题名: |
钌基催化剂的可控制备及其在硼氢化物燃料电池中的阳极催化性能研究
|
作者: |
廖广宁
|
学号: |
22213065001
|
保密级别: |
保密(1年后开放)
|
语种: |
chi
|
学科代码: |
0817
|
学科: |
工学 - 化学工程与技术
|
学生类型: |
硕士
|
学位: |
工学硕士
|
学位年度: |
2025
|
学校: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
化学工程与技术
|
研究方向: |
燃料电池材料
|
导师姓名: |
李赛
|
导师单位: |
西安科技大学化学与化工学院
|
提交日期: |
2025-06-13
|
答辩日期: |
2025-05-24
|
外文题名: |
Controllable preparation of ruthenium-based catalysts and study on their anodic catalytic performance in borohydride fuel cells
|
关键词: |
等离子体 ; 氧空位 ; 催化活性 ; 电化学性能 ; 直接硼氢化物燃料电池
|
外文关键词: |
plasma ; oxygen vacancy ; catalytic activity ; electrochemical performance ; direct borohydride fuel cell
|
摘要: |
︿
近年来,全球范围内环境持续恶化与化石能源枯竭等问题日益突出,推动清洁能源技术及相关储能系统的研发已成为各国能源战略的重点。根据国际能源署(IEA)统计的数据显示,2020年全球可再生能源发电量占比已经达到了29%,预计到2030年将提升至40%以上。在这一背景下,电化学储能装置作为连接可再生能源与电力输出的关键技术,其技术创新受到了学术界和产业界的广泛重视。在众多新型储能技术中,燃料电池凭借其高效的能量转换效率和环境友好等优势脱颖而出。其中,硼氢化物燃料电池体系因其理论能量密度高达9.3 kWh kg-1,远高于传统锂离子电池(0.2-0.3 kWh kg-1),被视为下一代储能技术的重要潜在发展方向。然而,该体系在实际应用中面临一个关键的技术瓶颈:硼氢根离子(BH4- )在电化学氧化过程中极易发生水解,这不仅降低了燃料的利用率,还导致电极反应动力学过程显著减缓。因此,开发出高效稳定的电催化剂成为突破该技术瓶颈的关键。针对上述关键技术瓶颈,开发高性能的阳极催化剂应满足以下条件:具有优异的电催化活性,能够有效降低BH4-氧化的过电位;具备良好的化学稳定性,能够在强碱性电解液下保持稳定;具有成本效益,适合大规模生产与应用。基于这些考虑,对以下几种电催化材料的制备工艺与性能进行了研究分析。
(1) 利用介质阻挡放电(DBD)等离子体技术协同化学还原法制备了具有异质界面和丰富氧空位(Ov)的三元异质结构RuO2/CoO/B20H26O(Ru-Co-B)催化剂,用于增强硼氢化物氧化反应(BOR)。Ru-Co-B催化剂表现出显著的电催化活性和长期稳定性,由于电荷分布不均匀的界面处能带结构的差异,非均匀结构会自发产生内建电场,促进界面电荷转移。Ov的产生增加了其活性位点,促进其催化活性。当它用于直接硼氢化物燃料电池(DBFCs)时,室温下显示出206 mW cm-2的峰值功率密度,并且在20 mA cm-2的恒定电流下保持270 h的显著稳定性。
(2) 针对等离子体技术在催化材料中的影响和应用机制研究,采用等离子体技术直接一步合成法,成功制备了富缺陷的RuO2/B2O3双氧化物(Ru-B)催化剂。该工艺通过等离子体高能粒子对催化剂的刻蚀与原子重构作用,实现比表面积增加(BET比表面积提升至3.7037 m² g⁻¹)与活性位点密度提升,促进了电子的转移。密度泛函理论(DFT)计算表明,异质界面处的电子耦合效应使RuO2/B2O3表面d带中心下移,导致H*和OH*中间体的吸附结合能降低,这种电子结构有效释放了BH4-吸附位点,这对于高BOR速率是必不可少的。该催化剂表现出显著的电化学性质,在室温下具有低电荷转移电阻(Rct=1.75 Ω)、过电位(102 mV)和塔菲尔斜率(156.1 mV del-1)。此外,Ru-B电极表现出优异的电催化性能和持续的长期稳定性,在25°C下实现了288 mW cm-2的最大功率密度,在20 mA cm-2的电流下能够持续运行超过330 h,并且在催化性能方面优于其他方法制备的催化剂。
(3) 基于催化剂在电解液中易发生活性组分脱落的问题,开发了一种复合结构催化剂的创新制备策略。首先通过高温热解工艺合成Co3O4基底材料,随后,利用等离子体技术对Co3O4和RuCl3的混合物进行处理,成功制备了RuO2微小颗粒高分散于Co3O4基底上的负载结构RuO2/Co3O4(Ru-Co)。通过优化涂覆-煅烧工艺,将催化剂均匀涂敷于泡沫镍(Ni-Foam)上,该方法相较于传统方法显著提升了活性材料与基底的界面结合强度。通过物理表征以及电化学性能测试,RuO2/Co3O4催化剂表现出优异的催化活性和高效的BOR催化动力学特性,在室温下具有较大的电化学活性比表面积、较低的电荷转移电阻(0.545 Ω)、较低的过电位(133 mV)和Tafel斜率(130.8 mV del-1),且在DBFC性能测试中,峰值功率密度达到361 mW cm-2,在20 mA cm-2恒定电流密度下持续放电300小时后,输出电压仍保持初始值的91.5%,展现出卓越的长期运行稳定性。
﹀
|
外文摘要: |
︿
In recent years, the problems of environmental degradation and fossil energy depletion have become more and more prominent globally, and the promotion of research and development of clean energy technologies and related energy storage systems has become the focus of national energy strategies. According to statistics from the International Energy Agency (IEA), the global share of renewable power generation has reached 29% in 2020 and is expected to rise to over 40% by 2030. In this context, the technological innovation of electrochemical energy storage devices, as a key technology connecting renewable energy sources and power output, has been widely emphasized by both academia and industry. Among many new energy storage technologies, fuel cells stand out with their advantages of high energy conversion efficiency and environmental friendliness. Among them, the borohydride fuel cell system is regarded as an important potential development direction for the next-generation energy storage technology because its theoretical energy density is as high as 9.3 kWh kg-1, which is much higher than that of conventional lithium-ion batteries (0.2-0.3 kWh kg-1). However, this system faces a key technical bottleneck in practical application: borohydride ion (BH4-) is highly susceptible to hydrolysis during electrochemical oxidation, which not only reduces the fuel utilization, but also leads to a significant slowdown of the electrode reaction kinetics. Therefore, the development of efficient and stable electrocatalysts becomes the key to break through the bottleneck of this technology. In view of the above key technological bottlenecks, the development of high-performance anode catalysts should meet the following conditions: excellent electrocatalytic activity, which can effectively reduce the overpotential of BH4- oxidation; good chemical stability, which can be maintained under the strong alkaline electrolyte; and cost-effective, which is suitable for large-scale production and application. Based on these considerations, the preparation process and properties of the following electrocatalytic materials were studied and analyzed.
(1) Ternary heterostructured RuO2/CoO/B20H26O (Ru-Co-B) catalysts with heterogeneous interfaces and abundant oxygen vacancies (Ov) were prepared for enhanced borohydride oxidation reaction (BOR) using dielectric barrier discharge (DBD) plasma technology in concert with chemical reduction. The Ru-Co-B catalysts exhibit remarkable electrocatalytic activity and long-term stability, and the non-uniform structure spontaneously generates a built-in electric field that promotes interfacial charge transfer due to the difference in energy band structure at the interface where charge distribution is not uniform. The production of Ov increases its active site and promotes its catalytic activity. When it is used in direct boron hydride fuel cells (DBFCs), it shows a peak power density of 206 mW cm-2 at room temperature and maintains a remarkable stability of 270 h at a constant current of 20 mA cm-2.
(2) For the study of the influence and application mechanism of plasma technology in catalytic materials, RuO2/B2O3 double oxide (Ru-B) catalysts with rich defects were successfully prepared by direct one-step synthesis using plasma technology. The process achieves an increase in specific surface area (BET specific surface area elevated to 3.7037 m2 g-1) and active site density through the etching and atomic remodeling effects of plasma energetic particles on the catalyst, which promotes electron transfer. Density Functional Theory (DFT) calculations showed that the electronic coupling effect at the heterogeneous interface shifted the d-band center downward on the RuO2/B2O3 surface, leading to a decrease in the adsorption binding energies of the H* and OH* intermediates, and that this electronic structure effectively releases the BH4- adsorption sites, which are essential for high BOR rates. The catalyst exhibited remarkable electrochemical properties with low charge transfer resistance (Rct = 1.75 Ω), overpotential (102 mV) and Tafel slope (156.1 mV del-1) at room temperature. In addition, the Ru-B electrode exhibited excellent electrocatalytic performance and sustained long-term stability, achieved a maximum power density of 288 mW cm-2 at 25 °C, was able to operate continuously for more than 330 h at a current of 20 mA cm-2, and outperformed catalysts prepared by other methods in terms of catalytic performance.
(3) Based on the catalyst's susceptibility to active component shedding in the electrolyte, an innovative preparation strategy for a composite-structured catalyst was developed. The Co3O4 substrate material was first synthesized by a high-temperature pyrolysis process, and subsequently, the loaded structure RuO2/Co3O4 (Ru-Co) with RuO2 tiny particles highly dispersed on the Co3O4 substrate was successfully prepared by treating the mixture of Co3O4 and RuCl3 using plasma technology. By optimizing the coating-calcining process, the catalyst was uniformly coated on nickel foam (Ni-Foam), which significantly enhanced the interfacial bonding strength between the active material and the substrate compared with the conventional method. Through physical characterization as well as electrochemical performance tests, the RuO2/Co3O4 catalysts exhibited excellent catalytic activity and efficient BOR catalytic kinetics, with a large electrochemically active specific surface area, low charge transfer resistance (0.545 Ω), low overpotential (133 mV) and Tafel slope (130.8 mV del-1) at room temperature, and in the DBFC performance test, the peak power density reaches 361 mW cm-2, and the output voltage remains 91.5% of the initial value after 300 hours of continuous discharge at a constant current density of 20 mA cm-2, demonstrating excellent long-term operational stability.
﹀
|
参考文献: |
︿
[1] Feng Z, Huang J, Jin S, et al. Artificial intelligence-based multi-objective optimisation for proton exchange membrane fuel cell: A literature review[J]. Journal of Power Sources, 2022, 520: 230808. [2] 韩家乐, 田晓, 张颖, 等. 直接硼氢化物燃料电池用非贵金属钴基阳极催化剂的研究进展[J]. 化工新型材料, 2024, 52(12): 50-56. [3] Wang S, Jiang S P. Prospects of fuel cell technologies[J]. National Science Review, 2017, 4(2): 163-166. [4] Ong S, Al-Othman A, Tawalbeh M. Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells[J]. Energy, 2023, 277: 127721. [5] 李赛, 陈元振, 杨晓冬, 等. 非晶态金属硼化物用作DBFC阳极催化剂[J]. 电池, 2013, 43(6): 325-328. [6] 邵阳阳, 靳惠明, 俞亮, 等. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34(2): 2063-2066+2082. [7] Ma J, Choudhury N A, Sahai Y. A comprehensive review of direct borohydride fuel cells[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 183-199. [8] Grove W R. On a gaseous voltaic battery[J]. Philosophical Magazine, 2012, 92(31): 3753-3756. [9] Tantram A D S. Fuel cells: past, present and future[J]. Fuel cells, 1974, 2(1): 55-66. [10] Liu L, Zhang J, Zhao Y, et al. Research progress on direct borohydride fuel cells[J]. Chemical Communications, 2024, 60(15): 1965-1978. [11] 张迪, 王雪, 王艳. C3N4负载CoB催化剂的制备及催化硼氢化物水解制氢性能研究[J]. 辽宁化工, 2021, 50(10): 1437-1439+1463. [12] Zhou Y, Li S, Chen Y, et al. The high utilization of fuel in direct borohydride fuel cells with a PdNix-B/carbon nanotubes-catalysed anode[J]. Journal of Power Sources, 2017, 351: 79-85. [13] Zhang D, Sun T, Cao D, et al. A review of anodes for direct borohydride fuel cells: Electrode and catalytic environment[J]. Journal of Power Sources, 2023, 587: 233684. [14] Li S, Wang L, Chu J, et al. Investigation of Au@Co-B nanoparticles as anode catalyst for direct borohydride fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(20): 8583-8588. [15] Liao G, Li S, Luo Y, et al. Plasma-synthesized Ru-B double oxides catalysts for enhanced fuel cell performance[J]. Journal of Alloys and Compounds, 2025, 1013: 178599. [16] 闫静, 田晓, 赵宣, 等. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236. [17] Li S, Shu C, Chen Y, et al. A new application of nickel-boron amorphous alloy nanoparticles: anode-catalyzed direct borohydride fuel cell[J]. Ionics, 2018, 24(1): 201-209. [18] Samad S, Loh K S, Wong W Y, et al. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(16): 7823-7854. [19] Luo W, Wang Y, Cheng C. Ru-based electrocatalysts for hydrogen evolution reaction: recent research advances and perspectives[J]. Materials Today Physics, 2020, 15: 100274. [20] Peng J, Chen Y, Wang K, et al. High-performance Ru-based electrocatalyst composed of Ru nanoparticles and Ru single atoms for hydrogen evolution reaction in alkaline solution[J]. International Journal of Hydrogen Energy, 2020, 45(38): 18840-18849. [21] Krauspe P, Tsokkou D, Causa’ M, et al. Terahertz short-range mobilities in neat and intermixed regions of polymer: fullerene blends with controlled phase morphology[J]. Journal of Materials Chemistry A, 2018, 6(44): 22301-22309. [22] Li A, Chang X, Huang Z, et al. Thin heterojunctions and spatially separated cocatalysts to simultaneously reduce bulk and surface recombination in photocatalysts[J]. Angewandte Chemie International Edition, 2016, 55(44): 13734-13738. [23] Wu A, Xie Y, Ma H, et al. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting[J]. Nano Energy, 2018, 44: 353-363. [24] Liang J, Yu Q, Yang X, et al. A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation[J]. Nano Research, 2018, 11(3): 1599-1611. [25] Li Z, Hu M, Wang P, et al. Heterojunction catalyst in electrocatalytic water splitting[J]. Coordination Chemistry Reviews, 2021, 439: 213953. [26] Sokka A, Mooste M, Käärik M, et al. Iron and cobalt containing electrospun carbon nanofibre-based cathode catalysts for anion exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(61): 31275-31287. [27] Raut V, Bera B, Neergat M, et al. Metal-organic framework and carbon black supported MOFs as dynamic electrocatalyst for oxygen reduction reaction in an alkaline electrolyte[J]. Journal of Chemical Sciences, 2021, 133(2): 34. [28] Cai S, Meng Z, Cheng Y, et al. Three dimension Ni/Co-decorated N-doped hierarchically porous carbon derived from metal-organic frameworks as trifunctional catalysts for Zn-air battery and microbial fuel cells[J]. Electrochimica Acta, 2021, 395: 139074. [29] Hu B, Chen P, Xu C, et al. Hierarchical leaf-shaped Ni@Zn bimetallic catalyst with high stability and selectivity for borohydride oxidation[J]. Applied Catalysis B: Environmental, 2022, 307: 121183. [30] Sun T, Li Y, Tian L, et al. Two birds with one stone: valence and substrate microenvironment engineering of Co-based catalysts for high-performance borohydride oxidation reaction[J]. Chemical Engineering Journal, 2024, 489: 151327. [31] Oshchepkov A G, Braesch G, Ould-Amara S, et al. Nickel metal nanoparticles as anode electrocatalysts for highly efficient direct borohydride fuel cells[J]. ACS Catalysis, 2019, 9(9): 8520-8528. [32] Yin X, Wang Q, Duan D, et al. Amorphous NiB alloy decorated by Cu as the anode catalyst for a direct borohydride fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10971-10981. [33] Li Y, Li Q, Wang H, et al. Recent progresses in oxygen reduction reaction electrocatalysts for electrochemical energy applications[J]. Electrochemical Energy Reviews, 2019, 2(4): 518-538. [34] Hetaba W, Klyushin A Yu, Falling L J, et al. Investigation of electrocatalysts produced by a novel thermal spray deposition method[J]. Materials, 2020, 13(12): 2746. [35] Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials[J]. ACS Catalysis, 2012, 2(8): 1765-1772. [36] Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts[J]. Nature Chemistry, 2010, 2(6): 454-460. [37] Hu Y, Zhang H, Wu P, et al. Bimetallic Pt–Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation[J]. Physical Chemistry Chemical Physics, 2011, 13(9): 4083. [38] McCrory C C L, Jung S, Peters J C, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(45): 16977-16987. [39] Tyczkowski J, Kierzkowska-Pawlak H. Towards catalysts prepared by cold plasma[J]. Catalysts, 2022, 12(1): 75. [40] Lee D H, Song Y H, Kim K T, et al. Current state and perspectives of plasma applications for catalyst regeneration[J]. Catalysis Today, 2019, 337: 15-27. [41] Yu F, Liu M, Ma C, et al. A review on the promising plasma-assisted preparation of electrocatalysts[J]. Nanomaterials, 2019, 9(10): 1436. [42] Shi X, Liang W, Yin G, et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst[J]. Plasma Science and Technology, 2023, 25(5): 191-204. [43] 邹吉军. 等离子体处理制备高效催化剂的基础研究[D]. 天津大学, 2006. [44] 李佳奇, 马懿星, 王学谦, 等. 低温等离子体制备改性催化剂[J]. 真空科学与技术学报, 2020, 40(12): 1152-1161. [45] Liu C, Li M, Wang J, et al. Plasma methods for preparing green catalysts: current status and perspective[J]. Chinese Journal of Catalysis, 2016, 37(3): 340-348. [46] Li H, Xiao N, Wang Y, et al. Promoted electroreduction of CO2 with oxygen vacancies on plasma-activated SnOx/carbon foam monolithic electrode[J]. Journal of Materials Chemistry A, 2020, 4(8): 1779-1786. [47] Rouwenhorst K H R, Burbach H G B, Vogel D W, et al. Plasma-catalytic ammonia synthesis beyond thermal equilibrium on Ru-based catalysts in non-thermal plasma[J]. Catalysis Science & Technology, 2021, 11(8): 2834-2843. [48] Zhang S, Han W, Hu X, et al. Supported bimetallic hydrogenation catalysts treated by non-thermal plasmas[J]. Catalysis Today, 2023, 418: 114076. [49] Zou N, Qiu T, Zheng Y. Synthesis of MOFs catalyst containing Cu(I) sites for CO2 hydrogenation: room-temperature controlled reduction via plasma reducing treatment strategy[J]. Catalysis Today, 2023, 421: 114176. [50] Lang X, Zhang Y, Cai K, et al. High performance CoO nanospheres catalyst synthesized by DC arc discharge plasma method as air electrode for lithium-oxygen battery[J]. Ionics, 2019, 25(1): 35-40. [51] Wang Y, Yu F, Zhu M, et al. N-Doping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2018, 6(5): 2011-2017. [52] Zhao Y, Wang E, Jin R. The effect of oxygen on the N2 photofixation ability over N vacancies embedded g-C3N4 prepared by dielectric barrier discharge plasma treatment[J]. Diamond and Related Materials, 2019, 94: 146-154. [53] Huang Y, Deng Q, Wu X, et al. N, O Co-doped carbon felt for high-performance all-vanadium redox flow battery[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7177-7185. [54] Wang T, Fu X Z, Wang S. Etching oxide overlayers of NiFe phosphide to facilitate surface reconstruction for oxygen evolution reaction[J]. Green Energy & Environment, 2022, 7(3): 365-371. [55] Xu L, Zou Y, Xiao Z, et al. Transforming Co3O4 nanosheets into porous N-doped CoO nanosheets with oxygen vacancies for the oxygen evolution reaction[J]. Journal of Energy Chemistry, 2019, 35: 24-29. [56] Xiao Z, Wang Y, Huang Y C, et al. Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting[J]. Energy & Environmental Science, 2017, 10(12): 2563-2569. [57] Tao L, Wang Q, Dou S, et al. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction[J]. Chemical Communications, 2016, 52(13): 2764-2767. [58] 田晓, 段如霞, 赵丽娟, 等. 直接硼氢化物燃料电池(DBFC)阳极催化剂的研究进展[J]. 无机材料学报, 2017, 32(12): 1233-1242. [59] Hussain S, Erikson H, Kongi N, et al. Oxygen reduction reaction on nanostructured Pt-based electrocatalysts: a review[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31775-31797. [60] Wang Q, Ming M, Niu S, et al. Scalable solid‐state synthesis of highly dispersed uncapped metal (Rh, Ru, Ir) nanoparticles for efficient hydrogen evolution[J]. Advanced Energy Materials, 2018, 8(31): 1801698. [61] Zheng Y, Jiao Y, Zhu Y, et al. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst[J]. Journal of the American Chemical Society, 2016, 138(49): 16174-16181. [62] Li B, Yan Q, Song C, et al. Reduced graphene oxide foam supported CoNi nanosheets as an efficient anode catalyst for direct borohydride hydrogen peroxide fuel cell[J]. Applied Surface Science, 2019, 491: 659-669. [63] Li S, Yang X, Zhu H, et al. Investigation of amorphous CoB alloy as the anode catalyst for a direct borohydride fuel cell[J]. Journal of Power Sources, 2011, 196(14): 5858-5862. [64] Chen Y, Pang W K, Bai H, et al. Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes[J]. Nano Letters, 2017, 17(1): 429-436. [65] Chen Y, Zhou T, Li L, et al. Interfacial engineering of nickel boride/metaborate and its effect on high energy density asymmetric supercapacitors[J]. ACS Nano, 2019, 13(8): 9376-9385. [66] Xu L, Jiang Q, Xiao Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2016, 55(17): 5277-5281. [67] Wang Y, Yu C, Meng X, et al. The ethanol mediated-CeO2-supported low loading ruthenium catalysts for the catalytic wet air oxidation of butyric acid[J]. RSC Advances, 2017, 7(63): 39796-39802. [68] Duan Y e, Li S, Tan Q, et al. Cobalt nickel boride nanocomposite as high-performance anode catalyst for direct borohydride fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15471-15481. [69] Li J, Su W, Li J, et al. Orientational alignment of oxygen vacancies: electric-field-inducing conductive channels in TiO2 film to boost photocatalytic conversion of CO2 into CO[J]. Nano Letters, 2021, 21(12): 5060-5067. [70] Bu Y, Li H, Yu W, et al. Peroxydisulfate activation and singlet oxygen generation by oxygen vacancy for degradation of contaminants[J]. Environmental Science & Technology, 2021, 55(3): 2110-2120. [71] Zhu K, Shi F, Zhu X, et al. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction[J]. Nano Energy, 2020, 73: 104761. [72] Bian R, An S, Wang X, et al. Ca2+ doped TiO2 nano-sized polygon plates with oxygen vacancies for photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2023, 51: 787-795. [73] Hu X, Wang J, Wang J, et al. β particles induced directional inward migration of oxygen vacancies: surface oxygen vacancies and interface oxygen vacancies synergistically activate PMS[J]. Applied Catalysis B: Environmental, 2022, 318: 121879. [74] Tsai C C. Characterization of amorphous semiconducting silicon-boron alloys prepared by plasma decomposition[J]. Physical Review B, 1979, 19(4): 2041-2055. [75] Duraisamy E, T. Das H, Sharma A S, et al. Supercapacitor and photocatalytic performances of hydrothermally-derived Co3O4/CoO @ carbon nanocomposite[J]. New Journal of Chemistry, 2018, 42(8): 6114-6124. [76] Martínez Tejada L M, Muñoz A, Centeno M A, et al. In-situ Raman spectroscopy study of Ru/TiO2 catalyst in the selective methanation of CO[J]. Journal of Raman Spectroscopy, 2016, 47(2): 189-197. [77] Wojtyła S, Baran T. Photocatalytic H2 production over RuO2@ZnS and RuO2@CuS nanostructures[J]. International Journal of Hydrogen Energy, 2019, 44(29): 14624-14634. [78] Liu X, Liu R, Wang J, et al. Synergizing high valence metal sites and amorphous/crystalline interfaces in electrochemical reconstructed CoFeOOH heterostructure enables efficient oxygen evolution reaction[J]. Nano Research, 2022, 15(10): 8857-8864. [79] Yi L, Hu Y, Fei J, et al. Carbon-supported Pd-Co nanocatalyst as highly active anodic electrocatalyst for direct borohydride/hydrogen peroxide fuel cells[J]. Journal of Solid State Electrochemistry, 2019, 23(6): 1739-1748. [80] Lu F, Ji Y, Shi D, et al. Electrochemically activated 3D Mn doped NiCo hydroxide electrode materials toward high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2023, 641: 510-520. [81] Liu B H, Li Z P, Arai K, et al. Performance improvement of a micro borohydride fuel cell operating at ambient conditions[J]. Electrochimica Acta, 2005, 50(18): 3719-3725. [82] Ni S, Qu H, Xing H, et al. Interfacial engineering of transition-metal sulfides heterostructures with built-in electric-field effects for enhanced oxygen evolution reaction[J]. Chinese Journal of Chemical Engineering, 2022, 41: 320-328. [83] Dai X, Xin Y, Chen Y, et al. NiFe hydroxide pillared by metaborate for efficient oxygen evolution reaction[J]. Electrochimica Acta, 2021, 366: 137427. [84] Tatrari G, Ahmed M, Shah F U. Synthesis, thermoelectric and energy storage performance of transition metal oxides composites[J]. Coordination Chemistry Reviews, 2024, 498: 215470. [85] 马文庆, 简天真, 马建平, 等. 用于Li-CO2电池的过渡金属及其合金催化剂研究进展[J]. 中国粉体技术, 2024, 30(06): 1-14. [86] Yin X, Wang Q, Duan D, et al. Amorphous NiB alloy decorated by Cu as the anode catalyst for a direct borohydride fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10971-10981. [87] Xu L, Zou Y, Xiao Z, et al. Transforming Co3O4 nanosheets into porous N-doped CoO nanosheets with oxygen vacancies for the oxygen evolution reaction[J]. Journal of Energy Chemistry, 2019, 35: 24-29. [88] Li W, Wang D, Zhang Y, et al. Defect engineering for fuel‐cell electrocatalysts[J]. Advanced Materials, 2020, 32(19): 1907879. [89] Yan D, Chen R, Xiao Z, et al. Engineering the electronic structure of Co3O4 by carbon-doping for efficient overall water splitting[J]. Electrochimica Acta, 2019, 303: 316-322. [90] Ananth A, Mok Y. Dielectric barrier discharge (DBD) plasma assisted synthesis of Ag2O nanomaterials and Ag2O/RuO2 nanocomposites[J]. Nanomaterials, 2016, 6(3): 42. [91] Osipov A A, Osipova L M. Raman scattering study of barium borate glasses and melts[J]. Journal of Physics and Chemistry of Solids, 2013, 74(7): 971-978. [92] Poonkottil N, Minjauw M M, Werbrouck A, et al. Atomic layer deposition of ruthenium dioxide based on redox reactions between alcohols and ruthenium tetroxide[J]. Chemistry of Materials, 2022, 34(19): 8946-8958. [93] Zhang Y, Bai J, Wang J, et al. In-situ and synchronous generation of oxygen vacancies and FeOx OECs on BiVO4 for ultrafast electron transfer and excellent photoelectrochemical performance[J]. Chemical Engineering Journal, 2020, 401: 126134. [94] Chi K, Tian X, Wang Q, et al. Oxygen vacancies engineered CoMoO4 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting[J]. Journal of Catalysis, 2020, 381: 44-52. [95] Shi G, Tano T, Tryk D A, et al. Pt nanorods oriented on Gd-doped ceria polyhedra enable superior oxygen reduction catalysis for fuel cells[J]. Journal of Catalysis, 2022, 407: 300-311. [96] Basumatary P, Lee U H, Konwar D, et al. An efficient tri-metallic anodic electrocatalyst for urea electro-oxidation[J]. International Journal of Hydrogen Energy, 2020, 45(57): 32770-32779. [97] Zhao Z, Zou Y, Liu P, et al. EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms[J]. Electrochimica Acta, 2022, 418: 140350. [98] Marzo F F, Alberro M, Manso A P, et al. Evaluation of the corrosion resistance of Ni(P)Cr coatings for bipolar plates by electrochemical impedance spectroscopy[J]. International Journal of Hydrogen Energy, 2020, 45(40): 20632-20646. [99] Liu L, Li Y, Wang F. Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl[J]. Electrochimica Acta, 2007, 52(25): 7193-7202. [100] Li S, Liao G, Bildan D, et al. Performance enhancement for direct borohydride fuel cells through ternary Ru–Co–B oxide catalyst[J]. International Journal of Hydrogen Energy, 2024, 67: 448-457. [101] Li Y, Xu J, Feng T, et al. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high‐performance asymmetric supercapacitors[J]. Advanced Functional Materials, 2017, 27(14): 1606728. [102] Bihao Hu, Chuanlan Xu, Peng Chen, et al. Efficient nickel catalyst with preferred orientation and microsphere for direct borohydride fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27516-27528. [103] He Y, Yang X, Li Y, et al. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-Air batteries[J]. ACS Catalysis, 2022, 12(2): 1216-1227. [104] Kadioglu T, Turkmen A C, Ata K C, et al. Investigation of the performance of a direct borohydride fuel cell with low Pt/C catalyst loading under different operating conditions[J]. International Journal of Hydrogen Energy, 2020, 45(60): 35006-35012. [105] Zhang D, Xue B, Wang F, et al. Electrodeposited cobalt nanoflake arrays as an efficient anodic catalyst for direct borohydride fuel cells[J]. ACS Applied Nano Materials, 2024, 7(10): 11465-11474. [106] Hu B, Xu C, Chen P, et al. Efficient nickel catalyst with preferred orientation and microsphere for direct borohydride fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27516-27528. [107] Luo Y, Zhang Y, Zhu J, et al. Material engineering strategies for efficient hydrogen evolution reaction catalysts[J]. Small Methods, 2024, 8(12): 2400158. [108] Finkelstein D A, Letcher C D, Jones D J, et al. Self-poisoning during BH4– oxidation at Pt and Au, and in situ poison removal procedures for BH4– fuel cells[J]. The Journal of Physical Chemistry C, 2013, 117(4): 1571-1581. [109] Geng X, Zhang H, Ye W, et al. Ni–Pt/C as anode electrocatalyst for a direct borohydride fuel cell[J]. Journal of Power Sources, 2008, 185(2): 627-632. [110] Kang L, Liu C, Ye J, et al. Polypyrrole regulates active sites in Co‐based catalyst in direct borohydride fuel cells[J]. ChemSusChem, 2023, 17(7): e202301622. [111] Li S, Xin Z, Han J, et al. Pt@Co-B catalyzed direct borohydride fuel cell anode: rational design and performance evaluation[J]. Ionics, 2024, 30(11): 7213-7222. [112] Oliveira R C P, Milikić J, Daş E, et al. Platinum/polypyrrole-carbon electrocatalysts for direct borohydride-peroxide fuel cells[J]. Applied Catalysis B: Environmental, 2018, 238: 454-464. [113] He B, Zhuang S, Tai X, et al. Carbon coated and nitrogen doped hierarchical NiMo-based electrocatalysts with high activity and durability for efficient borohydride oxidation[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17631-17641. [114] Hu B, Yu J, Meng J, et al. Porous Ni-Cu alloy dendrite anode catalysts with high activity and selectivity for direct borohydride fuel cells[J]. ACS Appl. Mater. Interfaces, 2022, 14(3): 3910-3918. [115] Yu J, Hu B, Xu C, et al. An efficient Ni–P amorphous alloy electrocatalyst with a hierarchical structure toward borohydride oxidation[J]. Dalton Transactions, 2021, 50(29): 10168-10179. [116] Ma J, Li J, Yang S, et al. Ultrathin veil-like SnO2 supported Co3O4 nanoparticles for direct borohydride fuel cell anode[J]. Journal of Power Sources, 2020, 453: 227866. [117] Assaf N W, Altarawneh M, Radny M, et al. Probing the chemical reactivity of the B2O3-I (101) surface: interaction with H2O and H2S[J]. Applied Surface Science, 2022, 599: 153999. [118] Creazzo F, Luber S. Explicit solvent effects on (110) ruthenium oxide surface wettability: structural, electronic and mechanical properties of rutile RuO2 by means of spin-polarized DFT-MD[J]. Applied Surface Science, 2021, 570: 150993. [119] Saha S, Gayen P, Wang Z, et al. Development of bimetallic PdNi electrocatalysts toward mitigation of catalyst poisoning in direct borohydride fuel cells[J]. ACS Catal., 2021, 11(14): 8417-8430. [120] 王苗娜, 黄梦婷, 南岩, 等. 双元过渡金属基催化剂在氧析出反应中的应用[J]. 化工设计通讯, 2025, 51(01): 1-2+15. [121] Huang Q, Zhong X, Zhang Q, et al. Co3O4/Mn3O4 hybrid catalysts with heterointerfaces as bifunctional catalysts for Zn-air batteries[J]. Journal of Energy Chemistry, 2022, 68: 679-687. [122] Ma X, Liu M, Xu Z, et al. Heterointerface engineering of yolk-shell-structured Mn2O3/RuO2 for boosting oxygen electrocatalysis in rechargeable liquid and flexible zinc-air batteries[J]. Chemical Engineering Journal, 2024, 498: 155118. [123] Ye C, Pan Z, Zhang Q, et al. Heterostructured metal oxides realized by quenching-induced structural transformation[J]. Energy & Environmental Science, 2024, 17(1): 332-343.
﹀
|
中图分类号: |
TQ152
|
开放日期: |
2026-06-23
|