- 无标题文档
查看论文信息

题名:

 宁东煤炭基地采煤地表裂缝形成机理及评价预测方法研究    

作者:

 谢晓深    

学号:

 17109071009    

保密级别:

 秘密    

语种:

 chi    

学科代码:

 0818    

学科:

 工学 - 地质资源与地质工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2022    

学校:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 矿山地质环境保护    

导师姓名:

 侯恩科    

导师单位:

 西安科技大学    

提交日期:

 2023-01-04    

答辩日期:

 2022-12-10    

外文题名:

 Study on the Mechanism, Evaluation and Prediction method of Surface cracks induced by Coal mining in Ningdong coal base    

关键词:

 采煤地表裂缝 ; 演化规律 ; 形成机理 ; 特征参数 ; 评价预测方法    

外文关键词:

 Surface crack induced by coal mining ; Evolution law ; Formation mechanism ; Characteristic parameters ; Evaluation and prediction    

摘要:

地表裂缝是煤矿区最常见的一种采动损害现象,不仅会造成大面积土地损毁,而且易诱发水土流失、植被死亡以及崩塌、滑坡等次生灾害,造成严重的生态环境问题。本文以宁东煤炭基地典型煤矿为例,以地表裂缝为研究对象,采用裂缝填图、无人机航拍、裂缝动态监测、室内相似材料模拟与数值模拟实验以及综合分析等方法对不同条件下的缓倾斜煤层开采地表裂缝发育规律、形成机理、地表裂缝特征参数预计和采煤地表损害程度评价预测方法进行了研究。研究成果可为采煤地面塌陷评价、治理、预防以及生态环境修复提供理论和方法支撑。

基于地表裂缝填图和无人机航拍影像解译,揭示了缓倾斜煤层开采地表裂缝三维空间展布规律。缓倾斜煤层开采地表裂缝呈不对称的“O”形展布,下山边界裂缝发育范围是上山的1.5~2.3倍。中深埋煤层开采地表裂缝原位示踪开挖探查结果显示,3cm宽度以下地表裂缝发育深度不超过3.5 m,剖面形态有“类楔型”、“类梭型”和“类树枝分叉型”3种;边界裂缝地下延展朝采空区偏移,偏移量与深度呈线性正相关关系。通过裂缝动态监测,揭示了缓倾斜煤层开采地表裂缝动态发育规律。缓倾斜煤层开采地表裂缝沿工作面走向呈“C”字形向前发育,存在超前和滞后回采位置两种动态发育特征,超前距18.5~42.5 m,滞后距24.7~71.3 m。单煤层开采面内裂缝宽度随时间呈“快速增大-缓慢减小”的“先开后合”和“先开后合再开”活动规律;双煤层开采面内裂缝宽度存在两个“增大-减小”过程,整体呈M型活动规律。边界裂缝宽度呈“增大-稳定”的“只开不合”活动规律。

缓倾斜煤层开采覆岩应力场、位移场和裂隙场具有非对称演化特征,于下山方向的集中和偏移导致了边界裂缝的不对称展布。结合表层岩(土)体力学结构和移动变形特征,给出了地表裂缝形成的力学和水平变形临界判据,阐明了地表裂缝形成机理。研究提出了地表裂缝动态发育力学模型,解决了超前/滞后距定量计算问题,明晰了地表裂缝超前距与关键层位的负相关关系以及与采厚、土层厚度的正相关关系。面内贯通裂缝的“先开后合”和“先开后合再开”的活动与表层岩(土)体回转失稳和滑落失稳有关;面内非贯通裂缝的“先开后合”变化则是地表“拉伸—压缩”变形转换的结果。边界裂缝“只开不合”的活动是岩块无回转,拉伸变形持续作用导致的。

以缓倾斜煤层仰采为例,通过数据拟合分析揭示了地表裂缝特征参数与开采地质条件的关系,建立了地表裂缝特征参数预计公式。研究表明,地表裂缝最大发育宽度和最大落差与采深采厚比、基岩采厚比呈负相关指数关系,与硬岩占比呈正相关指数关系,综合3个因素建立了地表裂缝最大发育宽度和最大落差的多元预计公式。基于地表裂缝发育规律和形成机理,通过模型抽象简化、数学推导和理论分析,提出了地表裂缝动态发育位置、活动时间、动态发育宽度以及动态发育深度4个变量的预计方法。

根据采煤地表损害调查结果,以地表最大下沉系数、裂缝密度、裂缝最大宽度、裂缝最大落差、塌陷坑水平投影直径为指标将地表损害程度划分成极轻微、轻微、中等、严重和极严重五个等级并建立了采煤地表损害程度评价方法和流程。分析了采煤地表损害程度的主要影响因素,提出了基于传统层次分析(AHP)和“鲸鱼优化算法(WOA)+双向LSTM模型”的地表损害程度分区预测方法。

外文摘要:

Surface crack is the most common geological disasters in coal mine, which will not only cause large area land damage, but also easily induce secondary disasters such as soil erosion, vegetation death, collapses and landslides, causing serious eco-environmental problems. In the paper typical coal mine in Ningdong coal base were taken as an example, crack mapping, UAV aerial photography, crack dynamic monitoring, indoor similar material simulation and numerical simulation experiments and comprehensive theoretical analysis were used to study the development law and formation mechanism of surface cracks induced by gently inclined coal seam mining under different conditions. The prediction of characteristic parameters of surface cracks and the evaluation and prediction method of surface damage degree of coal mining were studied. The results can provide theoretical support and method support for the evaluation, treatment, prevention and ecological environment restoration

Based on crack mapping and UAV aerial image interpretation, the plane distribution law of surface cracks in gently inclined coal seam mining was revealed. The surface cracks were distributed in an asymmetric "O" shape. The development range of the cracks at the downhill boundary was 1.5~2.3 times that of the uphill. The in-situ trace excavation and exploration results of surface cracks in medium deep seam mining show that the development depth of surface cracks below 3cm width is not more than 3.5 m, and the profile shapes include "wedge ", "shuttle" and "branch"; The underground extension of the boundary cracks moves towards the goaf, and the displacement is in linear positive correlation with the depth. Through the dynamic monitoring of cracks, the dynamic development law of surface cracks in gently inclined coal seam mining was revealed. The surface cracks in gently inclined coal seam mining developed forward along the strike of the working face in a "C" shape. There were two dynamic development characteristics of leading and lagging mining positions. The leading distance was 18.5~42.5 m and the lagging distance was 24.7~71.3 m. The width of fractures in single coal seam mining face showd a dynamic change of "opening first and closing later", which is "rapidly increasing - slowly decreasing" with time; There were two processes of the crack width in the double seam mining face, and the overall dynamic change law was M type. The boundary crack width showd a dynamic change law which increases until it becomes stable.

The stress field, displacement field and fracture field of overlying strata in gently inclined coal seam mining are characterized by asymmetric evolution. The concentration and migration in the downhill direction lead to the asymmetric distribution of boundary fractures. Combined with the mechanical structure and movement deformation characteristics of the surface rock (soil) body, the mechanical and horizontal deformation critical criteria for the formation of surface cracks are given, and the formation mechanism of surface cracks is clarified. A dynamic development mechanical model of surface fractures is proposed, which solves the quantitative calculation problem of lead/lag distance, and clarifies the negative correlation between the lead distance of surface fractures and key layers, as well as the positive correlation between the lead distance of surface fractures and mining thickness and soil layer thickness. The dynamic changes of "first opening and then closing" and "first opening and then closing and then opening" of the in-plane through cracks are related to the rotary instability and sliding instability of the surface rock (soil) body; The change of "first opening and then closing" of non through cracks in the plane is the result of the transformation of surface "tension compression" deformation. The dynamic change of boundary crack "only opening and not fitting" is caused by the continuous action of tensile deformation of rock block without rotation.

Taking the uphill mining of gently inclined coal seam as an example, the relationship between surface crack characteristic parameters and mining geological conditions was revealed through data fitting analysis, and the prediction formula of surface crack characteristic parameters was further established. The study shows that the maximum development width and maximum drop height of surface cracks were negatively correlated with the mining depth mining thickness ratio and bedrock mining thickness ratio, and positively correlated with the hard rock ratio. The multivariate prediction formula of maximum development width and maximum drop height was established by combining three factors. Based on the development law and formation mechanism of surface cracks, through abstract simplification of model, mathematical derivation and theoretical analysis, a method for predicting the dynamic parameters of surface cracks was proposed, including dynamic development position, dynamic change time, dynamic development width and dynamic development depth.

According to the survey results of surface damage caused by coal mining, the degree of surface damage is divided into five grades: extremely slight, slight, medium, serious and extremely serious, with the maximum subsidence coefficient of the surface, crack density, maximum width of the crack, maximum drop of the crack, and horizontal projection diameter of the collapse pit as indicators, and the evaluation method and process for the degree of surface damage caused by coal mining are established. This paper analyzes the main influencing factors of the degree of surface damage caused by coal mining, and puts forward a zonal prediction method of the degree of surface damage based on the traditional analytic hierarchy process (AHP) and the "Whale Optimization Algorithm (WOA)+D-LSTM model".

参考文献:

[1]王双明,孙强,乔军伟,等. 论煤炭绿色开采的地质保障[J]. 煤炭学报, 2020, 45(01): 8-15.

[2]康红普,徐刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40a及展望[J]. 采矿与岩层控制工程学报, 2019, 001(002): P.1-33.

[3]石文. 《2020中国能源化工产业发展报告》发布[J]. 石油库与加油站, 2020, (1): 18-18.

[4]范立民,马雄德,蒋泽泉,等. 保水采煤研究30年回顾与展望[J]. 煤炭科学技术, 2019, (7): 1-30.

[5]彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报, 2020, (4)

[6] Yan WT, Dai HY, Chen JJ. Surface crack and sand inrush disaster induced by high-strength mining: example from the Shendong coal field, China[J]. Geosciences Journal, 2017, 22(2): 1-11.

[7] 范立民,马雄德,李永红,等. 西部高强度采煤区矿山地质灾害现状与防控技术[J]. 煤炭学报, 2017, 42(2): 276-285.

[8]蔡怀恩. 彬长矿区地面塌陷特征及形成机理研究[D]. 西安:西安科技大学, 2008.

[9]贺卫中,向茂西,刘海南,等. 榆神府矿区地面塌陷特征及环境问题[J]. 煤田地质与勘探, 2016, 44(5): 131-135.

[10]Bell FG, Stacey TR, Genske DD. Mining subsidence and its effect on the environment: some differing examples[J]. Environmental Geology, 2000, 40(1-2): 135-152.

[11]杜灵通,徐友宁,宫菲,等. 宁东煤炭基地植被生态特征及矿业开发对其的影响[J]. 地质通报, 2018,

[12]余学义,张恩强. 开采损害学[M].煤炭工业出版社, 2010.

[13]王云虎. 渭北煤田开采沉陷地表裂缝规律及其对地面建筑物的影响[J]. 陕西煤炭技术, 1994, 02: 21-24.

[14]余学义. 地表移动破坏裂缝特征及其控制方法[J]. 西安科技大学学报, 1996, (004): 295-299.

[15]侯恩科,首召贵,徐友宁,等. 无人机遥感技术在采煤地面塌陷监测中的应用[J]. 煤田地质与勘探, 2017, (6): 102-110.

[16]吴侃,葛家新. 开采引起的地表裂缝分布规律[J]. 中国矿业大学学报, 1997, 26(2): 56-59.

[17]初影. 采煤诱发地表裂缝数值模拟研究[D]. 阜新:辽宁工程技术大学, 2009.

[18]杜善周. 神东矿区大规模开采的地表移动及环境修复技术研究[J]. 中国矿业大学(北京)

[19]王双明,范立民,黄庆享,等. 基于生态水位保护的陕北煤炭开采条件分区[J]. 矿业安全与环保, 2010, (3): 87-89.

[20]侯恩科,冯栋,谢晓深,等. 浅埋煤层沟道采动裂缝发育特征及治理方法[J]. 煤炭学报, 2021, 46(04): 1297-1308.

[21]Yan YG, Yan WT, Dai HY, et al. Distribution Characteristics and Formation Mechanism of Surface Crack Induced by Extrathick Near Horizontal Seam Mining: An Example from the Datong Coal Field, China[J]. Advances in Civil Engineering, 2021, 2021(2): 1-10.

[22]Yang X, Wen G, Dai L, et al. Ground Subsidence and Surface Cracks Evolution from Shallow-Buried Close-Distance Multi-seam Mining: A Case Study in Bulianta Coal Mine[J]. Rock Mechanics and Rock Engineering, 2019,

[23]侯恩科,张杰,谢晓深,等. 无人机遥感与卫星遥感在采煤地表裂缝识别中的对比[J]. 地质通报, 2019, v.38;No.285,No.286(Z1): 261-266.

[24] 黎来福,王秀丽. SPOT-5卫星遥感数据在煤矿塌陷区监测中的应用[J]. 矿山测量, 2008, (2): 45-47.

[25]Zhang F, Hu ZQ, Fu YK, et al. A New Identification Method for Surface Cracks from UAV Images Based on Machine Learning in Coal Mining Areas[J]. Remote Sensing, 2020, 12(10): 1571.

[26]汤伏全、李林宽、李小涛、刘世伟. 基于无人机影像的采动地表裂缝特征研究[J]. 煤炭科学技术, 2020, v.48;No.551(10): 135-141.

[27]He YB, Hu ZQ, Fu YK, et al. Underground Morphological Detection of Ground Fissures in Collapsible Loess Area Based on Three-Dimensional Laser Scanning Technology[J]. Remote Sensing, 2022, 14(2): 424.

[28]马露. 采空地面塌陷遥感识别方法研究[D]. 西安:西安科技大学, 2009.

[29] Zhang F, Hu ZQ, Kun Yang, et al. The Surface Crack Extraction Method Based on Machine Learning of Image and Quantitative Feature Information Acquisition Method[J]. Remote Sensing, 2021, 13(8): 1534.

[30]刘辉,邓喀中,雷少刚,等. 采动地裂缝动态发育规律及治理标准探讨[J]. 采矿与安全工程学报, 2017, 34(005): 884-890.

[31]胡振琪,王新静,贺安民. 风积沙区采煤沉陷地裂缝分布特征与发生发育规律[J]. 煤炭学报, 2014, 39(1): 11-18.

[32]张健,毕银丽,彭苏萍. 采动地表裂缝三维形态探测方法及精度评价研究[J]. 煤炭科学技术, 2020, 48(09): 236-242.

[33]徐乃忠,高超,倪向忠,等. 浅埋深特厚煤层综放开采地表裂缝发育规律研究[J]. 煤炭科学技术, 2015,

[34]戴华阳、罗景程、郭俊廷、阎跃观、张旺、朱元昊. 上湾矿高强度开采地表裂缝发育规律实测研究[J]. 煤炭科学技术, 2020, v.48;No.551(10): 129-134.

[35]郭文兵,黄成飞,陈俊杰. 厚湿陷黄土层下综放开采动态地表移动特征[J]. 煤炭学报, 2010, 35(0Z1): 38-43.

[36]黄庆享,杜君武,侯恩科,等. 浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J]. 采矿与安全工程学报, 2019, 36(01): 7-15.

[37]地表裂缝深度实测研究[J]. 煤矿现代化(6): 39-41.

[38]侯恩科,谢晓深,王双明,等. 中埋深煤层综采地表裂缝发育规律研究[J]. 采矿与安全工程学报, 2021, 38(06): 1178-1188.

[39]Wu K, Li L, Wang X L, et al. Research of ground cracks caused by fully-mechanized sublevel caving mining based on field survey[J]. Procedia Earth & Planetary Science, 2009, 1(1): 1095-1100.

[40]Liu H, Deng K, Zhu X, et al. Effects of mining speed on the developmental features of mining-induced ground fissures[J]. Bulletin of engineering geology and the environment, 2019, 78(8): 6297-6309.

[41]Jvd Graff,H. C. Romesburg. Subsidence crack closure: Rate, magnitude, and sequence[J]. Bulletin of the International Association of Engineering Geology - Bulletin de l'Association Internationale de Géologie de l'Ingénieur, 1981, 23(1): 123-127.

[42]栾长青,唐益群,赵法锁,等. 陕西韩城矿区地表沉降变形研究[J]. 自然灾害学报, 2007, 16(03): 81-85.

[43]李彦军. 靖远矿区地面塌陷地裂缝特征与治理研究[J]. 山西建筑, 2008, 034(029): 144-145.

[44]李晓,路世豹,廖秋林,等. 充填法开采引起的地裂缝分布特征与现场监测分析[J]. 岩石力学与工程学报, 2006, 025(007): 1361-1369.

[45]王双明,侯恩科,谢晓深,等. 中深部煤层开采对地表生态环境的影响及修复提升途径研究[J]. 煤炭科学技术, 2021, 49(01): 19-31.

[46]刘辉. 西部黄土沟壑区采动地裂缝发育规律及治理技术研究[D]. 中国矿业大学, 2014.

[47]车晓阳,侯恩科,孙学阳,等. 沟谷区浅埋煤层覆岩破坏特征及地面裂缝发育规律[J]. 西安科技大学学报, 2021, 41(01): 104-111+186.

[48]胡振琪,龙精华,王新静. 论煤矿区生态环境的自修复、自然修复和人工修复[J]. 煤炭学报, 2014, 39(8): 1751-1757.

[49] Xu YK, Wu K, Li L, et al Ground cracks development and characteristics of strata movement under fast excavation: a case study at Bulianta coal mine, China[J]. Bulletin of engineering geology and the environment, 2019, 78(1): 325-340.

[50]黄庆享、曹健、高彬、李军、刘建浩. 基于三场演化规律的浅埋近距煤层减损开采研究[J]. 采矿与安全工程学报, 2020, v.37;No.153(06): 99-107.

[51]谢晓深,侯恩科,高冠杰,等. 宁夏羊场湾煤矿浅埋煤层开采地面塌陷发育规律及形成机理[J]. 地质通报, 2018, 37(12): 113-120.

[52]王来贵,初影,赵娜. 采煤引起地表裂缝数值模拟研究[J]. 沈阳建筑大学学报(自然科学版), 2010, (6)

[53]刘爱军,郭俊廷,景胜强,等. 地表采动裂缝发育与开采条件的关系数值模拟[J]. 矿业工程研究, 2013, (03): 12-16.

[54]侯恩科,从通,谢晓深,等. 基于颗粒流的浅埋双煤层斜交开采地表裂缝发育特征[J]. 采矿与岩层控制工程学报, 2020, (1): 16-24.

[55]B. Ghabraie,R. Gang,J. V. Smith. Characterising the multi-seam subsidence due to varying mining configuration, insights from physical modelling[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 269-279.

[56]李亮. 高强度开采条件下堤防损害机理及治理对策研究[D]. 徐州:中国矿业大学, 2010.

[57]Zhou DW, W K, Bai ZH, et al. Formation and development mechanism of ground crack caused by coal mining: effects of overlying key strata[J]. Bulletin of Engineering Geology & the Environment, 2017, (4): 1-20.

[58]周金龙,黄庆享. 浅埋大采高工作面顶板关键层结构稳定性分析[J]. 岩石力学与工程学报, 2019, 038(007): 1396-1407.

[59]侯恩科,陈育,车晓阳,等. 浅埋煤层过沟开采覆岩破坏特征及裂隙演化规律研究[J]. 煤炭科学技术, 2021, 49(10):185-192.

[60]Wang X F, Zhang DS, Zhang CG, et al. Mechanism of mining-induced slope movement for gullies overlaying shallow coal seams[J]. Journal of Mountain Science, 2013,

[61]Wang SF, Li XB. Dynamic distribution of longwall mining-induced voids in overlying strata of a coalbed[J]. International Journal of Geomechanics, 2017, 17(6): 04016124.

[62]刘辉,何春桂,邓喀中,等. 开采引起地表塌陷型裂缝的形成机理分析[J]. 采矿与安全工程学报, 2013, 30(3): 380-384.

[63] Yang JH, Xiang Y, Yi Y, et al. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining[J]. Plos One, 2018, 13(3): e0192886.

[64]余学义,黄森林. 浅埋煤层覆岩切落裂缝破坏及控制方法分析[J]. 煤田地质与勘探, 2006, 34(002): 18-21.

[65]Zhu HZ. Development mechanism of mining-induced ground fissure for shallow burial coal seam in the mountains area of southwestern China: a case study[J]. Acta Geodynamica et Geomaterialia, 2018, 15(4): 349-362.

[66]陈超,胡振琪. 我国采动地裂缝形成机理研究进展[J]. 煤炭学报, 2018, 43(3): 810-823.

[67]Xie XS, Hou EK, Long TW, et al. Study on Evaluation and Prediction of the degree of Surface Damage caused by Coal Mining[J]. Frontiers in Earth Science, 2022, 9: 1258.

[68]徐乃忠,高超. 正断层存在的地表沉陷特殊性规律研究[J]. 采矿与岩层控制工程学报, 2020, 2(01): 101-106.

[69]周全杰,常兴民. 受断层影响地表裂缝的成因及特征分析[J]. 焦作工学院学报, 1999, (4): 248-250.

[70]陈俊杰,朱刘娟,闫伟涛,等. 高强度开采地表裂缝分布特征及形成机理分析[J]. 中国安全生产科学技术, 2015, (008): 96-100.

[71]刘守华,董津城,徐光明,等. 地下断裂对不同土质上覆土层的工程影响[J]. 岩石力学与工程学报, 2005, (11): 1868-1874.

[72]陶海亮,李学强. 开采影响下砂壤土裂缝发育特征研究-以汝河侯村段为例[J]. 金属矿山, 2015,

[73]王新静. 风沙区高强度开采土地损伤的监测及演变与自修复特征[D]. 北京:中国矿业大学(北京), 2014.

[74]赵兵朝,同超,刘樟荣,等. 西部生态脆弱区地表开采损害特征[J]. 中南大学学报(自然科学版), 2017, 48(11): 2990-2997.

[75]许家林,钱鸣高,朱卫兵. 覆岩主关键层对地表下沉动态的影响研究[J]. 岩石力学与工程学报, 2005, 24(5): 787-791.

[76]朱卫兵,许家林,施喜书,等. 覆岩主关键层运动对地表沉陷影响的钻孔原位测试研究[J]. 岩石力学与工程学报, 2009, 28(2): 403-409.

[77]李春意,崔希民,胡青峰,等. 常村矿巨厚砾岩下特厚煤层开采对地表形变的影响分析[J]. 采矿与安全工程学报, 2015, 32(4): 628-633.

[78]朱国宏,连达军. 开采沉陷对矿区地表裂缝的采动累积效应分析[J]. 中国安全生产科学技术, 2012, (05): 47-51.

[79]余学义,李邦帮,李瑞斌,等. 西部巨厚湿陷性黄土层开采损害程度分析[J]. 中国矿业大学学报, 2008, 37(1): 43-43.

[80]王来贵,赵尔强,初影. 急倾斜煤层开采诱发地表裂缝数值模拟[J]. 哈尔滨工业大学学报, 2011, (S1): 245-247.

[81]康建荣. 山区采动裂缝对地表移动变形的影响分析[J]. 岩石力学与工程学报, 2008, (01): 59-64.

[82]王玉川,巨能攀,赵建军,等. 缓倾煤层采空区上覆山体滑坡形成机制分析[J]. 工程地质学报, 2013, 21(1): 61-68.

[83]冯军,谭志祥,邓喀中. 黄土沟壑区沟谷坡度对采动裂缝发育规律的影响[J]. 煤矿安全, 2015, 046(005): 216-219.

[84]刘辉,刘小阳,邓喀中,等. 基于UDEC数值模拟的滑动型地裂缝发育规律[J]. 煤炭学报, 2016, 41(003): 625-632.

[85]闫伟涛. 浅埋厚煤层开采"错端叠梁"岩层移动模型研究[D]. 中国矿业大学(北京),

[86]侯忠杰,黄庆享. 松散层下浅埋薄基岩煤层开采的模拟[J]. 陕西煤炭技术, 1994, (2): 38-41.

[87]余学义,邱有鑫. 沟壑切割浅埋区塌陷灾害形成机理分析[J]. 西安科技大学学报, 2012, (03): 269-274.

[88]Bai EH, Guo WB, Tan Y. Negative externalities of high-intensity mining and disaster prevention technology in China[J]. Bulletin of Engineering Geology and the Environment, 2019,

[89]郭文兵,白二虎,赵高博. 高强度开采覆岩地表破坏及防控技术现状与进展[J]. 煤炭学报, 2020, 45(02): 509-523.

[90]薛东杰,周宏伟,任伟光,等. 浅埋深薄基岩煤层组开采采动裂隙演化及台阶式切落形成机制[J]. 煤炭学报, 2015, (08): 1746-1752.

[91]Cui XM, Gao Y, Yuan DB. Sudden surface collapse disasters caused by shallow partial mining in Datong coalfield, China[J]. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2014, 74(1): 1005-1005.

[92]谢党虎. 沟谷地形下开采覆岩裂隙发育特征研究[J]. 煤炭工程, 2021, 53(04): 99-104.

[93]王云广,郭文兵. 采空塌陷区地表裂缝发育规律分析[J]. 中国地质灾害与防治学报, 2017, 28(1): 89-95.

[94]何荣,杨文丽. 大采高浅埋深开采地表裂缝成因分析研究[J]. 煤炭科学技术, 2016, 44(8): 156-160.

[95]胡青峰,崔希民,袁德宝,等. 厚煤层开采地表裂缝形成机理与危害性分析[J]. 采矿与安全工程学报, 2012, 29(6): 864-869.

[96]王云广,郭文兵. 采空塌陷区地表裂缝发育规律分析[J]. 中国地质灾害与防治学报, 2017, (1)

[97]杨帆,余海锋,郭俊廷. 采动地表裂缝形成机理的数值模拟[J]. 辽宁工程技术大学学报, 2016, (6): 566-570.

[98]Li L, Wu K, Hu ZQ, et al. Analysis of developmental features and causes of the ground cracks induced by oversized working face mining in an aeolian sand area[J]. Environmental Earth Sciences, 2017, 76(3): 135.

[99]徐祝贺、李全生、李晓斌、张国军、杨玉亮、何文瑞、吴晓宇. 浅埋高强度开采覆岩结构演化及地表损伤研究[J]. 煤炭学报, 2020, v.45;No.311(08): 42-53.

[100]胡向德. 甘肃省矿山地质环境调查与评估报告, 甘肃省地质环境监测院, 2006.

[101]矿山地质环境保护与恢复治理方案编制规范. 国内-行业标准-行业标准-地质 CN-DZ, 2011.

[102]贾新果,张彬,杨宁. 采煤沉陷土地破坏程度分级研究[J]. 煤炭工程, 2009, (006): 81-84.

[103]胡海峰,廉旭刚,蔡音飞,等. 山西黄土丘陵采煤沉陷区生态环境破坏与修复研究[J].煤炭科学技术, 2020, 048(004): 70-79.

[104]陈秋计. 基于GIS的煤矿区土地损毁程度评价研究[J]. 矿业研究与开发, 2013, (04): 77-80.

[105]张和生 赵勤正. 基于特征的井工开采土地破坏程度特征因子选取[J]. 能源环境保护(6): 54-57.

[106]崔希民,车宇航,赵玉玲,等. 采动地表移动变形与建筑物损坏程度评价的再认识[J]. 煤炭学报, 2021, 46(01): 145-153.

[107]刘宝琛,戴华阳. 概率积分法的由来与研究进展[J]. 煤矿开采, 2016, 21(2): 3.

[108]余学义,王昭舜,杨云. 大采深综放开采地表移动变形规律[J]. 西安科技大学学报, 2019, (04): 5-13.

[109]汤伏全,赵军仪. 相邻工作面开采地表动态沉陷规律[J]. 金属矿山, 2019, (10)

[110]胡青峰,崔希民,刘文锴,等. 特厚煤层重复开采覆岩与地表移动变形规律研究[J]. 采矿与岩层控制工程学报, 2020, 2(2): P.27-35.

[111]崔希民,邓喀中. 煤矿开采沉陷预计理论与方法研究评述[J]. 煤炭科学技术, 2017, 45(1): 160-169.

[112]赵兵朝,刘宾,王建文,等. 柠条塔煤矿叠置开采地表岩移参数分析[J]. 煤矿安全, 2016, 47(009): 213-216.

[113]Li P, Tan Z, Deng K. Calculation of maximum ground movement and deformation caused by mining[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): s562-s569.

[114]Cai Y, Verdel T, Deck O. On the topography influence on subsidence due to horizontal underground mining using the influence function method[J]. Computers & Geotechnics, 2014, 61: 328-340.

[115]Nie L, Wang HF, Xu Y, et al. A new prediction model for mining subsidence deformation: the arc tangent function model[J]. Natural Hazards, 2015, 75(3): 2185-2198.

[116]袁鑫,王远坚,郑健,等. 基于弹性薄板理论的地表下沉预计模型[J]. 金属矿山, 2019, (10)

[117]李春意,赵亮,李铭,等. 基于Logistic时间函数地表动态沉陷预测及优化求参研究[J]. 2020, 20(6):9

[118]张兵,崔希民. 开采沉陷动态预计的分段Knothe时间函数模型优化[J]. 岩土力学, 2017, 38(002): 541-548.

[119]高超,徐乃忠,孙万明,等. 基于Bertalanffy时间函数的地表动态沉陷预测模型[J]. 煤炭学报, 2020, (8)

[120]陈育. 张家峁煤矿过沟开采地面塌陷规律及溃水危险性预测[D]. 西安科技大学, 2020.

[121]陈冉丽,李亮,张连贵,等. 煤矿工作面上方地表裂缝分布,宽度与水平变形之关系研究[J]. 金属矿山, 2015, (4):79-82

[122]韩奎峰,康建荣,王正帅,等. 山区采动地表裂缝预测方法研究[J]. 采矿与安全工程学报, 2014, 31(6): 896-900.

[123]郭俊廷,邹定辉,杨国柱,等. 厚松散层条件下地表采动裂缝宽度的计算方法[J]. 煤矿安全, 2014, 45(5): 170-172.

[124]吴侃,周鸣,胡振. 开采引起的地表裂缝深度和宽度预计[J]. 阜新矿业学院学报(自然科学版), 1997,

[125]胡义生,隋旺华. 煤层开采地表裂缝发育深度探讨[J]. 西部探矿工程, 2017, 029(007): 142-144.

[126]高超,徐乃忠,倪向忠,等. 煤矿开采引起地表裂缝发育宽度和深度研究[J]. 煤炭工程, 2016, 48(10): 81-83.

[127]Kim KD, Lee S, Oh HJ. Prediction of ground subsidence in Samcheok City, Korea using artificial neural networks and GIS[J]. Environmental Geology, 2009, 58(1): 61-70.

[128]Saro Lee,Inhye Park,Jong Kuk Choi. Spatial Prediction of Ground Subsidence Susceptibility Using an Artificial Neural Network[J]. Environmental Management, 2012, 49(2): 347-358.

[129]冯有利,罗清威. 基于Rough set的采空区地面塌陷危险性评价[J]. 河南理工大学学报(自然科学版), 2016, 35(6): 759-764.

[130]席莎. 内蒙古自治区煤炭矿区地面塌陷严重程度分析[D]. 北京:中国地质大学(北京),2012.

[131]高冠杰. 灵武矿区中南部地面塌陷特征及破坏程度预测[D]. 西安:西安科技大学, 2018.

[132]谢晓深,侯恩科,龙天文,等. 浅埋缓倾斜煤层开采覆岩及地表裂缝发育规律与形成机理[J]. 西安科技大学学报, 2022, 42(2): 10.

[133]侯恩科,谢晓深,徐友宁,等. 羊场湾煤矿采动地裂缝发育特征及规律[J]. 采矿与岩层控制工程学报, 2020, 2(3): 99-106.

[134]代沛 缓倾斜中厚煤层采动应力场时空演化及覆岩裂隙规律[D]. 重庆大学,2015..

[135]谭娜娜. 内蒙古缓倾煤层开采地面塌陷规律研究[D].中国地质大学(北京),2014.

[136]Feng D, Hou EK, Xie XS, et al. Prediction and treatment of water leakage risk caused by the dynamic evolution of surface fissures in gully terrain[J]. Frontiers in Earth Science, 2022, 9: 1286.

[137]钱鸣高,缪协兴. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996, 021(3): 225-230.

[138]谢晓深,侯恩科,龙天文,等. 浅埋缓倾斜煤层开采覆岩及地表裂缝发育规律与形成机理[J]. 西安科技大学学报, 2022, 42(2): 10.

[139]Cao J, Huang QX, Guo LF. Subsidence prediction of overburden strata and ground surface in shallow coal seam mining[J]. Scientific reports, 2021, 11(1): 1-12.

[140]Huang QX, Du JW, Chen J, et al. Coupling control on pillar stress concentration and surface cracks in shallow multi-seam mining[J]. International Journal of Mining Science and Technology, 2021, 31(1): 95-101.

[141]谢和平,周宏伟,王金安,等. FLAC在煤矿开采沉陷预测中的应用及对比分析[J]. 岩石力学与工程学报, 1999, 18(4): 397-397.

[142]Pan WD, Jiang P, L i BY, et al. The Spatial Evolution Law and Water Inrush Mechanism of Mining-Induced Overburden in Shallow and Short Coal Seam Group[J]. Sustainability, 2022, 14(9): 5320.

[143]朱恒忠. 西南山区浅埋煤层采动地裂缝发育规律及减损控制[D]. 北京:中国矿业大学(北京), 2019.

[144]钱鸣高,石平五,许家林. 矿山压力与岩层控制[M].矿山压力与岩层控制, 2010.

[145]贺雁鹏,黄庆享,王碧清,等. 浅埋煤层大采高工作面顶板破断角实测研究[J]. 采矿与安全工程学报, 2019,

[146]许家林. 岩层移动与控制的关键层理论及其应用[D]. 中国矿业大学, 1999.

[147]左建平,吴根水,孙运江,等. 岩层移动内外"类双曲线"整体模型研究[J]. 煤炭学报, 2021, 46(2): 11.

[148]谢晓深,侯恩科,王双明,等. 风沙滩地区中深埋厚煤层综采地表移动变形规律实测研究[J]. 煤矿安全, 2021,

[149]Thomas L Saaty. Decision-making with the AHP: Why is the principal eigenvector necessary[J]. European journal of operational research, 2003, 145(1): 85-91.

[150]Hamid Reza Pourghasemi,Biswajeet Pradhan,Candan Gokceoglu. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran[J]. Natural hazards, 2012, 63(2): 965-996.

[151]Chen W, Hong HY,Mahdi Panahi,et al. Spatial prediction of landslide susceptibility using gis-based data mining techniques of anfis with whale optimization algorithm (woa) and grey wolf optimizer (gwo)[J]. Applied Sciences, 2019, 9(18): 3755.

[152]王子童. 煤矿采空区地面塌陷危险性评价与三维可视化[D]. 西安科技大学,

[153]Zheng Zhao,Weihai Chen,Xingming Wu,等. LSTM network: a deep learning approach for short‐term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11(2): 68-75.

[154]刘立邦,杨颂,王志坚,等. 基于改进 WOA-LSTM 的焦炭质量预测[J]. 化工学报, 2022, 73(3): 9.

[155]Yu Y, Si XS,Hu CH, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural computation, 2019, 31(7): 1235-1270.

[156]曾蓉,黄德启,魏霞,等. 改进WOA优化LSTM神经网络的短时交通流预测[J]. 新疆大学学报:自然科学版(中英文), 2022, 39(2): 7.

中图分类号:

 P642.26    

开放日期:

 2026-03-31    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式