 率。最佳工艺参数:220 ℃, 90 分钟, PVC-LCD 质量比 4:1,固液比 1:30 g/mL。最佳条件 下 PVC 的脱氯效率可达 100%,且氯全部转移至水相。当共处理温度超过 200 ℃时,废 旧 LCD 中所含有机物的剥离去除率达 100%。在亚临界水共处理中 PVC 残渣形成稳定 的烯烃-羰基结构(=C-C=O),进一步促进了 PVC 的脱氯反应。
﹀
|
论文外文摘要: |
︿
Plastic pollution control has become one of the most worthy of attention environmental issues in the world. As a typical halogen-containing plastics, polyvinyl chloride (PVC) and polybrominated diphenyl ethers resins are widely used in the construction pipelines, consumer plastic products and electronics industry, respectively. With the accelerated upgrading of various plastic products, the number of waste halogen-containing plastics to be treated has increased sharply. Traditional disposal methods can easily cause soil and groundwater pollution, and even produce highly toxic substances such as chlorinated or brominated dioxins. The key to the harmless detoxification and resource recycling of waste halogen-containing plastics is safe and efficient dehalogenation, this article uses polybrominated diphenyl ethers-containing waste printed circuit boards (WPCBs) and chlorine-containing waste PVC plastics as the research objects, respectively construction subcritical methanol (SubCM) and subcritical water (SubCW) dehalogenation system to realizes the low-temperature and high-efficiency dehalogenation of WPCBs and waste PVC, and provides a new solution for the dehalogenation and detoxification of halogen-containing plastic waste. The primary conclusions as follows:
The debromination of polybrominated diphenyl ethers in WPCBs in subcritical methanol (SubCM). The increase of subcritical methanol temperature, the increase of residence time and the decrease of solid-liquid ratio were beneficial to improve the removal efficiency of polybrominated diphenyl ethers, the optimal parameter conditions were as follows: 200 oC, 60 min, 1:20 g/mL. Under the optimal parameter conditions, the removal efficiency of polybrominated diphenyl ethers can reach 91.3%. The introduction of NaOH can further strengthen the removal of polybrominated diphenyl ethers, and the removal rate of polybrominated diphenyl ethers (Σ8PBDEs) by the subcritical methanol+NaOH (4 g/L) system can reach 98.8%. When the temperature is below 200℃, highly brominated polybrominated diphenyl ethers congeners were degraded into 2,3',4',6-Tetrabromodiphenyl ether and 2,4,4' -Tribromodiphenyl ether after SubCM treatment. When the temperature exceeds 200 oC, 4-Bromophenyl ether and diphenyl ether were generated by the further debromination of 2,3',4',6-Tetrabromodiphenyl ether and 2,4,4' -Tribromodiphenyl ether. The debromination temperature of polybrominated diphenyl ethers congeners in SubCM+NaOH system could be markedly lowered. So the complete debromination of polybrominated diphenyl ethers congeners in WPCBs could be achieved at 300 oC and 250 oC for the developed system of SubCM and SubCM+NaOH, respectively. According to the characterization analysis of degradation products, there is no significant difference in the debromination degradation pathways of polybrominated diphenyl ethers by subcritical methanol and subcritical methanol+NaOH systems.
Dechlorination of waste PVC in subcritical water-coal fly ash/coal gangue (SubCW-CFA/CG) system. Use of coal fly ash and coal gangue as PVC dechlorination enhancers, the introduction of subcritical water system, the construction of subcritical water-coal fly ash/gangue dechlorination system of waste PVC. Increasing the temperature, increasing the amount of coal fly ash/coal gangue added, and decreasing the solid-liquid ratio are favorable for dechlorination. Excessive residence time causes the carbonization of the waste PVC matrix, forming a porous structure, and causes the removed chlorine to be re-fixed. The optimal dechlorination parameters were as follows: 220 oC, 60 min, 0.4 g, 1:30 g/mL. Under the optimal parameters, the chlorine removal efficiency of PVC reached 96% and 97.34% in the subcritical water-coal fly ash/coal gangue system. Fourier transform infrared and elemental analysis were used to analyze the dechlorination mechanism of PVC contains two pathways: direct dehydrochlorination and hydroxyl substitution. The direct dehydrochlorination resulted in the generation of polyene structure, and the hydroxyl substitution of C-Cl induced the formation of the stable structure of C=O, the formation of C=O stable structure further promotes the dechlorination process.
Dechlorination of waste PVC in subcritical water-zero valent iron powder (SubCW-Fe) system. The zero valent iron powder is introduced into subcritical water, and the unique physical and chemical properties of subcritical water and the strong reducibility of zero valent iron are used to construct a subcritical water-zero valent iron dechlorination system for waste PVC. Increasing the temperature, decreasing the solid-to-liquid ratio, adding appropriate amount of zero valent iron and appropriate residence time can effectively promote dechlorination. The optimal dechlorination parameter conditions were as follows : 200 oC, 60 min, 1:30 g/mL, Fe:0.4 g (PVC:Fe=4:1), and the dechlorination efficiency reached 96.02%. All of the removed chlorine was transferred to the aqueous phase in the form of inorganic chlorine, and eliminated the environmental risk of chlorine. The dechlorination mechanism of waste PVC in subcritical water-zero valent iron powder system was studied by XRD analysis and Fourier transform infrared analysis. The dechlorination mechanism contains two pathways: direct dehydrochlorination and hydroxyl substitution. The direct dehydrochlorination resulted in the generation of polyene structure, and the hydroxyl substitution of C-Cl induced the formation of the stable structure of C=O, and further promotes the dechlorination process.
Subcritical water co-treatment system for PVC and waste LCD panels. Will the other solid waste LCD panel was introduced into the subcritical water dechlorination system of PVC, and at the same time it realizes the low-temperature and high-efficiency dechlorination of PVC and the efficient stripping and removal of organic matter in the waste LCD panel. A large amount of metal oxides in waste LCD panels can significantly improve the dechlorination efficiency of PVC, and the removed hydrogen chloride has a certain promoting effect on the leaching of metal oxides in LCD panels. Increasing the co-treatment temperature, increasing the residence time, proper PVC-LCD mass ratio and lower solid-to-liquid ratio can effectively improve the efficiency of dechlorination. The optimum parameter conditions: 220 oC, 90 min, PVC-LCD mass ratio 4:1, solid-liquid ratio 1:30 g/mL. Under the optimal parameter conditions, the dechlorination efficiency of PVC can reach 100%, and all the chlorine is transferred to the aqueous phase. When the co-processing temperature exceeds 200 oC, the stripping and removal rate of organic matter contained in the waste LCD reaches 100%. The stable alkene-carbonyl structure (=C-C=O) formed in the subcritical water co-treatment of PVC residue further promoted the dechlorination reaction of PVC.
﹀
|
参考文献: |
︿
[1] 王小丹. 环境中可被生物降解的聚酯塑料的酶降解机制的理论研究. 山东大学, 2019. [2] 麻世华,叶东平,麻成军. 农用塑料薄膜的残留危害及控制措施[J]. 现代化农业,1997,10:5-6. [3] Wong S L, Ngadi N, Abdullah T A T, et al. Current state and future prospects of plastic waste as source of fuel: A review [J]. Renewable sustainable energy reviews, 2015, 50: 1167-1180. [4] 王金龙.基于微波预处理的泡沫浮选法分离电子废弃物塑料的实验研究[D].长安大学,2019. [5] 全国合成树脂及塑料工业信息总站,《塑料工业》编辑部.工业评述2001-2002年国外塑料工业进展[J].塑料工业, 2003, (3): 1-21. [6] Plastics-the Facts. An analysis of European latest plastics production, demand and waste data[EB/OL]. https: //www.plasticseurope.org/application/files/1715/2111/1527/Plastics the facts 2017 FINAL for website. pdf. [7] 郑垲. 2007年中国工程塑料产业回顾与展望[J]. 塑料制造,2008, (4):36-46. [8] 丁丽媛,葛峻杰,王潇然.浅谈废弃塑料的危害及解决之道[J].资源节约与环保,2019,09(19):33-33. [9] Blettler M C M, Wantzen K M, Threats Underestimated in Freshwater Plastic Pollution: Mini-Review [J]. Water Air and Soil Pollution, 2019, 230(7):174. [10] Ghosh, B, Ghosh, M K, Parhi, P, et al. Waste printed Circuit boards recycling: an extensive assessment of current status. Journal of Cleaner Production, 2015, 94: 5-19. [11] U.S. Environmental Protection Agency, eCycling Homepage. http: //www. epa. gov/epaoswer/hazwaste/recycle/ecycling/index. htm. [12] Alaee M, Arias P, Sjodin A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release[J]. Environment international, 2003, 29(6): 683-689. [13] Chen Y, Li J H, Liu L L, et al. Polybrominated diphenyl ethers fate in China: A review with an emphasis on environmental contamination levels,human exposure and regulation[J]. Journal of Environmental Management, 2012, 113: 22-30. [14] 杨丽,周逸潇,韩新宇等.阻燃剂阻燃机理探讨[J].天津化工,2010,24(1):1-4. [15] 明磊强.零价铁去除水体中多溴联苯醚的研究[D].上海交通大学, 2010. [16] Li Y F, Tian C G, Yang M, et al. Global gridded emission inventories of pentabrominated diphenyl ether (PeBDE): European Geosciences Union (EGU) General Assembly, Vienna, Austria, 2010. [17] Ni K, Lu Y L, Wang T Y, et al. Polybrominated diphenyl ethers (PBDEs) in China: Policies and recommendations for sound management of plastics from electronic wastes[J]. Journal of Environmental Management, 2013, 115: 114-123. [18] Stapleton H M, Sharma S, Getzinger G, et al. Novel and high volume use flame retardants in US couches reflective of the 2005 PentaBDE phase out[J]. Environmental science & technology, 2012, 46(24): 13432-13439. [19] Yang F, Li Q, Su G, et al. Thermal degradation of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) over synthesized Fe-Al composite oxide. Chemosphere, 2016, 150: 445-452. [20] Cowell W J, Sjodin A, Jones R, et al. Determinants of prenatal exposure to polybrominated diphenyl ethers (PBDEs) among urban, minority infants born between 1998 and 2006. Environmental Pollution, 2018, 233:774-781. [21] Zhu X, Beiyuan J, Lau A Y T, et al. Sorption, mobility, and bioavailability of PBDEs in the agricultural soils: Roles of co-existing metals, dissolved organic matter, and fertilizers. Science of The Total Environment, 2018, 619-620:1153-1162. [22] 邴涓林,赵劲松,包永忠.聚氯乙烯树脂及其应用[M].化学工业出版社,2007. [23] 潘永刚,周汉城.2013年再生资源主要品种市场回顾及行业发展趋势展望[J].再生资源与循环经济,2014,7(1): 17-21. [24] 刘忠科,雍奎刚,武文等.PVC塑料的性能与应用研究进展[J].塑料科技, 2014,42(5):7-8. [25] 贺劲龙.聚氯乙烯绝缘材料低温加热实验研究[D].中国地质大学(北京),2016. [26] 李泰霖,叶霖海,洪澜.PVC与氧化铁氧化硅混合氧化物共热解过程解析.有色金属,2020,6:80-86. [27] 汪东清.废旧PVC电线电缆料的再利用研究[D].华南理工大学,2015. [28] Charles W, James W, Charles D, et al. PVC Handbook [M]. 2008. [29] Zhou N, Levine M D, Price L, Overview of current energy-efficiency policies in china. Energy Policy, 2010, 38:6439−6452. [30] Yu J, Sun L, Ma C, Thermal degradation of PVC: A review. Waste Management, 2016, 48:300−314. [31] PVC markets of Europe and South-East Asia: analysis of profitability and production cost. UK: Deloitte & Touche Regional Consulting Services Ltd. 2010, Consulting. [32] Ceresana Research. Global demand for PVC to rise by about 3.2%/year to 2021. 0306-3747 [R], 2014. [33] 邴涓林,赵劲松,包永忠.聚氯乙烯树脂及其应用[M].化学工业出版社, 2007. [34] 谢建玲,桂祖桐,蔡绪福,等.聚氯乙烯树脂及其应用[M].化学工业出版社, 2007. [35] 王曼玲,叶群胜,郭仲光.聚氯乙烯塑料生产的尘毒危害及预防[J].工业安全与环保.1989, 7: 20-22. [36] Liu A, Ren F, Lin W Y, Wang J Y, A review of municipal solid waste environmental standards with a focus on incinerator residues. International Journal of Sustainable Built Environment, 2015, 4:165-188. [37] Wu J, Chen T, Luo X, et al. TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS [J]. Waste Management, 2014, 34(3):676-682. [38] Tang Y, Ma X, Wang Z, et al. A study of the thermal degradation of six typical municipal waste components in CO2 and N2 atmospheres using TGA-FTIR [J]. Thermochimica Acta, 2017, 657:12-19. [39] Yuan W, Cui J, Cai Y, et al. A novel surface modification for calcium sulfate whisker used for reinforcement of poly(vinyl chloride) [J]. Journal of Polymer Research, 2015, 22(9):173. [40] Duan H B, Li J, Liu Y, et al. Characterizing the emission of chlorinated/brominated dibenzo-p-dioxins and furans from low-temperature thermal processing of waste printed circuit board. Environmental Pollution. 2012, 161:185–191. [41] Zhu X, Beiyuan J, Lau A Y T, et al. Graham, N.J.D., Lin, D., Sun, J., Pan, Y., Yang, X., Li, X., Sorption, mobility, and bioavailability of PBDEs in the agricultural soils: Roles of co-existing metals, dissolved organic matter, and fertilizers. Science of The Total Environment, 2018, 619–620:1153–1162. [42] Zhao P, Li Z, Li T, et al. The study of nickel effect on the hydrothermal dechlorination of PVC. Journal of Cleaner Production. 2017, 152:38-46. [43] Lai Y C, Lee W-J, Li H W, et al. Inhibition of polybrominated dibenzo-p-dioxin and dibenzofuran formation from the pyrolysis of printed circuit boards. Environmental Science & Technology, 2007, 41: 957–962. [44] Rajendran S, Khan M M, Gracia F, Qin J, et al. Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Scientific Reports, 2016, 6: 31641. [45] Zhou H, Wu C, Onwudili J A, Meng A, et al. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Management, 2015, 36:136-46. [46] Zhou H, Wu C, Onwudili J A, et al. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Management, 2015, 36:136-146. [47] Borsodi N, Szentes A, Miskolczi N, et al. Carbon nanotubes synthetized from gaseous products of waste polymer pyrolysis and their application[J]. Journal of Analytical & Applied Pyrolysis, 2016, 120: 304-313. [48] Lopez-Urionabarrenechea A, Marco I, Caballero B M, et al. Upgrading of chlorinated oils coming from pyrolysis of plastic waste. Fuel Processing Technology, 2015, 137:229–239. [49] Yu J, Sun L, Ma C, Thermal degradation of PVC: A review. Waste Management, 2016, 48:300−314. [50] Seo Y H, Lee K H, Shin D H, Investigation of catalytic degradation of high-density polyethylene by hydrocarbon group type analysis. Journal of Analytical & Applied Pyrolysis, 2003, 70:383–398. [51] Rubio-Clemente A, Torres-Palma R A, Pe-Uela G A, Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review[J]. Science of the Total Environment, 2014, 478:201-225. [52] Wang S, Hao C, Gao Z, et al. Effects of excited-state structures and properties on photochemical degradation of polybrominated diphenyl ethers: A TDDFT study[J]. Chemosphere, 2012, 88(1):33-38. [53] 王磊,李晓晓,陶秀成,等.多溴联苯醚分布特征及环境风险研究进展[J].生态毒理学报,2019, 14(4):31-42. [54] Wang R, Tang T, Lu G, et al. Formation and degradation of polybrominated dibenzofurans (PBDFs) in the UV photolysis of polybrominated diphenyl ethers (PBDEs) in various solutions[J]. Chemical Engineering Journal, 2018, 337:333-341. [55] Huang K, Lu G, Zheng Z, et al. Photodegradation of 2,4,4'-tribrominated diphenyl ether in various surfactant solutions: kinetics, mechanisms and intermediates[J]. Environmental Science-Processes & Impacts, 2018, 20(5):806-812. [56] Santos M S F, Alves A, Madeira L M, Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems-A review[J]. Water Research, 2016, 88:39-59. [57] Chow K L, Man Y B, Zheng J S, et al. Characterizing the optimal operation of photocatalytic degradation of BDE-209 by nano-sized TiO2[J]. Journal of Environmental Sciences, 2012, 24(9): 1670-1678. [58] Zhu H, Wang Y, Tam N F Y, Microcosm study on fate of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove sediment[J]. Journal of Hazardous Materials, 2014, 265:61-68. [59] Zhu H, Wang Y, Wang X, et al. Intrinsic Debromination Potential of Polybrominated Diphenyl Ethers in Different Sediment Slurries[J]. Environmental Science & Technology, 2014, 48(9):4724-4731. [60] Kim Y M, Nam I H, Murugesan K, et al. Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07[J]. Applied Microbiology & Biotechnology, 2007, 77(1):187-194. [61] 徐庚,张亚峰,孙浩然,等.多溴联苯醚的污染与控制研究进展[J].干旱区资源与环境, 2019, 33(2):134-138. [62] Zhao C, Yan M, Zhong H, et al. Biodegradation of polybrominated diphenyl ethers and strategies for acceleration: A review[J]. International Biodeterioration & Biodegradation, 2018, 129:23-32. [63] Yen J H, Liao W C, Chen W C, et al. Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment[J]. Journal of Hazardous Materials, 2009, 165(1-3):518-524. [64] Zhuang Y, Ahn S, Luthy R G, Debromination of Polybrominated Diphenyl Ethers by Nanoscale Zerovalent Iron: Pathways, Kinetics, and Reactivity[J]. Environmental Science & Technology, 2010, 44(21):8236-8242. [65] 杨雨寒,徐伟伟,彭思侃,等.纳米零价铁降解水中多溴联苯醚(PBDEs)及降解途径研究[J].环境科学, 2014,35(3):964-971. [66] Liang D W, Yang Y H, Xu W W, et al. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: Mechanism and kinetics[J]. Journal of Hazardous Materials, 2014, 278:592-596. [67] Keum Y S, Li Q X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron[J]. Environmental Science & Technology, 2005, 39(7):2280-2286. [68] Shih Y H, Tai Y T. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles[J]. Chemosphere, 2010, 78(10):1200-1206. [69] Kano J, Zhang Q, Saito F, et al. Synthesis of Hydroxyapatite with the Mechanochemical Treatment Products of PVC and CaO [J]. Process Safety & Environmental Protection, 2006, 84(4):309-312. [70] Tongamp W, Kano J, Zhang Q, et al. Simultaneous treatment of PVC and oyster-shell wastes by mechanochemical means [J]. Waste Manag, 2008, 28(3):484-488. [71] Inoue T , Miyazaki M , Kamitani M , et al. Dechlorination of polyvinyl chloride by its grinding with KOH and NaOH [J]. Advanced Powder Technology, 2005, 16(1):27-34. [72] Xiao X, Zeng Z G, Xiao S B, Behavior and products of mechano-chemical dechlorination of polyvinyl chloride and poly (vinylidene chloride)-ScienceDirect[J]. Journal of Hazardous Materials, 2008, 151( 1):118-124. [73] Zhou H, Meng A H, Long Y Q, et al. Interactions of municipal solid waste components during pyrolysis: A TG-FTIR study [J]. Journal of Analytical & Applied Pyrolysis, 2014, 108(7):19-25. [74] Wu J, Chen T, Luo X, et al. TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS [J]. Waste Management, 2014, 34(3):676-682. [75] Wang L C, Lee W J, Lee W S, et al. Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans [J]. Science of the Total Environment, 2003, 302(1-3):185-198. [76] Ma S, Jun Lu A, Gao J. Study of the Low Temperature Pyrolysis of PVC [J]. Energy & Fuels, 2002, 16(2):338-342. [77] Sun Q L, Shi X G, Lin Y L, et al. Thermogravimetric-Mass Spectrometric Study of the Pyrolysis Behavior of PVC [J]. Journal of China University of Mining & Technology, 2007, 17(2):242-245. [78] 邓娜,张于峰,赵薇等.聚氯乙烯(PVC)类医疗废物的热解特性研究[J].环境科学,2008,29(3): 837-843. [79] Zhou H, Long Y Q, Meng A H, et al. Interactions of three municipal solid waste components during co-pyrolysis [J]. Journal of Analytical & Applied Pyrolysis, 2015, (111):265-271. [80] 卿山,王华,何屏等.医疗废物焚烧过程中脱氯机理和试验[J].环境工程, 2007,25(3):66-70. [81] Sivalingam G, Madras G, Effect of Metal Oxides/Chlorides on the Thermal Degradation of Poly(vinyl chloride), Poly(bisphenol A carbonate), and Their Blends[J]. Industrial & Engineering Chemistry Research, 2004, 43(24):7716-7722. [82] 朱新生,程嘉祺,管爱国.金属氧化物对聚氯乙烯热降解性能的影响[J].华东理工大学学报:自然科学版, 2003(04):384-387. [83] Aguado J, Serrano D P, Escola J M, Fuels from Waste Plastics by Thermal and Catalytic Processes: A Review[J]. Industrial & Engineering Chemistry Research, 2008, 47(21):7982-7992. [84] Zhou Q, Tang C, Wang Y Z, et al. Catalytic degradation and dechlorination of PVC-containing mixed plastics via Al–Mg composite oxide catalysts [J]. Fuel, 2004, 83(13):1727-1732. [85] Xie S, Yuan S, Liao P, et al. Pd-catalytic hydrodechlorination of chlorinated hydrocarbons in groundwater using H2 produced by a dual-anode system [J]. Water research, 2015, (86):74-81. [86] Wang R, Tang T, Lu G, et al. Mechanisms and pathways of debromination of polybrominated diphenyl ethers (PBDEs) in various nano-zerovalent iron-based bimetallic systems[J]. Science of the Total Environment, 2019, 661:18-26. [87] Wang R, Lu G, Lin H, et al. Relative roles of H-atom transfer and electron transfer in the debromination of polybrominated diphenyl ethers by palladized nanoscale zerovalent iron[J]. Environmental Pollution, 2017, 222:331-337. [88] Nie X, Liu J, Zeng X, et al. Rapid degradation of hexachlorobenzene by micron Ag/Fe bimetal particles[J]. Journal of Environmental Sciences, 2013, 25(3):473-478. [89] 李田,赵培涛,祝飞.松木屑水热提质过程及其燃烧特性[J].过程工程学报,2016,16(5):819-826. [90] Shen Y, Yu S, Ge S, et al. Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale [J]. Energy, 2017, (118):312-323. [91] 赵培涛.污泥水热处理制固体生物燃料及氮转化机理研究[D].东南大学, 2014. [92] 莫婷,曾辉.塑料消费品垃圾焚烧过程中PBDE与HBCD释放情况[J].环境科学与技术, 2016,(3):170-175. [93] Ma X, Liu Y, Li X, et al. Water: the most effective solvent for liquid-phase hydrodechlorination of chlorophenols over Raney Ni catalyst [J]. Applied Catalysis B: Environmental, 2015, (165):351-359. [94] Endo K, Emori N, Dechlorination of poly(vinyl chloride) without anomalous units under high pressure and at high temperature in water[J]. Polymer Degradation & Stability, 2001, 74(1):113-117. [95] Yoshioka T, Kameda T, Ieshige M, et al. Dechlorination behaviour of flexible poly(vinyl chloride) in NaOH/EG solution[J].Polymer Degradation & Stability, 2008, 93(10):1822-1825. [96] Kameda T, Fukuda Y, Grause G, et al. Chemical modification of flexible and rigid poly(vinyl chloride) by nucleophilic substitution with thiocyanate using a phase-transfer catalyst[J]. Materials Chemistry & Physics, 2010, 124(1):163-167. [97] Kuo L, Xu Z M, A review of current progress of supercritical fluid technologies for e-waste treatment. Journal of Cleaner Production, 2019, 227:794-809. [98] Marrone P A, Supercritical water oxidation-Current status of full-scale commercial activity for waste destruction[J]. The Journal of Supercritical Fluids, 2013, 79:283-288. [99] Poliakoff M, Licence P, Sustainable technology-green chemistry. Nature, 2007, 450:810-812. [100] Qi Y, He J H, Xiu F R,et al. A convenient chemiluminescence detection for bisphenol A in E-waste dismantling site based on surface charge change of cationic gold nanoparticles. Microchemical Journal. 2019, 147:789-796. [101] Erdocia X, Prado R, Fernández-Rodríguez J, et al. Depolymerization of different organosolv lignins in supercritical methanol, ethanol, and acetone to produce phenolic monomers. Acs Sustainable Chemistry & Engineering, 2016, 4:1373-1380. [102] Kusdiana D, Saka S, Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour Technol. 2004, 91:289-295. [103] Narayan R C, Lamba N, Javed A, Madras G, Kinetics of esterificat-ion of 10-undecenoic and ricinoleic acids with near-critical and supercritical methanol. Sustainable Energy & Fuels, 2017, 1: 1425-1436. [104] Xiu F R, Weng H, Qi Y, et al. A novel recovery method of copper from waste printed circuit boards by supercritical methanol process: preparation of ultrafine copper materials. Waste Management, 2017, 60:643-651. [105] Sun Z Y, Fu L, Liu Z, et al. Synthesis of nobl-e metal/carbon nanotube composites in supercritical methanol. Journal of Nanoscience & Nanotechnology, 2006, 6:691–697. [106] Xiu F R, Zhang F S, Materials recovery from waste printed circuit boards by supercritical methanol. Journal of Hazardous Materials, 2010, 178:628–634. [107] 田宜灵,冯季军,秦颖等,超临界水的性质及其在化学反应中的应用.化学通报,2002, 6:396-402 [108] Zhu N M, Wang C F, Zhang F S, An integrated two-stage process for effective dechlorination of polychlorinated biphenyls in subcritical water in the presence of hydrogen donors. Chemical Engineering Journal, 2012, 197:135-142. [109] Pinero-Hernanz R, Dodds C, Hyde J, et al. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water. Composites Part A Applied Science & Manufacturing, 2008, 39:454−461. [110] Savage P E, Organic chemical reactions in supercritical water Chemical reviews. 1999, 99(2):603-622. [111] Song J, Fan H, Ma J, et al. Conversion of glucose and cellulose into value-added products in water and ionic liquids. Green Chemistry. 2013, 15:2619-2635. [112] Savage P E, Organic Chemical Reactions in Supercritical Water. Chemical Reviews. 1999, 99:603−622. [113] Takeshita Y, Kato K, Takahashi K, et al. Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions. Journal of Supercritical Fluids. 2004, 31:185-193. [114] 刘学武,高明,李志义.环境治理废水处理新技术-超临界水氧化法.环境技术, 2003, 5:11-14. [115] Xiu F R, Wang Y X, Yu X, et al. A novel safety treatment strategy of DEHP-rich flexible polyvinyl chloride waste through low-temperature critical aqueous ammonia treatment. Science of The Total Environment, 2020, 708:134532. [116] Qi Y, He J, Xiu F R, et al. Partial oxidation treatment of waste polyvinyl chloride in critical water: preparation of benzaldehyde/acetophenone and dechlorination. Journal of Cleaner Production. 2018, 196:331-339. [117] Fonseca J D, Grause G, Kameda T, Yoshioka T, Effects of steam on the thermal dehydrochlorination of poly(vinyl chloride) resin and flexible poly(vinyl chloride) under atmospheric pressure. Polymer Degradation & Stability, 2015, 117:8–15. [118] Xiu F R, Wang Y X, Yu X, et al. A novel safety treatment strategy of DEHP-rich flexible polyvinyl chloride waste through low-temperature critical aqueous ammonia treatment. Science of The Total Environment, 2020, 708:134532. [119] Gandon-Ros G, Soler A, Aracil I, Gómez-Rico M F, Dechlorination of polyvinyl chloride electric wires by hydrothermal treatment using K2CO3 in subcritical water. Waste Management, 2020, 102: 204-211. [120] Guo J, Zhang R, Xu Z, PBDEs emission from waste printed wiring boards during thermal process. Science of The Total Environment, 2015, 49:2716-2723. [121] Asahi N, Nakamura Y, Chemical shift study of liquid and supercritical methanol. Chemical Physics Letters, 1998, 290:63-67. [122] Asahi N, Nakamura Y, Chemical shift study of liquid and supercritical methanol. Chemical Physics Letters, 1998, 290:63-67. [123] Zhao S Y, Rogers M J, Ding C, He J, Reductive debromination of polybrominated diphenyl ethers-microbes, processes and dehalogenases. Frontiers in Microbiology, 2018, 9: 1292. [124] Miller E B, Zahran E M, Knecht M R., Bachas L G, Metal oxide semiconductor nanomaterial for reductive debromination: Visible light degradation of polybrominated diphenyl ethers by Cu2O@Pd nanostructures. Applied Catalysis B: Environmental, 2017, 213:147-154. [125] Yang F, Li Q, Su G, et al. Thermal degradation of 2,2',4,4 -tetrabromodiphenyl ether (BDE-47) over synthesized Fe-Al composite oxide. Chemosphere, 2016, 150:445-452. [126] Miller E B, Zahran E M, Knecht M R., Bachas L G, Metal oxide semiconductor nanomaterial for reductive debromination: Visible light degradation of polybrominated diphenyl ethers by Cu2O@Pd nanostructures. Applied Catalysis B: Environmental, 2017, 213:147-154. [127] Yang F, Li Q, Su G, Huang X, et al. Thermal degradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) over synthesized Fe-Al composite oxide. Chemosphere, 2016, 150:445-452. [128] Narayan R C, Lamba N, Javed A, Madras G, Kinetics of esterificat-ion of 10-undecenoic and ricinoleic acids with near-critical and supercritical methanol. Sustainable Energy & Fuels, 2017, 1:1425-1436. [129] Alenezi R, Leeke G A, Winterbottom J M, Santos R C D, Khan A R, Esterification kinetics of free fatty acids with supercritical methanol for biodiesel production. Energy Conversion & Management, 2010, 51:1055-1059. [130] Wang L Y, He H, Xie Z, Yang J, Zhu S, Transesterification of the crude oil of rapeseed with NaOH in supercritical and subcritical methanol. Fuel Processing Technology, 2007, 88:477-481. [131] Wang L Y, Tang Z, Xu W, Yang J, Catalytic transesterification of crude rapeseed oil by liquid organic amine and co-catalyst in supercritical methanol. Catalysis Communications, 2007, 8:1511-1515. [132] Wang L Y, Yang J C, Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel, 2007, 86:328-333. [133] Wang L Y, Yang J C, Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel, 2007, 86:328-333. [134] Hapipi B M Y A M, Suda ., Azhar U M, Kato Y, Dechlorination of polyvinyl chloride under superheated steam with catalysts and adsorbents. Energy Fuel, 2018, 32:7792-7799. [135] Xiu F R, Wang Y X, Yu X, et al. A novel safety treatment strategy of DEHP-rich flexible polyvinyl chloride waste through low-temperature critical aqueous ammonia treatment. Science of The Total Environment, 2020, 708:134532. [136] Zhao P T, Li T, Yan W J, Yuan L J, Dechlorination of PVC wastes by co-hydrothermal treatment with alkaline additives. Environmental Technology, 2017, 39:1-21. [137] Zhao P T, Li T, Li Z Z, The study of nickel effect on the hydrothermal dechlorination of PVC. Journal of Cleaner Production, 2017, 152:38-46. [138] Xiu F R, Qi Y Y, Zhang F S, Co-treatment of waste printed circuit boards and polyvinyl chloride by subcritical water oxidation: removal of brominated flame retardants and recovery of Cu and Pb. Chemical Engineering Journal, 2014, 237:242-249. [139] Xiu F R, Li Y F, Qi Y Y, A novel treatment of waste printed circuit boards by low-temperature near-critical aqueous ammonia: debromination and preparation of nitrogen-containing fine chemicals. Waste Management, 2019, 84:355-363. [140] Zhou H, Wu C F, Onwudili J A, et al. Influence of process conditions on the formation of 2-4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride. Fuel Processing Technology, 2016, 144:299-304. [141] Zhou J, Gui B, Qiao Y, et al. Under-standing the pyrolysis mechanism of polyvinylchloride (PVC) by characterizing the chars produced in a wire-mesh reactor. Fuel, 2016, 166:526-532. [142] Yoshioka T, Kameda T, Ieshige M, Okuwaki A, Dechlorination behaviour of flexible poly(vinyl chloride) in NaOH/EG solution. Polymer Degradation & Stability. 2008, 93:1822-1825. [143] Zhou C, Xu P, Lai C, et al. Rational design of graphic carbon nitride copolymers by molecular doping for visible-light-driven degradation of aqueous sulfamethazine and hydrogen evolution. Chemical Engineering Journal, 2019, 359:186-196. [144] Zhou C, Zeng G, Huang D, et al. Distorted polymeric carbon nitride via carriers transfer bridges with superior photocatalytic activity for organic pollutants oxidation and hydrogen production under visible light. Journal of hazardous materials, 2020,386:121947. [145] Ma D, Feng Q, Chen B, et al. Insight into chlorine evolution during hydrothermal carbonization of medical waste model[J]. Journal of Hazardous Materials, 2019, 380:120847.1-120847.9. [146] Fonseca J D, Grause G, Kameda T, et al. Effects of steam on the thermal dehydrochlorination of poly(vinyl chloride) resin and flexible poly(vinyl chloride) under atmospheric pressure[J]. Polymer Degradation & Stability, 2015, 117:8-15. [147] Soler A, Conesa J, Ortuño Nuria, Application of Subcritical Water to Dechlorinate Polyvinyl Chloride Electric Wires[J]. Energies, 2018, 11(10). [148] Fonseca J D, Grause G, Kameda T, et al. Effects of steam on the thermal dehydrochlorination of poly(vinyl chloride) resin and flexible poly(vinyl chloride) under atmospheric pressure[J]. Polymer Degradation & Stability, 2015, 117:8-15. [149] Xing M F, Zhang F S, Degradation of brominated epoxy resin and metal recovery from waste printed circuit boards through batch sub/supercritical water treatments. Chemical Engineering Journal,2013 219:131-136. [150] Ahmed O H, Altarawneh M, Al-Harahsheh M, et al. Catalytic de-chlorination of products from PVC degradation by magnetite (Fe3O4)[J]. Applied Surface Science, 2019, 480:792-801. [151] Gerard G R,Aurora S,Ignacio A,et al. Dechlorination of polyvinyl chloride electric wires by hydrothermal treatment using K2CO3 in subcritical water. Waste Management 2020, 102:204-211. [152] Tian L, Peitao Z, Meng L, et al. Understanding Hydrothermal Dechlorination of PVC by Focusing on the Operating Conditions and Hydrochar Characteristics[J]. Applied Sciences, 2017, 7(3):256. [153] Weiner B, Baskyr I, Poerschmann J, Kopinke F D, Potential of the hydrothermal carbonization process for the degradation of organic pollutants. Chemosphere, 2013, 92:674-680. [154] Xiu F R, Qi Y Y, Zhang F S, Co-treatment of waste printed circuit boards and polyvinyl chloride by subcritical water oxidation: removal of brominated flame retardants and recovery of Cu and Pb. Chemical Engineering Journal, 2014, 237:242-249. [155] Xiu F R, Lu Y, Qi Y,. DEHP degradation and dechlorination of polyvinyl chloride waste in subcritical water with alkali and ethanol: A comparative study[J]. Chemosphere, 2020, 249:126138. [156] Yao Z, Ma X. A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis[J]. Energy, 2017, 141:1156-1165. [157] Xiu F R., Yu X, Qi Y, A high-efficiency and low-temperature subcritical water dechlorination strategy of polyvinyl chloride using coal fly ash (CFA) and coal gangue (CG) as enhancers. Journal of Cleaner Production, 2020, 260:121085. [158] Zhao P T, Li Z Z, Li T, et al. The study of nickel effect on the hydrothermal dechlorination of PVC. Journal of Cleaner Production, 2017,152:38-46. [159] Poerschmann J, Weiner B, Woszidlo S, et al. Hydrothermal carbonization of poly(vinyl chloride). Chemosphere, 2015, 119:682-689. [160] Soler A, Conesa J, Ortuño N, Application of Subcritical Water to Dechlorinate Polyvinyl Chloride Electric Wires. Energies, 2018,11. [161] Hapipi B M Y A M, Suda H, Azhar U M, Kato Y, Dechlorination of polyvinyl chloride under superheated steam with catalysts and adsorbents. Energy & Fuels,2018, 32:7792-7799. [162] Zhao P T, Li Z Z, Li T, et al. The study of nickel effect on the hydrothermal dechlorination of PVC. Journal of Cleaner Production, 2017,152:38-46. [163] Li T, Zhao P T, Lei M, Li Z, Understanding Hydrothermal Dechlorination of PVC by Focusing on the Operating Conditions and Hydrochar Characteristics. Applied Sciences, 2017, 7(3):256. [164] Xiu F R., Yu X, Qi Y, A high-efficiency and low-temperature subcritical water dechlorination strategy of polyvinyl chloride using coal fly ash (CFA) and coal gangue (CG) as enhancers. Journal of Cleaner Production, 2020, 260:121085. [165] Zhou H, Wu C F, Onwudili J A,et al. Influence of process conditions on the formation of 2-4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride. Fuel Processing Technology, 2016,144:299-304. [166] Zhao P T, Li T, Yan W J, Yuan L J, Dechlorination of PVC wastes by co-hydrothermal treatment with alkaline additives. Environmental Technology, 2017, 39:1-21. [167] Tahira B E, Khan M, Saeed R, Akhwan S, A Review-Thermal Degradation and Stabilization of Poly (Vinyl Chloride). 2014
﹀
|
中图分类号: |
X705
|
开放日期: |
2021-06-15
|