- 无标题文档
查看论文信息

论文中文题名:

 宽输入LLC谐振变换器的研究    

姓名:

 余朝华    

学号:

 20206227099    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 电力电子    

第一导师姓名:

 岳改丽    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-07-03    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Research on Wide Input LLC Resonant Converter    

论文中文关键词:

 全桥 ; 变频控制 ; LLC谐振 ; 移相控制 ; 混合控制    

论文外文关键词:

 Full bridge ; Variable frequency control ; LLC resonance ; Phase shift control ; Hybrid control    

论文中文摘要:

  开发、推广和利用新能源是应对当前能源危机和环保问题的有力举措,而新能源发电系统受气候、地理位置、传输容量等诸多因素制约,当外部环境条件变化时发电单元输出电压范围变宽。为给后级逆变电路输出稳定的直流电压,需要在新能源发电单元与后级电路之间设计一个单向DC/DC变换器。传统的DC/DC变换器输入电压范围不够宽、电路结构复杂并且开关损耗大,本文研究在宽输入电压范围内高效工作的DC/DC变换器。

  全桥LLC谐振变换器不仅适用于中大功率应用场合,还能够在整个负载范围内实现软开关而达到较高的工作效率。变频模式下,变换器动态响应好、转换效率高,但在宽输入电压条件下磁性元件设计困难。移相模式下,变换器的控制电路结构简单易于实现,但占空比变化范围较大可能会导致占空比丢失,电路效率降低。本文在芯片UCC3895移相控制的功能上引入变频控制,将两种控制策略的优点相结合,使变换器在低压输入时工作在变频模式,在高压输入时工作在移相模式,解决宽范围输入电压条件下变换器工作效率降低的问题。论文给出了具体的电路实现,基于PSIM仿真平台,搭建仿真模型测试混合控制下宽范围输入电压全桥LLC谐振变换器的工作特性。仿真结果表明混合控制变换器能够在较宽的输入电压条件下高效工作。

  最后,在实验室搭建一台2kW的样机,并进行相关实验对论文的设计进行验证。所得实验结果表明采用混合控制策略的全桥LLC谐振变换器在较宽的输入电压范围内具有较高的工作效率,验证了本文所采用的混合控制策略的可行性。

论文外文摘要:

  The development, promotion and utilization of new energy is a powerful measure to deal with the current Energy crisis and environmental protection problems. However, the new energy power generation system is restricted by many factors such as climate, geographical location, transmission capacity, etc. When the external environmental conditions change, the output voltage range of the power generation unit becomes wider. To output stable DC voltage to the subsequent inverter circuit, it is necessary to design a unidirectional DC/DC converter between the new energy generation unit and the subsequent circuit. Traditional DC/DC converters have insufficient input voltage range, complex circuit structure, and high switching losses. This paper studies DC/DC converters that operate efficiently within a wide input voltage range.

  The full bridge LLC resonant converter is not only suitable for medium to high power applications, but also can achieve high work efficiency by achieving soft switching throughout the entire load range. In variable frequency mode, the converter has good dynamic response and high conversion efficiency, but it is difficult to design magnetic components under wide input voltage conditions. In phase-shifting mode, the control circuit structure of the converter is simple and easy to implement, but a large range of duty cycle changes may lead to loss of duty cycle and reduced circuit efficiency. This article introduces variable frequency control on the chip UCC3895 phase-shifting control function, combining the advantages of the two control strategies to make the converter work in variable frequency mode at low voltage input and phase shift mode at high voltage input, solving the problem of reduced efficiency of the converter under wide range input voltage conditions. The paper provides a specific circuit implementation. Based on the PSIM simulation platform, a simulation model is built to test the operating characteristics of a wide range input voltage full bridge LLC resonant converter under hybrid control. The simulation results show that the hybrid control converter can work efficiently under a wide input voltage range.

   Finally, a 2kW prototype was built in the laboratory and relevant experiments were conducted to verify the design of the paper. The experimental results obtained indicate that the full bridge LLC resonant converter using a hybrid control strategy has high operating efficiency over a wide input voltage range, verifying the feasibility of the hybrid control strategy used in this paper

参考文献:

[1] 尹春, 胡益明, 高运动, 等. 应用于负载侧的分布式电压控制的仿真研究[J]. 电工技术学报, 2022, 37(09): 37-39+42.

[2] 陶以彬, 殷实, 李官军, 等. 直挂式储能变流器参数设计及控制技术研究[J]. 电力电子技术, 2022, 56(01): 35-39+73.

[3] 刘闯. 宽输入范围LLC谐振变换器控制策略研究[D]. 合肥: 合肥工业大学, 2018.

[4] Khan S, Sha D, Jia X, et al. Resonant LLC DC–DC converter employing fixed switching frequency based on dual-transformer with wide input-voltage range[J]. IEEE Transactions on Power Electronics, 2020, 36(1): 607-616.

[5] 赵志刚, 张学增. LLC平面变压器绕组损耗与漏感改进有限元计算方法[J]. 电工技术学报, 2022, 37(24): 6204-6215.

[6] 刘博. 我国新能源技术发展问题及对策[J]. 辽宁工业大学学报, 2019, 11 (2): 30-33.

[7] 赵修瑞, 李锴, 李又丰. LLC 光伏并网谐振变换器的研究[J]. 电子测试, 2021, 28(10):29-30.

[8] 缪哲语, 仝昊, 吕征宇, 等. 一种多模态宽范围箝位桥并联型LLC变换器控制方法[J]. 电源学报, 2022, 20(04): 1-10.

[9] 勾银. 光伏电源的无逆流并线供电技术研究[D]. 桂林: 桂林电子科技大学, 2021.

[10] 郭雨霏, 李一梁, 王懿杰, 等. 基于三重移相控制的双有源桥变换器研究[J]. 电气传动, 2023, 53(02): 10-15.

[11] 黄亮, 高扬, 全书海, 等. 燃料电池用隔离升压全桥变换器的研究[J]. 电力电子技术, 2016, 50(11): 22-26.

[12] 曹以龙, 吴丹, 朱冬冬, 等. 一种基于四开关Buck-Boost变换器的四模式控制策略[J]. 电源学报, 2022,20(05): 111-118.

[13] 高圣伟, 祝庆同. 一种独立光储发电系统用宽输入范围非隔离三端口变换器[J]. 电工技术学报, 2023, 38(04): 970-982.

[14] 荀荷惠, 沈汉鑫, 徐锦丽, 等.宽输入电动汽车车载DC-DC电源研究[J]. 电子器件, 2022, 45(05): 1150-1156.

[15] 张纯亚, 何林, 章治国. 开关电源技术发展综述[J]. 微电子学, 2016, 46(02):255-260+272.

[16] 丁昇, 张翔. 复合电源建模及其控制策略研究[J]. 兰州文理学院学报(自然科学版), 2023, 37(02): 35-39+44.

[17] 李军, 基于动态煤流分析的火电机组发电过程煤质自适应控制. 陕西省, 西安热工研究院有限公司, 2022-04-15.

[18] ]F. Musavi, M. Craciun, D. S. Gautam, W. Eberle and W. G. Dunford, "An LLC Resonant DC–DC Converter for Wide Output Voltage Range Battery Charging Applications," in IEEE Transactions on Power Electronics, vol. 28, no.12, pp.5437-

5445, Dec.2013.

[19] Yilei Gu, Zhengyu Lu, Lijun Hang, Zhaoming Qian and Guisong Huang, "Threelevel LLC series resonant DC/DC converter," in IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 781-789, July 2005.

[20] 谢泽亚. 高变换比DC-DC变换器效率提升技术研究[D]. 杭州: 杭州电子科技大学, 2022.

[21] 陈驰南. 基于寄生参数时域分析的LLC LED驱动器宽调光范围研究[D]. 杭州: 杭州电子科技大学, 2022.

[22] 崔天城. 基于分离式谐振网络的大功率移相全桥变换器拓扑结构研究[D]. 吉林: 东北电力大学, 2019.

[23] 高翔. 混合控制的双向全桥三电平LLC谐振变换器研究[D]. 徐州: 中国矿业大学, 2020.

[24] 王晓慧. 高频平面磁元件绕组损耗计算方法研究[D]. 南京: 南京航空航天大学, 2019.

[25] 陈晓静. Boost+LLC谐振变换器及ZVS控制研究[D]. 阜新: 辽宁工程技术大学, 2017.

[26] Ruan X, Chen Z, Chen W. Zero-voltage-switching PWM Hybrid Full-bridge Three-level Converter [J]. IEEE Transactions on Power Electronics. 2005, 20(2): 395-404.

[27] 杜帅林, 贾晓宇, 胡长生, 等. LLC 谐振变换器的移相控制特性分析[J]. 电力电子技术. 2016, 50(9): 51-53.

[28] Mohamed Salem, Awang Jusoh, Mohamed Dahidah, etc. Improved topology of three-phase series resonant DC-DC boost converter with variable frequency control[J].Alexandria Engineering Journal, 61, Issue 2,2022.

[29] Hongfei Wu, Yuewei Li, Yan Xing. LLC Resonant Converter with Semiactive Variable-Structure Rectifier(SA-VSR) for Wide Output Voltage Range Application[J]. IEEE Trans on power Electronics, 2016, 31(5): 3389-3394.

[30] Humaira, H.; Baek, S.-W.; Kim, H.-W.; Cho, K.-Y. Circuit Topology and Small Signal Modeling of Variable Duty Cycle Controlled Three-Level LLC Converter. Energies 2019, 12, 3833.

[31] G. Yang, D. Patrick, and D. Sadarnac. Double-phase high-efficiency, wide load rang high-voltage/low-voltage LLC DC/DC converter for electric/hybrid vehicles[J]. IEEE Trans on power Electronics, 2015, 30(4): 1876-1886.

[32] Hu H, Fang X, Chen F,et al.A Modified High-Efficiency LLC Converter With Two Transformers for Wide Input-Voltage Range Applications[J].IEEE Transactions on Power Electronics, 2013, 28(4): 1946-1960.

[33] 李浩昱, 李振伟, 赵雷, 等. 宽输入LLC谐振变换器多电平控制策略[J]. 电工技术学报. 2017, 32(4): 48-57.

[34] Yang Chen, Hongliang Wang, Yan-Fei Liu. LLC Converter with Auxiliary Switch for Hold Up Mode Operation[C]. IEEE Conference Publications. 2016, 1:2312-2319.

[35] Wang H, Dusmez S, Khaligh A. Maximum Efficiency Point Tracking Technique for LLC Based PEV Chargers through Variable DC Link Control[J]. IEEE Transaction on Industrial Electronics, 2014, 61(11): 6041-6049.

[36] 李小双, 田钦元, 王正仕. 双向CLLLC谐振变换器的混合控制策略[J]. 电力电子技术, 2022, 56(06): 111-114+140.

[37] Thomas LaBella, Wensong Yu, Jih-Sheng(Jason)Lai, Mattew Senesky, David Anderson, A Bidirectional-Switch-Based Wide-Input Range High-Efficiency Isolated Resonant Converter for Photovoltaic Applications[J]. IEEE Trans Power Electron. 2014, 29(7):3473-3484.

[38] 郑宏, 严序文, 袁雪凯, 等. 基于磁控制的双谐振腔LLC谐振变换器[J]. 电子器件, 2022, 45(03):551-556.

[39] ]H. Hu, X. Fang, F. Chen, Z. J. Shen, and I. Batareh. A Modified High-efficiency LLC Converter with Two Transformers for Wide Input-voltage Range Application[J]. IEEE Transactions on Power Electronics. 2013, 28(4): 1946-1960.

[40] 鲁静, 同向前, 尹军, 等. L-LLC谐振型双向DC-DC变换器轻载优化控制策略研究[J].电工技术学报, 2022, 37(17): 4458-4465.

[41] 朱天宇, 纪延超, 王建赜. 一种高效率的宽输出电压范围LLSC谐振变换器及其控制方法[J]. 电工技术学报, 2022, 37(18): 4697-4706.

[42] 陈宗祥, 张武林, 陈克难, 等. LLC谐振变换器自抗扰控制研究[J]. 电机与控制学报,2022, 26(08):130-138.

[43] H. Wu, T. Mu, X. Gao and Y. Xing, "A Secondary-Side Phase-Shift-Controlled LLC Resonant Converter With Reduced Conduction Loss at Normal Operation for Hold-Up Time Compensation Application," in IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5352-5357, Oct. 2015.

[44] S. Zong, H. Luo, W. Li, Y. Deng and X. He, "Asymmetrical Duty Cycle-Controlled LLC Resonant Converter With Equivalent Switching Frequency Doubler," in IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4963-4973, July 2016.

[45] 赖娜, 杜贵平, 雷雁雄, 等. 基于PWM+PFM的LLC谐振变换器软启动研究[J]. 电源学报, 2021, 19(03): 17-24.

[46] 张永泉, 胡长生, 徐德鸿. 宽电压范围LLC变换器混合控制的研究[J]. 电工技术学报, 2020, 529(19): 21-27.

[47] 干方宇. 高功率密度/宽输入电压范围LLC谐振变换器的研究[D]. 杭州: 浙江大学, 2022.

[48] 张炜. 三端口直流变换器及其在光储系统中的应用[D]. 株洲: 湖南工业大学, 2022.

[49] 李菊, 阮新波. 全桥LLC谐振变换器的混合式控制策略[J]. 电工技术学报, 2013, 28(04): 72-79+94.

[50] 李小文, 江良星, 王华云, 等. 低电流纹波双向CLLC变换器的研究[J]. 电气传动, 2022, 52(03): 31-37.

[51] 廖嘉睿, 杭丽君, 但志敏, 等. 宽范围CLLLC双向同步整流数字控制方法[J]. 电工技术学报, 2022, 37(14):3632-3642.

[52] 牛靖凯. LLC谐振变换器双向运行下的简化时域分析与控制研究[D]. 北京: 北京交通大学, 2022.

[53] 张福民, 韩志伟, 叶子静, 等. 直流变压器的软起动方法研究[J]. 电器与能效管理技术, 2017, 58(21): 4-9+47.

[54] Deng Q, Li Z, Liu J, et al. Multi-inverter phase-shifted control for IPT with overlapped transmitters[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 8799-8811.

[55] Hu H, Cai T, Duan S, et al. An optimal variable frequency phase shift control strategy for ZVS operation within wide power range in IPT systems[J]. IEEE Transactions on Power Electronics, 2019, 35(5): 5517-5530.

[56] Guo B, Zhang Y, Zhang J, et al. Hybrid control strategy of phase-shifted full-bridge LLC converter based on digital direct phase-shift control[J]. Journal of Power Electronics, 2018, 18(3): 802-816.

中图分类号:

 TM46    

开放日期:

 2024-07-03    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式