论文中文题名: | 基于图神经网络的室内定位算法研究 |
姓名: | |
学号: | 21207223111 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 无线室内定位 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-12 |
论文答辩日期: | 2024-05-31 |
论文外文题名: | Research on Indoor Localization Algorithm Based on Graph Neural Network |
论文中文关键词: | |
论文外文关键词: | Indoor localization ; Location fingerprinting ; Multi-source fusion ; Graph structure ; Graph neural network |
论文中文摘要: |
室内定位技术的广泛应用可极大地扩展基于位置服务的适用范围,能更好地满足个人用户、服务型机器人和智能物联网等日益增长的定位需求。考虑到基于位置指纹的室内定位问题可以被建模为监督学习任务,机器学习和深度学习已应用其中,但大部分这类方法并没有充分考虑到指纹数据潜在的非欧几里德数据特征。因此,本文通过构建图结构来表示指纹数据的此类特征,并采用图神经网络算法,研究基于Wi-Fi位置指纹和基于多源融合的室内定位技术。本文的主要工作如下: |
论文外文摘要: |
The wide application of indoor localization techniques can greatly extend the applicability of location-based services and can better meet the growing localization needs of individual users, service robots, and smart internet of things. Considering that the indoor localization problem based on location fingerprints can be modeled as a supervised learning task, machine learning and deep learning have been applied, but most of such methods do not fully consider the potential non-Euclidean data features of fingerprint data. Therefore, this thesis investigates Wi-Fi location-based fingerprinting and multi-source fusion-based indoor localization techniques by constructing graph structures to represent such features of fingerprint data and employing graph neural network algorithms. The main work of this thesis is as follows: |
中图分类号: | TN92 |
开放日期: | 2024-06-12 |