- 无标题文档
查看论文信息

论文中文题名:

 助催化剂调控碳氮晶体材料光催化CO2还原性能研究    

姓名:

 毛倩宇    

学号:

 20211225057    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料与化工    

研究方向:

 光催化材料    

第一导师姓名:

 李燕瑞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-20    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Performance Exploration of Co-catalyst Modified Carbon and Nitrogen Crystal Materials in CO2 Photocatalytic Reduction    

论文中文关键词:

 石墨相碳氮 ; 熔融盐 ; 三联吡啶配体 ; 金属单原子 ; 金属分子络合物    

论文外文关键词:

 g-C3N4 ; Molten salt ; TPHAP ; Metal single atom ; molecular catalyst    

论文中文摘要:

       利用人工光合作用将二氧化碳转化为有价值的化工原料,为解决能源需求增加和气候变化问题提供了一个可行的绿色途径,石墨相碳氮 (g-C3N4) 有机半导体成为近年来光催化还原二氧化碳的热门材料。然而,光吸收范围有限、载流子空穴复合率高等缺陷限制了石墨相碳氮光催化还原二氧化碳的效率。本文通过熔融盐调控和助催化剂修饰的方法对石墨相碳氮进行改性,为高效还原二氧化碳光催化剂的设计与开发做出有益探索,目前获得的研究成果如下: 
       采用KSCN熔融盐热聚合的方法不仅可以增强石墨相碳氮的结晶度,还能够引入与催化潜在相关的氰胺基团。光催化实验表明氰胺氮化碳的CO产率为22.37 μmol/g 是 g-C3N的1.30倍。
       以六氮杂菲 (HAP) 为骨架引入弱的分子间相互作用,合成三联吡啶配体 (TPHAP),超声环境下三联吡啶配体静电吸附在氰胺氮化碳表面,光催化实验表明TPNCN5样品的CO产率为78.35 μmol/g为 NCN-CNx 的3.49倍;CH产率39.04 μmol/g为 NCN-CNx 的27.73倍。三联吡啶配体提供了更多的光催化反应活性位点并且与氰胺氮化碳形成π-π相互加速光生载流子的迁移。
       金属单原子不仅可以作为活性位点有效降低催化剂表面 CO2 吸附能,还可以与 NCN-CNx 构筑内建电场引导光生电荷的定向迁移,实现光生载流子的高效分离。光催化实验表明1% NCN-Cu的CO产率是43.20 μmol/g为NCN-CNx的1.93倍, CH产率是22.31 μmol/g为NCN-CNx的15.11倍。
       dcabpyNiBr配合物可以通过羧基均匀分布并锚定在NCN-CNx表面,有效捕获短距离扩散传输的光生电荷,解决碳氮聚合物中沿共轭环长距离传输的的电子空穴复合问题。NCN-Ni 催化剂具有更强的光电流响应和更高的光催化性能,10% NCN-Ni 的CO产率为65.84 μmol/g,CH4产率为20.33 μmol/g。
 

论文外文摘要:

     Using artificial photosynthesis to convert carbon dioxide into valuable chemical raw materials provides a feasible green way to solve the problem of increasing energy demand and climate change. Graphitic carbon nitride (g-C3N4) organic semiconductor has become a popular material for photocatalytic reduction of carbon dioxide in recent years. However, the limited light absorption range and high carrier hole recombination rate limit the efficiency of photocatalytic reduction of carbon dioxide by graphite carbon nitride. In this paper, the graphite phase carbon and nitrogen were modified by molten salt regulation and co-catalyst modification, which made a useful exploration for the design and development of efficient reduction of carbon dioxide photocatalyst. The current research results are as follows :
     The method of KSCN molten salt thermal polymerization can not only enhance the crystallinity of graphite phase carbon and nitrogen, but also introduce cyanamide groups that are potentially related to catalysis. Cyanamide groups can hinder the formation of hydrogen bonds between carbon nitride units. The photocatalytic experiment showed that the CO yield of cyanamide carbon nitride was 22.37 μmol/g, which was 1.30 times that of g-C3N4.
     The tripyridine ligand (TPHAP) was synthesized by introducing weak intermolecular interaction into the framework of hexaazaphenanthrene (HAP). The tripyridine ligand was electrostatically adsorbed on the surface of cyanamide carbon nitride under ultrasonic environment. The photocatalytic experiment showed that the CO yield of TPNCN5 sample was 78.35 μmol/g, which was 3.49 times that of NCN-CNx. The CH4 yield of 39.04 μmol /g is 27.73 times that of NCN-CNx. TPHAP provides more photocatalytic reaction active sites and forms π-π interaction with cyanamide carbon nitride to accelerate the migration of photogenerated carriers.
     Metal single atoms can not only act as active sites to effectively reduce the CO2 adsorption energy on the catalyst surface, but also construct a built-in electric field with NCN-CNx to guide the directional migration of photogenerated charges and achieve efficient separation of photogenerated carriers. Photocatalytic experiments showed that the CO yield of 1 % NCN-Cu was 43.20 μmol/ g, which was 1.93 times that of NCN-CNx, and the CH4 yield was 22.31 μmol /g, which was 15.11 times that of NCN-CNx.
     The dcabpyNiBr2 complex can be uniformly distributed and anchored on the surface of NCN-CNx through carboxyl groups, effectively capturing the photogenerated charges of short-distance diffusion transmission, and solving the electron-hole recombination problem of long-distance transmission along the conjugated ring in the carbon-nitrogen polymer. The NCN-Ni catalyst has stronger photocurrent response and higher photocatalytic performance. The CO yield of 10 % NCN-Ni is 65.84 μmol/g, and the CH4 yield is 20.33 μmol/g.
 

参考文献:

[1] 陈伟仡. 钴、镍基纳米材料的制备及其应用于光催化CO2还原的研究 [D]. 广州: 华南理工大学,2020.

[2] 曹雪. 三维多孔p-NiO/n-ZnO纳米异质结材料的制备及其光催化性质研究 [D]. 长春:东北师范大学,2021.

[3] 李钱. 助催化剂修饰g-C3N4光催化还原CO2的性能优化与机理研究 [D]. 杭州:浙江大学,2020.

[4] Jiang Z, Xu X, Ma Y, et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction [J]. Nature, 2020, 586(7830): 549-554.

[5] Project Team on the Strategy and Pathway for Peaked Carbon Emissions and Carbon Neutrality. Analysis of a Peaked Carbon Emission Pathway in China Toward Carbon Neutrality [J]. Engineering, 2021, 7(12): 1673-1677.

[6] Halmann M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells [J]. Nature, 1978, 275:115-116.

[7] Zhou P, Yu J, Jaroniec M. All-solid-state Z-scheme photocatalytic systems [J]. Advanced Materials, 2014, 26(29): 4920-4935.

[8] Back S, Kim H, Jung Y. Selective heterogeneous CO2 electroreduction to methanol [J]. ACS Catalysis, 2015, 5(2): 965-971.

[9] Sun Z, Wang H, Wu Z, et al. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction [J]. Catalysis Today, 2018, 300:160-172.

[10] 李雪艳. 二氧化钛/聚苯胺复合微粒材料的制备、结构和性能研究 [D]. 天津:天津大学,2008.

[11] 李志伟. 多元复合氧化物光催化剂的制备及其可见光催化性能研究 [D]. 北京:北京化工大学,2012.

[12] 孙朱行. 碱改性g-C3N4光催化还原CO2的性能提升机制及其拓展应用 [D]. 杭州:浙江大学,2017.

[13] Chang X, Wang T, Gong J, et al. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts [J]. Energy and Environmental Science, 2016, 9:2177-2196.

[14] Anpo M, Yamashita H, Ichihashi Y, et al. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts [J]. Journal of Electroanalytical Chemistry, 1995, 396(1-2):21-26.

[15] Xie S, Zhang Q, Liu G, et al. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures [J]. Chem Commun, 2016, 52(1):35-59.

[16] Zhu K, Zhang M, Feng X, et al. A novel copper-bridged graphitic carbon nitride/porphyrin nanocomposite with dramatically enhanced photocatalytic hydrogen generation [J]. Applied Catalysis B: Environmental, 2020, 268: 118434.

[17] Yuan J, Yi X, Tang Y, et al. Efficient photocatalytic hydrogen evolution and CO2 reduction: enhanced light absorption, charge separation, and hydrophilicity by tailoring terminal and linker units in g-C3N4 [J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19607-19615.

[18] Liu J, Gong X, Li R, et al. (Photo)electrocatalytic CO2 reduction at the defective anatase TiO2-(101) surface [J]. ACS Catalysis, 2020, 10(7): 4048-4058.

[19] Shi L, Wang T, Zhang H, et al. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction [J]. Advanced Functional Materials, 2015, 25(33): 5360-5367.

[20] Wu J, Huang Y, Ye W, et al. CO2 Reduction: From the Electrochemical to Photochemical Approach [J]. Advanced Science, 2017, 4(11):1700194.

[21] Li Y, Kong T, Shen S. Artificial Photosynthesis with Polymeric Carbon Nitride: When Meeting Metal Nanoparticles, Single Atoms, and Molecular Complexes [J]. Small, 2019, 15(32): e1900772.

[22] Xie S, Wang Y, Zhang Q, et al. MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water [J]. ACS Catalysis, 2014, 4(10):3644-3653.

[23] Ou M, Tu W, Yin S, et al. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction [J]. Angewandte Chemie International Edition, 2018, 57(41): 13570-13574.

[24] 张龙飞. ZnS包覆PbS量子点结构调控及其在钙钛矿太阳能电池中的应用 [D]. 重庆:重庆大学, 2018.

[25] Ye S, Wang R, Wu M, et al. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction [J]. Applied Surface Science, 2015, 358: 15-27.

[26] Zhang S, Zhang Y, Chen Y, et al. Metal hydride-embedded titania coating to coordinate electron transfer and enzyme protection in photo-enzymatic catalysis [J]. ACS Catalysis, 2021, 11(1): 476-483.

[27] Majidi L, Ahmadiparidari A, Shan N, et al. 2D copper tetrahydroxyquinone conductive metal-organic framework for selective CO2 electrocatalysis at low overpotentials [J].Advanced Materials, 2021, 33(10): 2004393.

[28] Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts [J]. Journal of Materials Chemistry, 2008, 18(41): 4893-4908.

[29] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials, 2009, 8(1): 76-80.

[30] Kang Y, Yang Y, Yin L, et al. An Amorphous Carbon Nitride Photocatalyst with Greatly Extended Visible-Light-Responsive Range for Photocatalytic Hydrogen Generation [J]. Advanced Materials, 2015, 27(31):4572-4577.

[31] 张丹彤. 光/电催化二氧化碳还原的过渡金属纳米材料制备及构效关系研究 [D]. 长春:吉林大学, 2021.

[32] Li Y, Wang Y, Dong CL, et al. Single-atom nickel terminating sp2 and sp3 nitride in polymeric carbon nitride for visible-light photocatalytic overall water splitting [J]. Chemical Science, 2021, 12(10):3633-3643.

[33] Ou H, Lin L, Zheng Y, et al. Tri-s-triazine-Based Crystalline Carbon Nitride Nanosheets for an Improved Hydrogen Evolution [J]. Advanced Materials, 2017, 29(12): 1700008.

[34] Xu X, Pan L, Zhang X, et al. Rational design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution: A comprehensive review [J]. Advanced Science, 2019, 6(2): 1801505.

[35] Ran J, Jaroniec M, Qiao S, et al. Cocatalysts in Semiconductor‐based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities [J]. Advanced Materials, 2018, 30(7): 1704649.

[36] Ran J, Zhang J, Yu J, et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting [J]. Chemical Society Reviews, 2014, 43(22): 7787-7812.

[37] Ong W, Tan L, Chai S, et al. Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane [J]. Chemical Communications, 2015, 51(5): 858-861.

[38] Yakiyama Y, Ueda A, Morita Y, et al. Crystal surface mediated structure transformation of a kinetic framework composed of multi-interactive ligand TPHAP and Co(II) [J]. Chem Commun (Camb), 2012, 48(86):10651-10653.

[39] Guo F, Chen J, Zhang Mi, et al. Deprotonation of g-C3N4 with Na ions for efficient nonsacrificial water splitting under visible light† [J]. Journal of Materials Chemistry A, 2016, 4:10806-10809.

[40] Xu J, Kan Y, Huang R, et al. Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide [J]. ChemSusChem, 2016, 9(10): 1085-1089.

[41] Liu Y, Zhao J, Cai Q. Pyrrolic-nitrogen doped graphene: A metal-free electrocatalyst with high efficiency and selectivity for the reduction of carbon dioxide to formic acid: A computational study [J]. Physical Chemistry Chemical Physics, 2016, 18(7): 5491-5498.

[42] Liu Y, Chen S, Quan X, et al. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond [J]. Journal of the American Chemical Society, 2015, 137(36): 11631-11636.

[43] Zhao J, Xue S, Barber J, et al. An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction [J]. Journal of Materials Chemistry A, 2020, 8(9): 4700-4734.

[44] 陶雨,欧鸿辉,雷永鹏等.单原子催化剂在光催化二氧化碳还原中的研究进展[J].高等学校化学学报,2022,43(05):153-164.

[45] Chang X, Zhao Y, Xu B. PH dependence of Cu surface speciation in the electrochemical CO reduction reaction [J]. ACS Catalysis, 2020, 10(23): 13737-13747.

[46] Tao Z, Wu Z, Wu Y, et al. Activating copper for electrocatalytic CO2 reduction to formate via molecular interactions [J]. ACS Catalysis, 2020, 10(16): 9271-9275.

[47] Xiong J, Di J, Xia J, et al. Surface defect engineering in 2D nanomaterials for photocatalysis [J]. Advanced Functional Materials, 2018, 28(39): 1801983.

[48] Niu P, Zhang L, Liu G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities [J]. Advanced Functional Materials, 2012, 22(22): 4763-4770.

[49] Suen N, Kong Z, Hsu C, et al. Morphology manipulation of copper nanocrystals and product selectivity in the electrocatalytic reduction of carbon dioxide [J]. ACS Catalysis, 2019, 9(6): 5217-5222.

[50] Tang C, Shi J, Bai X, et al. CO2 reduction on copper's twin boundary [J]. ACS Catalysis, 2020, 10(3): 2026-2032.

[51] 张晓庆. 铜卟啉基一维纳米结构的光催化二氧化碳还原性能研究 [D]. 安徽:安徽大学, 2021.

[52] 张塞. 氮化碳基光催化剂的表界面调控及构效关系研究 [D]. 北京:华北电力大学, 2020.

[53] 唐永华. 基于氮化碳与氯氧化铋的二维层状复合材料设计及其光催化性能研究 [D]. 湘潭:湘潭大学, 2018.

[54] 刘鹏飞. 氮修饰金属有机框架的结构调控与性质研究 [D]. 青岛:青岛科技大学, 2017.

[55] 张楠. 铜表面负载的单原子催化剂电催化还原CO2的DFT计算研究 [D].吉林:东北电力大学, 2022.

[56] 杭梦婷,成杨,宋晓晴等. 石墨相氮化碳 (g-C3N4)的制备及其在单原子电催化中的应用研究进展 [J]. 化学世界,2019,60(04):193-198.

[57] 张艳霞. 基于非金属光催化剂的助催化剂调控用于增强光催化制氢活性 [D].呼和浩特:内蒙古大学, 2018.

[58] 杨俊锋. 半导体异质结复合材料的设计、制备及其高效光催化分解水产氢性能研究[D]. 吉林:吉林大学, 2022.

[59] 靳永勇,郝盼盼,任军,李忠. 单原子催化——概念、方法与应用[J]. 化学进展, 2015, 27(12):1689-1704.

[60] Zhang Y, Zhu G, Hojamberdiev M, et al. Synergistic effect of oxygen vacancy and nitrogen doping on enhancing the photocatalytic activity of Bi2O2CO3 nanosheets with exposed {001} facets for the degradation of organic pollutants [J]. Applied Surface Science, 2016, 371: 231-24.

[61] Xu X, Ding X, Yang X, et al. Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: Oxygen vacancy engineering, biotoxicity evaluation and mechanism study [J]. Journal of Hazardous Materials, 2019, 364: 691-699.

[62] Park S, Ahn H, Lee C, et al. Interaction and ordering of vacancy defects in NiO [J]. Physical Review B, 2008, 77(13): 134103.

[63] Zhu Y, Zhou W, Yu J, et al. Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions [J]. Chemistry of Materials, 2016, 28(6): 1691-1697.

[64] Bao J, Zhang X, Fan B, et al. Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation [J]. Angewandte Chemie International Edition, 2015, 54(25): 7399-7404.

[65] Flynn C J, Oh E E, Mccullough S M, et al. Hierarchically-Structured NiO Nanoplatelets as Mesoscale p-Type Photocathodes for Dye-Sensitized Solar Cells [J]. Journal of Physical Chemistry C, 2014, 118(26), 14177-14184.

[66] Wu M, Hsieh H. Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors [J]. Electrochimica Acta, 2008, 53(8): 3427-3435.

[67] Ye J, Liu C, Mei D, et al. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study [J]. ACS Catalysis, 2013, 3(6): 1296-1306.

[68] Yu H, Li J, Zhang Y, et al. Three-in-One Oxygen Vacancies: Whole Visible-Spectrum Absorption, Efficient Charge Separation, and Surface Site Activation for Robust CO2 Photoreduction [J]. Angewandte Chemie International Edition, 2019, 58(12): 3880-3884.

[69] Zhu W, Zhang C, Li Q, et al. Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination [J]. Applied Catalysis B: Environmental, 2018, 238: 339-345.

[70] Zhou M, Wang S, Yang P, et al. Boron Carbon Nitride Semiconductors Decorated with CdS Nanoparticles for Photocatalytic Reduction of CO2 [J]. ACS Catalysis, 2018, 8(6): 4928-4936.

[71] Li K, Yu H, Feron P, et al. Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO2 Capture Technology for a 500 MW Coal-Fired Power Station [J]. Environmental science & technology, 2015, 49(16): 10243-10252.

[72] Zeng Z, Yan Y, Chen J, et al. Boosting the Photocatalytic Ability of Cu2O Nanowires for CO2 Conversion by MXene Quantum Dots [J]. Advanced Functional Materials, 2019, 29(2): 1806500.

[73] Zou H, He B, Kuang P, et al. Metal-Organic Framework-Derived Nickel-Cobalt Sulfide on Ultrathin Mxene Nanosheets for Electrocatalytic Oxygen Evolution [J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22311-22319.

[74] Wu X, Lu Z, Zhu W, et al. High-performance aqueous battery with double hierarchical nanoarrays [J]. Nano Energy, 2014, 10: 229-234.

[75] Kang S, Shang M, Spence M A, et al. Dynamic charge acceptance and hydrogen evolution of a new MXene additive in advanced lead-acid batteriesviaa rapid screening three-electrode method [J]. Chemical Communications, 2018, 54(28): 3456-3459.

[76] Ling Z, Ren C E, Zhao M, et al. Flexible and conductive MXene films and nanocomposites with high capacitance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676-16681.

[77] Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts [J]. Chemical Society reviews, 2012, 41(2): 782-796.

[78] Yan J, Wang T, Wu G, et al. Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting [J]. Advanced Materials, 2015, 27(9): 1580-1586.

[79] Xia P, Zhu B, Yu J, et al. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction [J]. Journal of Materials Chemistry A, 2017, 5(7): 3230-3238.

[80] Xu H, Hu J, Wang D, et al. Visible-Light Photoreduction of CO2 in a Metal-Organic Framework: Boosting Electron-Hole Separation via Electron Trap States [J]. Journal of the American Chemical Society, 2015, 137(42): 13440-13443.

[81] Tao K, Han X, Cheng Q, et al. A Zinc Cobalt Sulfide Nanosheet Array Derived from a 2D Bimetallic Metal-Organic Frameworks for High-Performance Supercapacitors [J]. Chemistry-A European Journal, 2018, 24(48): 12584-12591.

[82] Su Y, Ao D, Liu H, et al. MOF-derived yolk-shell CdS microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution [J]. Journal of Materials Chemistry A, 2017, 5(18): 8680-8689.

[83] Zhu S, Liang S, Bi J, et al. Photocatalytic reduction of CO2 with H2O to CH4 over ultrathin SnNb2O6 2D nanosheets under visible light irradiation [J]. Green Chemistry, 2016, 18(5): 1355-1363.

[84] Chen Y, Jia G, Hu Y, et al. Two-dimensional nanomaterials for photocatalytic CO2 reduction to solar fuels [J]. Sustainable Energy & Fuels, 2017, 1(9): 1875-1898.

[85] Tan C, Zhang H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials [J]. Nature communications, 2015, 6(1): 7873.

[86] Ye L, Gao Y, Cao S, et al. Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal-organic framework nanosheets [J]. Applied Catalysis B: Environmental, 2018, 227: 54-60.

[87] Ong W, Tan L, Ng Y H, et al. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? [J]. Chemical Reviews, 2016, 116(12): 7159-7329.

[88] Xu X, Tan H, Xi K, et al. Bamboo-like amorphous carbon nanotubes clad in ultrathin nickel oxide nanosheets for lithium-ion battery electrodes with long cycle life [J]. Carbon, 2015, 84: 491-499.

[89] Tahir M, Amin N S. Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4 [J]. Applied Catalysis B: Environmental, 2015, 162: 98-109.

[90] Bagger A, Ju W, Varela A S, et al. Electrochemical CO2 Reduction: Classifying Cu Facets [J]. ACS Catalysis, 2019, 9(9): 7894-7899.

[91] Wang Y, Wang S, Lou X W D. Dispersed Nickel Cobalt Oxyphosphide Nanoparticles Confined in Multichannel Hollow Carbon Fibers for Photocatalytic CO2 Reduction [J]. Angewandte Chemie International Edition, 2019, 58(48): 17236-17240.

[92] Niu K, Xu Y, Wang H, et al. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production [J]. Science Advances, 2017, 3(7): 1700921.

[93] Wang S, Yao W, Lin J, et al. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions [J]. Angewandte Chemie International Edition, 2014, 53(4): 1034-1038.

[94] Han C, Zhang R, Ye Y, et al. Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO2 reduction over g-C3N4 [J]. Journal of Materials Chemistry A, 2019, 7(16): 9726-9735.

[95] Xu J, Liu X, Zhou Z, et al. Photocatalytic CO2 Reduction catalyzed by metalloporphyrin: Understanding of Cobalt and Nickel Sites in Activity and Adsorption [J]. Applied Surface Science, 2020, 513: 145801.

[96] Zhao K, Zhao S, Gao C, et al. Metallic Cobalt-Carbon Composite as Recyclable and Robust Magnetic Photocatalyst for Efficient CO2 Reduction [J]. Small, 2018, 14(33): 1800762.

[97] Yoneyama H. Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution [J]. Catalysis Today, 1997, 39(3): 169-175.

[98] Jin T, Liu C, Li G. Heterogenization of a macrocyclic cobalt complex for photocatalytic CO2 reduction [J]. Journal of Coordination Chemistry, 2016, 69(11-13): 1748-1758.

中图分类号:

 O643.36    

开放日期:

 2023-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式