论文中文题名: |
煤焦油中菲构建石墨烯分子及氧还原催化性能研究
|
姓名: |
张博超
|
学号: |
18213070018
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
081705
|
学科名称: |
工学 - 化学工程与技术 - 工业催化
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
工业催化
|
研究方向: |
碳基纳米材料的制备及性能研究
|
第一导师姓名: |
张亚婷
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-21
|
论文答辩日期: |
2021-06-07
|
论文外文题名: |
Preparation of graphene molecules using phenanthrene in coal tar be used for research catalytic performance of oxygen reduction reaction
|
论文中文关键词: |
煤焦油 ; 菲 ; 六苯并蔻 ; N 掺杂 ; 氧还原
|
论文外文关键词: |
coal tar ; phenanthrene ; hexa-peri-hexabenzocoronene ; N-doped ; oxygen reduction
|
论文中文摘要: |
︿
煤焦油是炼焦工业煤热解生产的粗煤气产物之一,是一种复杂的混合物,可通过分离与加工制备多种高附加值产品,有些产品甚至是石油化工无法替代的,因此研究开发高效率、低污染的煤焦油深加工新技术,不仅可以充分利用宝贵的煤焦油资源,减少对石油的依赖,而且具有广泛的应用前景和良好的经济潜力。本论文以煤焦油中菲为原料,通过“自下而上”的策略设计并实现了六苯并蔻类石墨烯分子新的合成工艺,为提高煤焦油产品的高附加值利用提供了一种新途径。并进一步将N原子掺杂六苯并蔻类石墨烯分子作为燃料电池阴极氧还原催化剂,对其ORR催化性能进行了研究。主要成果总结如下:
(1)以煤焦油中菲为原料,根据逆合成分析的方法,通过“自下而上”的策略,设计了“氧化—克脑文格尔缩合—狄尔斯-阿尔德环加成—氧化环化脱氢”的合成路线,成功制备得到六苯并蔻分子,通过核磁共振氢谱和碳谱、高分辨质谱、红外光谱和紫外-可见吸收光谱对产物的结构进行了表征,并对其产率进行了计算。结果表明:采用此工艺流程合成六苯并蔻分子的产率可高达40.4%,与其它报道的合成路径相比,此工艺很大程度上提高了六苯并蔻的合成产率,同时降低了合成难度与成本。
(2)在六苯并蔻分子制备工艺基础上,使用3-碘吡啶与苯乙炔合成氮原子掺杂的二苯乙炔为原料,将其引入第三步“狄尔斯-阿尔德环加成”反应过程中与环戊二烯酮在二苯醚溶液中反应,合成N掺杂的1,2,3,4-四苯基三亚苯,并最终得到N掺杂的六苯并蔻石墨烯分子衍生物,并通过核磁共振氢谱、高分辨质谱和元素分析对产物的结构进行了表征,并且N掺杂型六苯并蔻石墨烯分子衍生物的合成产率可达到25.3%。
(3)将N掺杂六苯并蔻石墨烯分子衍生物作为燃料电池阴极氧还原催化剂,对其氧还原性能及作用机制进行研究。结果表明,N掺杂六苯并蔻催化剂具有较好的氧还原性能,其氧还原电位为0.78V,极限电流密度约为5.3 mA·cm-2,半波电位为0.79 V,氧还原反应动力学过程基本接近四电子反应过程。通过稳定性测试,N掺杂六苯并蔻催化剂在持续工作7 h后,依然保持电流密度为91.6 %。在抗甲醇中毒性能测试中,N掺杂六苯并蔻催化剂表现出较好的抗甲醇中毒能力。进一步研究表面,N掺杂六苯并蔻催化剂的氧还原性能优于商业Pt/C催化剂,这是因为 N原子的的电负性比C原子的大,N掺杂六苯并蔻催化剂中的N原子通过进入纳米碳材料的晶格,并利用电负性的差异引发N掺杂六苯并蔻分子电荷的重新排布,激发C原子的电化学活性,引起O2吸附模式的改变,从而达到O=O键的高效断裂。
﹀
|
论文外文摘要: |
︿
Coal tar is one of the crude gas products produced by coal pyrolysis in the coking industry. It is a complex mixture that can be separated and processed to prepare a variety of high value-added products. Some products cannot even be replaced by petrochemicals. Therefore, research and development are high. New technologies for deep processing of coal tar with high efficiency and low pollution can not only make full use of valuable coal tar resources and reduce dependence on petroleum, but also have broad application prospects and good economic potential. In this thesis, phenanthrene in coal tar is used as raw materials, and a new synthesis process of Hexa-peri-hexabenzocoronene graphene molecules is designed and realized through a "bottom-up" strategy, which provides a way to improve the high value-added utilization of coal tar products. New way. Furthermore, the N atom-doped Hexa-peri-hexabenzocoronene graphene molecule was used as a fuel cell cathode oxygen reduction catalyst, and its ORR catalytic performance was studied. The main results are summarized as follows.
(1) Using phenanthrene in coal tar as the raw material, according to the method of reverse synthesis analysis, through the "bottom-up" strategy, the " oxidation → knoevenger condensation → Diels alder cycloaddition → oxidative cyclization dehydrogenation " was designed. The synthetic route of "dehydrogenation" successfully prepared Hexa-peri-hexabenzocoronene graphene molecules. The structure of the product was characterized by 1H NMR and 13C NMR spectroscopy, HRMS, FT-IR spectroscopy and UV-vis absorption spectroscopy, and its yield was calculated. . The results show that the yield of Hexa-peri-hexabenzocoronene molecules synthesized by this process can be as high as 40.4%. Compared with other reported synthesis routes, this process greatly improves the synthesis yield of Hexa-peri-hexabenzocoronene and reduces Synthesis difficulty and cost.
(2) Based on the preparation process of Hexa-peri-hexabenzocoronene graphene molecules, 3-iodopyridine and phenylacetylene are used to synthesize nitrogen-doped diphenylacetylene as raw materials, which are introduced into the third step "Diels-Alder cycloaddition" reaction process It reacts with cyclopentadienone in diphenyl ether solution to synthesize N-doped 1,2,3,4-tetraphenyltriphenylene, and finally obtain N-doped Hexa-peri-hexabenzocoronene graphene molecular derivative The structure of the product was characterized by hydrogen nuclear magnetic resonance spectroscopy, high-resolution mass spectrometry and elemental analysis, and the synthesis yield of N-doped Hexa-peri-hexabenzocoronene graphene molecular derivatives can reach 25.3%.
(3) The N-doped Hexa-peri-hexabenzocoronene graphene molecular derivative was used as a fuel cell cathode oxygen reduction catalyst, and its oxygen reduction performance and mechanism of action were studied. The results show that the N-doped Hexa-peri-hexabenzocoronene catalyst has good oxygen reduction performance. Its oxygen reduction potential is 0.78V, limiting current density is about 5.3 mA·cm-2, half-wave potential is 0.79 V, and oxygen reduction reaction kinetics The learning process is basically close to the four-electron reaction process. Through the stability test, the N-doped Hexa-peri-hexabenzocoro- nene catalyst still maintains a current density of 91.6% after 7 hours of continuous operation. In the methanol poisoning resistance test, the N-doped Hexa-peri-hexabenzocoronene catalyst showed good resistance to methanol poisoning. Further study the surface, the oxygen reduction performance of the N-doped hexabenzocoronene catalyst is better than that of the commercial Pt/C catalyst. This is because the electronegativity of the N atom is greater than that of the C atom. N atoms enter the lattice of nano-carbon materials and use the difference in electronegativity to trigger the rearrangement of the charges of the N-doped Hexa-peri-hexabenzocoronene molecules, stimulate the electrochemical activity of the C atoms, and cause changes in the O2 adsorption mode, thereby achieving Efficient breaking of O=O bonds.
﹀
|
参考文献: |
︿
[1] 王红丽. 浅谈中国煤炭资源基本国情[J]. 化工管理. 2019, (26): 9. [2] 袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019, 44(8): 2277-2284. [3] 张兆威. 浅谈西北煤炭资源可持续发展[J]. 陕西煤炭, 2018, 7(1): 46-48. [4] Kusy J, Andel L, Safarova M, Vales J, Ciahotny K. Hydrogenation process of the tar obtained from the pyrolisis of brown coal[J]. Fuel 101 (2012) 38–44. [5] Liu Z, Shi S, Li Y. Coal liquefaction technologies development in China and challenges in chemical reaction engineering[J]. Chem Eng Sci. 2010, 65(1): 12-17. [6] Li C, Suzuki K. Resources Properties and Utilization of Tar[J]. Resour Conserv Recy. 2010, 54 (11): 905-915. [7] Ma Z, Wei X, Gao Ha. Selective and effective separation of five condensed arenes from a high-temperature coal tar by extraction combined with high pressure preparative chromato- graphy[J]. J Chromatogr A. 2019, 06. 033. [8] Yao R, Liu Z, Wang Z. et al. Stduy of purification of phenanthrene from phenanthrene waste[J]. Indian J. Sci. Technol. 2013, 3(12): 1148-1150. [9] Novoselov K, Geim A, Morozov S. et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature. 2005, 438: 197-200. [10] Westervelt R. Graphene Nanoelectronics[J]. Science. 2008, 320(5874): 324-325. [11] Schedin F, Geim A, Morozov S. et al. Detection of individual gas molecules adsorbed on graphene[J]. Nat Mater. 2007, 6(9): 652-655. [12] Dua V, Surwade S, Ammu S. et al. All‐organic vapor sensor using inkjet‐printed reduced graphene oxide[J]. Angew Chem. 2010, 122(12): 2200-2203. [13] Scheuermann G, Rumi L, Steurer P. et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki−Miyaura coupling reaction[J]. J Am Chem Soc. 2009, 131(23): 8262-8270. [14] Dreyer D, Bielawski C. Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry[J]. Chem Sci. 2011, 2(7): 1233-1240. [15] Pumera M. Graphene-based nanomaterials for energy storage[J]. Energ Environ Sci. 2011, 4 (3): 668-674. [16] Zhang Y, Zhang K, Jia K. et al. Preparation of coal-based graphene quantum dots/α-Fe2O3 nanocomposites and their lithium-ion storage properties[J]. Fuel. 2019, 241: 646-652. [17] Sun Y, Wu Q, Shi G. Graphene based new energy materials[J]. Energ Environ Sci. 2011, 4 (4): 1113-1132. [18] Schwierz F. Graphene transistor[J]. Nat Nanotechnol. 2010, 5(7): 487-496. [19] Rieger R, Müllen K. Forever young: polycyclic aromatic hydrocarbons as model cases for structural and optical studies[J]. J Phys Org Chem. 2010, 23(4): 315-325. [20] Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend R H, MacKenzie J. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics[J]. Science 2001, 293, 1119−1122. [21] Wu J S, Pisula W, Müllen K. Graphenes as potential material for electronics[J]. Chem. Rev. 2007, 107, 718−747. [22] Feng X, Pisula W, Kudernac T, Wu D, Zhi L, De Feyter S, Müllen K. Controlled Self-Assembly of C3-Symmetric Hexa-peri-hexabenzocoronenes with Alternating Hydrophilic and Hydrophobic Substituents in Solution, in the Bulk, and on a Surface[J]. J Am Chem Soc. 2009, 131, 4439−4448. [23] Kastler M, Pisula W, Wasserfallen D, Pakula T, Müllen K. Influence of Alkyl Substituents on the Solution- and Surface-Organization of Hexa-peri-hexabenzocoronenes[J]. J Am Chem Soc. 2005, 127, 4286−4296. [24] Pisula W, Tomovic Z, Simpson C, Kastler M, Pakula T, Müllen K. Relationship between core size, side chain length, and the supramolecular organization of polycyclic aromatic hydrocarbons[J]. Chem Mater. 2005, 17, 4296−4303. [25] Anastasia B S, Elliott, Raphael H, Sun X, Michael G, Müllen K, Nigel T, Michael W, Keith C, Gordon. Long-Lived Charge Transfer Excited States in HBC-Polypyridyl Complex Hybrids[J]. Inorg Chem. 2016, 55, 4710−4719. [26] Furumi S, Janietz D, Kidowaki M, Nakagawa M, Morino S Y, Stumpe J, Ichimura K. Surface-assisted orientational control of discotic liquid crystals by light[J]. Mol Cryst Liq Cryst. 2001, 368, 4285-4292. [27] Furumi S, Janietz D, Kidowaki M, Nakagawa M, Morino S, Stumpe J, Ichimura K. Polarized photoluminescence from photopatterned discotic liquid crystal films[J]. Chem Mater. 2001, 13, 1434-1437. [28] Vaes A, Vander Auweraer M, De Schryver F C, Laguitton B, Jonas A, Henderson P, Ringsdorf H. Y-type Langmuir− Blodgett Films of 2, 3-Bis((2-hydroxyethyl) oxy)-6, 7, 10, 11-tetrakis (pentyloxy) triphenylene: An X-ray Reflection Study[J]. Langmuir. 1998, 14, 5250-5254. [29] Mindyuk O Y, Heiney P A. Structural studies of Langmuir films of disc‐shaped molecul- es[J]. Adv Mater. 1999, 11, 341-344. [30] Stephan K, Ullrich P, Mark D, Natalia T, Müllen K, Andreas F. Thin Layers of Columns of an Amphiphilic Hexa-peri-hexabenzocoronene at Silicon Wafer Surfaces[J]. Langmuir. 2003, 19, 5036-5041. [31] Craats A M, Warman J M, Fechtenkotter A, Brand J D, Harbison M A, Müllen K. Record charge carrier mobility in a room‐temperature discotic liquid‐crystalline derivative of hexabenzocoronene[J]. Adv Mater. 1999, 11, 1469-1472. [32] Jonathan P H, Wusong J, Atsuko K, Takanori F, Hideki I, Takeshi S, Kohzo I, Tomihiro H, Noriyuki I, Takuzo A. Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube [J]. Science. 2004, 304, 1481. [33] Helga S, Purushothaman B, David J, Andrew B, Wallace W. Hexa-peri-hexabenzocoronene in organic electronics[J]. Pure Appl Chem. 2012, 84, 861–1112. [34] El H B, Laquai F, Baluschev S, Wu J S, Müllen K. A phosphorescent hexa-peri-hexabenzo- coronene platinum complex and its time-resolved spectroscopy[J]. Synth Met. 2006, 156, 1182−1186. [35] Wu J, Pisula W, Müllen K. Graphenes as potential material for electronics[J]. Chem Rev. 2007, 107 , 718. [36] Guo X, Baumgarten M, Müllen K. Designing π-conjugated polymers for organic electron- ics[J]. Prog Polym Sci. 2013, 38, 1832. [37] Sirringhaus H. 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyo- nd Amorphous Silicon[J]. Adv Mater. 2014, 26, 1319−1335. [38] Pisula W, Müllen K. Discotic Liquid Crystals as Organic Semiconductors[M]. Handbook of Liquid Crystals: 8 Volume Set, Second Edition. [39] Sergeyev S, Pisula W, Geerts Y H. Discotic Liquid Crystals: A New Generation of Organic Semiconductors[J]. Chem Soc Rev. 2007, 36, 1902−1929. [40] Mohideen M M, Liu Y, Ramakrishna S. Recent progress of carbon dots and carbon nanotu- bes applied in oxygen reduction reaction of fuel cell for transportation [J]. Appl Energ. 2020, 257: 114027. [41] Gao R, Dai Q, Du F, Yan D, Dai L. C60-Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution [J]. J Am Chem Soc. 2019, 141(29): 11658-11666. [42] Mun Y, Lee S, Kim K, Kim S, Lee S, Han J W, Lee J. Versatile Strategy for Tuning ORR Activity of a Single Fe-N4 Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane [J]. J Am Chem Soc. 2019, 141(15): 6254-6262. [43] Zhang F, Miao J, Liu W, Xu D, Li X. Heteroatom embedded graphene-like structure ancho- red on porous biochar as efficient metal-free catalyst for ORR [J]. Int J Hydrogen Energ. 2019, 44(59): 30986-30998. [44] 齐智平,李文兵.质子交换膜燃料电池研究进展[J]. 化工科技. 2005, 13: 55-59. [45] 张金峰, 沈寒晰, 吴素芳, 刘彦婷, 郑阿龙. 煤焦油深加工现状和发展方向[J]. 煤化工, 2020, 48 (04): 76-81. [46] 周秋成, 席引尚, 马宝岐. 我国煤焦油加氢产业发展现状与展望[J]. 煤化工, 2020, 48 (03): 3-8+49. [47] Viamajala S, Peytonb B M, Richards L A, et al. Solubilization, solution equilibria, and biodegradation of PAH’s under thermophilic conditions[J]. Chemosphere. 66, 1094-1106. [48] Xia X H, Yu H, Yang Z F, et al. Biodegradation of polyeyelic aromatie hydrocaurbons in the natural waters of the Yellow River: Efects of high sediment content on biodegradation [J]. Chemosphere. 2006, 65, 457-466. [49] Tang Y J, Krieger-Brockett B. Mathematical analysis of the whole core injection method accuracy for measuring phenanthrene biodegradation rates in undisturbed marine sedimen- ts[J]. Chemosphere. 2007, 68, 804 - 813. [50] ShinK H, Kim K. W. and Ahn Y. Use of biosurfactant to remediate phenanthrene-contamin- ated soil by the combined slubilization-biodegradation procese [J]. J Haard Mater. 2006, B137, 1831 -1837. [51] Rao C, Biswas K, Subrahmanyam K S, Govindaraj A. Graphene, the new nanocarbon[J]. J Mater Chem. 2009, 19(17): 2457-2469. [52] Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T. Micrometer-scale ballistic transport in encapsulated graphene at room temperature[J]. Nano Letters. 2011, 11(6): 2396-2399. [53] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science. 2008, 321(5887): 385-388. [54] 张颖. 我国石墨烯产业化发展研究[D].华北理工大学,2017(02): 144.. [55] 荆东兴. 石墨烯的制备方法综述[J].教育教学研究, 2019 (07): 136. [56] Schwierz F. Graphene transistors[J]. Nat nanotechnol. 2010, 5, 487-496. [57] Narita A, Wang X Y, Feng X, Müllen K. New advances in nanographene chemistry[J]. Chem Soc Rev. 2015, 44, 6616-6643. [58] Bacon M, Bradley S J, Nann T. Graphene quantum dots[J]. Part Part Syst Char. 2014, 31, 415-428. [59] Dai Y, Liu Y, Ding K, et al. A short review of nanographenes: structures, properties and applications[J]. Mol Phys. 2018, 116, 987-1002. [60] Müllen K, Feng X, et al. From Polyphenylenes to Nanographenes and Graphene Nanorib- bons. Springer[M]. 2017. Vol. 278. [61] Yating Z, Keke L, et al. Coal-derived Graphene Quantum Dots Produced by Ultrasonic Physical Tailoring and Their Capacity for Cu(II) Detection[J], ACS Sustainable Chem Eng. 2019,7(11): 9793-9799. [62] Goodby J W, Saez I M, Cowling S J, Gortz V, Draper M, Hall A W, Sia S, Cosquer G, Lee S E, Raynes E P. Transmission and amplification of information and properties in nanostructured liquid crystals[J]. Angew Chem Int Ed. 2008, 47, 2754–2787. [63] Ajayaghosh A, Praveen V K. Π-Organogels of Self-Assembled p-Phenylenevinylenes: Soft Materials with Distinct Size, Shape, and Functions[J]. Acc Chem Res. 2007, 40, 644–656. [64] Chen L, Hernandez Y, Feng X, et al. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis[J]. Angew Chem Int Edit. 2012, 51(31): 7640-7654. [65] Rieger R, Müllen K. Forever young: polycyclic aromatic hydrocarbons as model cases for structural and optical studies[J]. J Phys Org Chem. 2010, 23(4): 315-325. [66] Liu J, Nilantha P, Shi Z Q, et al. Molecular-based design and emerging applications of nanoporous carbon spheres[J]. Nat Mater. 2015, 14: 763–774. [67] Dai Y, Liu Y, Ding K, et al. A short review of nanographenes: structures, properties and applications[J]. Mol Phys. 2018, 116(7-8): 987-1002. [68] Narita A, Wang Y X, Feng X L, et al. New advances in nanographene chemistry[J]. Chem Soc Rev. 2015, 44: 6616—6643. [69] Wang X Y, Yao X l, et al. Polycyclic aromatic hydrocarbons in the graphene era[J]. Sci China Chem. 2019, 62(9): 1099–1144. [70] Clar E, Ironside C T, Zander M. The electronic interaction between benzenoid rings in condensed aromatic hydrocarbons. 1: 12-2: 3-4: 5-6: 7-8: 9-10: 11-hexabenzocoronene, 1: 2-3: 4-5: 6-10: 11-tetrabenzoanthanthrene, and 4: 5-6: 7-11: 12-13: 14-tetrabenzoperopy- rene[J]. J Chem Soc. 1959: 142-147. [71] Halleux A, Martin R H, King G S D. Synthèses dans la série des dérivés polycycliques aromatiques hautement condensés. L'hexabenzo‐1, 12; 2, 3; 4, 5; 6, 7; 8, 9; 10, 11‐coronène, le tétrabenzo‐4, 5; 6, 7; 11, 12; 13, 14‐péropyrène et letétrabenzo‐1, 2; 3, 4; 8, 9; 10, 11‐bisanthène[J]. Helv Chim Acta. 1958, 41(5): 1177-1183. [72] Hendel W, Khan Z H, Schmidt W. Hexa-peri-benzocoronene, a candidate for the origin of the diffuse interstellar visible absorption bands[J]. Tetrahedron. 1986, 42(4): 1127-1134. [73] Wu J, Pisula W, Müllen K. Graphenes as potential material for electronics[J]. Chem Rev. 2007, 107(3): 718-747. [74] Yang X, Dou X, Müllen K. Efficient synthesis of symmetrically and unsymmetrically substituted hexaphenylbenzene analogues by Suzuki–Miyaura coupling reactions[J]. Chem-Asian J. 2008, 3(4): 759-766. [75] Feng X, Wu J, Enkelmann V, et al. Hexa-peri-hexabenzocoronenes by Efficient Oxidative Cyclodehydrogenation: The Role of the Oligophenylene Precursors[J]. Org Let. 2006, 8(6): 1145-1148. [76] Weiss K, Beernink G, Dötz F, et al. Templateffekte bei der Herstellung polycyclischer aromatischer Kohlenwasserstoffe: Cyclodehydrierung und Planarisierung eines Hexaph- enylbenzols an einer Kupferoberfläche[J]. Angew Chem. 1999, 111(24): 3974-3978. [77] Dötz F, Brand J D, Ito S, et al. Synthesis of large polycyclic aromatic hydrocarbons: varia- tion of size and periphery[J]. J Am Chem Soc. 2000, 122(32): 7707-7717. [78] Simpson C D, Mattersteig G, Martin K, et al. Nanosized molecular propellers by cyclodeh- ydrogenation of polyphenylene dendrimers[J]. J Am Chem Soc. 126(10): 3139-3147. [79] Jiang W, Li Y, Wang Z. Heteroarenes as high performance organic semiconductors[J]. Chem Soc Rev. 2013, 42(14): 6113-6127. [80] Marcin S, Elżbieta G, et al. Heterocyclic Nanographenes and Other Polycyclic Heteroa- romatic Compounds: Synthetic Routes, Properties, and Applications[J]. Chem Rev. 2017, 117, 3479−3716. [81] Takase M,Enkelmann V, Sebastiani D, et al. Annularly fused hexapyrrolohexaazac-orone- nes: an extended π system with multiple interior nitrogen atoms displays stable oxidation states[J]. Angew Chem. 2007, 119(29): 5620-5623. [82] Takase M, Narita T, Fujita W, et al. Pyrrole-fused azacoronene family: the influence of replacement with dialkoxybenzenes on the optical and electronic properties in neutral and oxidized states[J]. J Am Chem Soc. 2013, 135(21): 8031-8040. [83] Wei J, Han B, Guo Q, et al. 1, 5, 9‐Triazacoronenes: A Family of Polycyclic Heteroarenes Synthesized by a Threefold Pictet–Spengler Reaction[J]. Angew Chem Int Edit. 2010, 49(44): 8209-8213. [84] Draper S M, Gregg D J, Madathil R. Heterosuperbenzenes: A new family of nitrogen-functionalized, graphitic molecules[J]. J Am Cheml Soc. 2002, 124(14): 3486-3487. [85] Berger R, Giannakopoulos A, Ravat P, et al. Synthesis of Nitrogen‐Doped ZigZag‐Edge Peripheries: Dibenzo‐9a‐azaphenalene as Repeating Unit[J]. Angew Chem Int Edit. 2014, 53(39): 10520-10524. [86] Wu J, Watson M D, Müllen K. The Versatile Synthesis and Self‐Assembly of Star‐Type Hexabenzocoronenes[J]. Angew Chem Int Edit, 2003, 42(43): 5329-5333. [87] Wu J, Watson M D, Zhang L, et al. Hexakis (4-iodophenyl)-p eri-hexabenzocoronene-A Versatile Building Block for Highly Ordered Discotic Liquid Crystalline Materials[J]. J Am Chem Soc. 2004, 126(1): 177-186. [88] Ito S, Wehmeier M, Brand J D, et al. Synthesis and self‐assembly of functionalized hexa‐peri‐hexabenzocoronenes[J]. Chem Eur J. 2000, 6(23): 4327-4342. [89] Pisula W, Feng X, Müllen K. Charge-carrier transporting graphene-type molecules[J]. Chem Mater. 2010, 23(3): 554-567. [90] Sergeyev S, Pisula W, Geerts Y H. Discotic liquid crystals: a new generation of organic semiconductors[J]. Chem Soc Rev. 2007, 36(12): 1902-1929. [91] Wu J, Li J, Kolb U, et al. A water-soluble hexa-peri-hexabenzocoronene: synthesis, self-assembly and role as template for porous silica with aligned nanochannels[J]. Chem Commun. 2006 (1): 48-50. [92] Wu J, Baumgarten M, Debije M G, et al. Arylamine‐Substituted Hexa‐peri‐hexabenzocor-onenes: Facile Synthesis and Their Potential Applications as “Coaxial” Hole‐Transport Materials[J]. Angew Chem In Edit. 2004, 43: 5331-5335. [93] Tan Y Z, Yang B, Parvez K, et al. Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons[J]. Nat Commun. 2013, 4: 2646. [94] Mkhalid I A I, Barnard J H, Marder T B, et al. C−H activation for the construction of C−B bonds[J]. Chem Rev. 2009, 110(2): 890-931. [95] Yamaguchi R, Hiroto S, Shinokubo H. Synthesis of oxygen-substituted hexa-peri-hexaben- zocoronenes through Ir-catalyzed direct borylation[J]. Org Lett. 2012, 14(10): 2472-2475. [96] Yang S, Feng X, et al. Nanographene-Constructed Hollow Carbon Spheres and Their Favorable Electroactivity with Respect to Lithium Storage[J]. adv mater. 2010, 22: 838–842. [97] Wusong J, Takanori F, et al. Controlled Self-Assembly Triggered by Olefin Metathesis: Cross-Linked Graphitic Nanotubes from an Amphiphilic Hexa- peri -hexabenzocoronene [J]. J Am Chem Soc. 2005, 127: 8284-8285. [98] Zhang C, Liu Y, et al. Three-Dimensional Nanographene Based on Triptycene: Synthesis and Its Application in Fluorescence Imaging[J]. Org Lett. 2012, 23: 5912-5915. [99] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature. 2012, 488(7411): 294-303. [100] Mohideen M M, Liu Y, Ramakrishna S. Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation [J]. Appl Energ. 2020, 257: 114027. [101] Hall P J. Energy storage: The route to liberation from the fossil fuel economy? [J]. Energ Policy. 2008, 36(12): 4363-4367. [102] Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future [J]. Adv Mater. 2019, 31(13): e1804799. [103] Gao R, Dai Q, Du F, Yan D, Dai L. C60-Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution [J]. J Am Chem Soc. 2019, 141(29): 11658-11666. [104] Mun Y, Lee S, Kim K, Kim S, Lee S, Han J W, Lee J. Versatile Strategy for Tuning ORR Activity of a Single Fe-N4 Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane [J]. J Am Chem Soc. 2019, 141(15): 6254-6262. [105] Zhang F, Miao J, Liu W, Xu D, Li X. Heteroatom embedded graphene-like structure anchored on porous biochar as efficient metal-free catalyst for ORR [J]. Int J Hydrogen Energ. 2019, 44(59): 30986-30998. [106] Qiu Z, Huang N, Ge X, Xuan J, Wang P. Preparation of N-doped nano-hollow capsule carbon nanocage as ORR catalyst in alkaline solution by PVP modified F127[J]. Int J Hydrogen Energ. 2020, 45 (15): 8667-8675. [107] Liu X M, Zhou M L, Zhang W D, et al. One-step ultrasonic synthesis of Co/Ni-catecho- lates for improved performance in oxygen reduction reaction[J]. Ultrason Sonochem. 2020, 67: 105-179. [108] Dai L, Xue Y, Qu L, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chem Rev. 2015, 115: 4823-4892. [109] Niu H J, Chen H Y, Wen G L, Feng J J, Zhang Q L, Wang A J. One-pot solvothermal synthesis of three-dimensional hollow PtCu alloyed dodecahedron nanoframes with excellent electrocatalytic performances for hydrogen evolution and oxygen reduction [J]. J Colloid Interface Sci. 2019, 539: 525-532. [110] Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Comb- ining theory and experiment in electrocatalysis: Insights into materials design [J]. Science. 2017, 355(6321): 4998. [111] Sa Y J, Seo D J, Woo J, et al. A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction[J]. J Am Chem Soc. 2016, 138 (45): 15046. [112] Yu D, Xue Y, Dai L. Vertically aligned carbon nanotube arrays Co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction[J]. J Phy Chem Lett. 2012, 3 (19): 2863. [113] Pei D N, Gong L, Zhang A Y, Zhang X, Chen J J, Mu Y, Yu H Q. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduc- tion[J]. Nat Commun. 2015, 6, 8696. [114] Yang L, Zeng X, Wang W, et al. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electro-catalysts for oxygen reduction reaction in fuel cells[J]. Adv Funct Mater. 2018, 28 (7): 1704537. [115] Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K. Ozaki J. Miyata, S., X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells[J]. J Power Sources. 2009, 187, 93-97. [116] Zhang Z, Sun J, Dou M, Ji J, Wang F. Nitrogen and Phosphorus Codoped Mesoporous Carbon Derived from Polypyrrole as Superior Metal-Free Electrocatalyst toward the Oxygen Reduction Reaction [J]. ACS Appl Mater Inter. 2017, 9(19): 16236-16242. [117] Qin, L.; Zhang, Y.; Wu, X.; Li, N.; Xie, Z.; Liu, L.; Ma, Y. In Situ Electrochemical Synthesis and Deposition of Discotic Hexa- peri -hexabenzocoronene Molecules on Elec- trodes: Self-Assembled Structure, Redox Properties, and Application for Supercapacitor[J]. Small. 2015, 11, No. 25, 3028–3034.
﹀
|
中图分类号: |
O625.15
|
开放日期: |
2021-06-21
|