论文中文题名: | 基于深度学习的输煤皮带煤量检测研究 |
姓名: | |
学号: | 20207223104 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 图像处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-14 |
论文答辩日期: | 2023-06-02 |
论文外文题名: | Research on coal volume detection of coal transmission belt based on deep learning |
论文中文关键词: | |
论文外文关键词: | Coal transmission belt coal volume detection ; Deep Learning ; PP-YOLOE ; Coal belt speed control |
论文中文摘要: |
我国是世界煤炭生产大国,输煤皮带传输是煤炭开采中一个重要环节。由于开采条件和生产环节的特殊性,在实际煤炭运输过程中,输煤皮带在无煤或少煤情况下长时间高速运转会造成大量电能损耗,因此根据输煤量自动调控输煤皮带速率以实现煤矿智能化开采是一项重要的研究工作。本文提出了一种YOLOE-CA的输煤皮带煤量检测算法,并针对实际应用场景将算法进行嵌入式平台部署。 本文采用多种优秀策略对输煤皮带煤量检测算法进行改进,有效地提升了算法性能。在主干网络部分,本文将Focus结构加入其中,采用以空间换时间的方式减少计算参数和模型参数量;并改进网络中的残差结构,增强主干网络提取特征的能力。在Neck网络部分,本文对PAN结构进行改进,使用BiFPN金字塔结构对不同尺寸的特征图进行加权特征融合,提高网络对重要特征的关注度;并在Neck网络前加入CBAM注意力机制,提升模型特征图的表达能力。在检测头部分,本文使用CA注意力机制代替ESE,并且用CIoU代替GIoU计算损失函数,提高检测精度。实验结果表明,与PP-YOLOE算法相比,改进算法煤量检测AP50 本文采用自建数据集对模型进行训练,并通过TensorRT进行优化,将改进后的算法部署在NVIDIA Jetson TX2嵌入式平台。设计实现了输煤皮带自适应速度控制系统。 根据输煤皮带煤流量的大小,分为(0~15%)慢速、(15%~50%)中速、(大于50%)快速三个等级,从而分档次调整皮带的运行速度。该系统可根据输煤皮带中煤量的大小变化自动调节带速,节能效果明显,适用于煤矿生产需求。并且还在软件功能中加入紧急停止功能,应对紧急情况。 |
论文外文摘要: |
China is a major coal producer in the world, and coal belt transmission is an important part of coal mining. Due to the particularity of mining conditions and production links, in the actual coal transportation process, the long-term high-speed operation of the coal conveyor belt in the absence of coal or less coal will cause a large amount of power loss. Therefore, it is an important research work to automatically adjust the speed of the coal conveyor belt according to the amount of coal transportation to realize the intelligent mining of coal mines. This paper proposes a YOLOE-CA coal belt coal quantity detection algorithm, and deploys the algorithm on an embedded platform for practical application scenarios. In this paper, a variety of excellent strategies are used to improve the coal quantity detection algorithm of coal conveyor belt, which effectively improves the performance of the algorithm. In the backbone network part, this paper adds the Focus structure to reduce the calculation parameters and model parameters by exchanging space for time. And improve the residual structure in the network to enhance the ability of the backbone network to extract features. In the Neck network part, this paper improves the PAN structure, and uses the BiFPN pyramid structure to perform weighted feature fusion on feature maps of different sizes to increase the network 's attention to important features. The CBAM attention mechanism is added before the Neck network to improve the expression ability of the model feature map. In the detection head part, this paper uses CA attention mechanism instead of ESE, and uses CIoU instead of GIoU to calculate the loss function to improve the detection accuracy. The experimental results show that compared with the PP-YOLOE algorithm, the AP _ 50 of the improved algorithm is increased by 4.2 %. In this paper, the self-built data set is used to train the model and optimized by TensorRT. The improved algorithm is deployed on the NVIDIA Jetson TX2 embedded platform. An adaptive speed control system for coal conveying belt is designed and implemented. According to the coal flow rate of the coal conveying belt, it is divided into three grades : ( 0 ~ 15 % ) slow speed, ( 15 % ~ 50 % ) medium speed and ( > 50 % ) fast speed, so as to adjust the running speed of the belt. The system can automatically adjust the belt speed according to the change of coal quantity in the coal conveyor belt, and the energy saving effect is obvious, which is suitable for coal mine production demand. And also add an emergency stop function to the software function to respond to emergencies. |
参考文献: |
[1] 朱立平, 蒋卫良. 适用于我国煤矿带式输送机典型机型的研究状[J]. 煤矿学报, 2010, (11): 1916-1920. [2] 赵玉文. 带式输送机的现状和发展趋势[J]. 煤矿机械. [3] 王福斌, 孙海洋, TU Paul. 边缘扩展的皮带撕裂支持向量机视觉检测[J]. 中国机械工程, 2019, 30(4):455-460. [4] 宋伟刚, 王丹. 7.6km长距离带式输送机系统动力学的计算机仿真[J]. 煤炭学报, 2004, 29(2):249-253. [5] 孙伟, 王慧, 杨海群. 带式输送机变频调速节能控制系统研究[J]. 工矿自动化, 2013, 39(4):98-101. [6] 杨祥, 田慕琴, 李璐,等. 带式输送机输送带故障检测技术研究[J]. 煤矿机械, 2019, 40(2):133-136. [7] 田原. 浅谈机器视觉技术在煤矿中的应用前景[J]. 工矿自动化, 2010, 36(5):30-32. [8] 张铮, 王艳平, 薛桂香. 数字图像处理与机器视觉[M]. 北京: 人民邮电出版社, 2010:340-379. [9] 杨小彬, 周世禄, 李娜,等. 深度学习及其在煤矿安全领域的应用[J]. 煤矿安全, 2019, 50(1):261-264. [10] 丁秀明. 煤矿能耗调研分析和节能措施[J]. 煤炭技术, 2010, 29(3):243-245. [11] 任中全, 王淼. 带式输送机节能调速控制系统设计[J]. 煤炭技术, 2016, 35(5):245-246. [12] 孟凡芹, 王耀才. 煤矿井下带式输送机煤流图像识别方法的研究[J]. 煤炭学报, 2003, 28(1):23-24. [13] 唐守锋, 史可, 仝光明,等. 一种矿井低照度图像增强算法[J]. 工矿自动化, 2021, 47(10):5. [14] 赵永强, 饶元, 董世鹏,等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4):629-654. [15] 代伟, 赵杰, 杨春雨,等. 基于双目视觉深度感知的带式输送机煤量检测方法[J]. 煤炭学报, 2017, 42(S2):547-555. [16] 周俊宇, 赵艳明. 卷积神经网络在图像分类和目标检测应用综述[J]. 计算机工程与应用, 2017, 53(13): 34-41. [20] 杨笑, 王志章, 周子勇, 等. 基于参数优化 AdaBoost 算法的酸性火山岩岩性分类 [J]. 石油学报, 2019, 40(4):457-467. [22] 王森, 伍星, 张印辉,等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5):115-12. [48] Xu S , Wang X , Lv W , et al. PP-YOLOE: An evolved version of YOLO[J]. arXiv:2203.16250 ,2022. |
中图分类号: | TP391.4 |
开放日期: | 2023-06-14 |