论文中文题名: | 面向特定隐私需求场景的高效谓词加密方案研究 |
姓名: | |
学号: | 19208049001 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081202 |
学科名称: | 工学 - 计算机科学与技术(可授工学、理学学位) - 计算机软件与理论 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 密码学与信息安全 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-21 |
论文答辩日期: | 2022-06-07 |
论文外文题名: | Research on efficient predicate encryption scheme for specific privacy requirement scenarios |
论文中文关键词: | |
论文外文关键词: | Predicate encryption ; Privacy-preserving ; Data consolidation ; Complementary set ; Contact tracing ; Non-empty intersection |
论文中文摘要: |
谓词加密是在基于身份加密的基础上发展起来的一种表达力更广泛的公钥加密,可在保护数据隐私的同时对数据进行细粒度访问控制。但目前已存的谓词加密方案效率较低,且针对具体问题的丰富性研究不足,难以满足现实需求。因此,本文面向以下两个特定隐私保护场景的需求,对谓词加密的丰富性扩展、效率提高等方面进行了详细研究: (1)在保护隐私的数据整合场景中,若数据库B满足条件:数据库A的属性集合与自己的属性集合互补,则可访问数据库A的加密数据并获得其具体内容,从而合并两个数据库,得到一个完整的数据库。然而之前的谓词加密方案谓词表达力不够丰富,不可处理该场景。为解决该问题,本文利用拉格朗日插值与压缩技术设计了一个集合互补谓词加密(Complementary set predicate encryption,CSPE)方案,并将之应用于保护隐私的数据整合。该方案是第一个可解决集合互补问题的谓词加密,弥补了已存谓词加密表达丰富性的不足,且达到了常数大小的密文和私钥,效率较高。 (2)在疫情爆发后的保护隐私的接触者追踪场景中,若防疫中心满足条件:用户的二维时空(时间和位置)数据形成的轨迹集合与确诊者的二维时空轨迹集合的交集非空,则可访问用户的加密数据并获得其私人信息,从而及时通知该用户。另外,该场景中用户的时空数据大多贮存于资源有限的轻量级设备中,比如手机。然而先前能处理该问题的谓词加密方案需要至少线性大小的密文或私钥,即所需存储量较大,不适合贮存能力有限的轻量级设备。为解决该问题,本文利用确定性私钥和一个映射技术设计了一个非空交集谓词加密(Non-empty intersection predicate encryption,NEIPE)方案,并将之应用于保护隐私的接触者追踪。该方案实现了常数大小的密文和私钥,相比于已存方案,更适用于贮存能力有限的轻量级设备。 |
论文外文摘要: |
Predicate encryption is a more expressive public key encryption that evolved from identity-based encryption, which can perform fine-grained access control to data while protecting data privacy. However, the existing predicate encryption schemes are inefficient, and the expression of research on specific problems is insufficient, so it is difficult to meet the practical requirements. Therefore, this paper conducts detailed studies on the expression extension and efficiency improvement of predicate encryption for the requirements of the following two specific privacy-preserving scenarios: (1) In the privacy-preserving data consolidation scenario, if database B satisfies the condition: the attribute set of database A is complementary to its own, the encrypted data of database A can be accessed and the specific content can be obtained, thereby consolidating the two databases to obtain a complete database. However, the previous predicate encryption schemes are not expressive enough to handle this scenario. To solve this problem, this paper designs a complementary set predicate encryption (CSPE) scheme using Lagrangian interpolation and compression technology, and applies it to privacy-preserving data consolidation. This scheme is the first predicate encryption that can solve the set complementarity problem, which makes up for the lack of expression of the existing predicate encryption, and is efficient due to a constant size of ciphertext and private key. (2) In the privacy-preserving contact tracing scenario after the outbreak, if the epidemic prevention center satisfies the condition: the intersection of the trajectory set formed by the user’s two-dimension spatiotemporal (time and location) data and the two-dimension spatiotemporal trajectory set of the diagnosed person is not empty, then prevention center can access to the user’s encrypted data and obtain their private information, allowing timely notification of the user. In addition, most of the spatiotemporal data of users in this scenario are stored in storage-limited lightweight devices, such as mobile phones. However, previous predicate encryption schemes that can handle this problem require at least a linear size of ciphertext or private key, namely, require a large amount of storage and are not suitable for storage-limited lightweight devices. To solve this problem, this paper designs a non-empty intersection predicate encryption (NEIPE) scheme using deterministic private keys and a mapping technique, and applies it to privacy-preserving contact tracing. This scheme realizes constant-sized ciphertext and private key, so it is more suitable for storage-limited lightweight devices than existing schemes. |
参考文献: |
[4] Koblitz N. Elliptic curve cryptosystems[J]. Mathematics of computation, 1987, 48(177): 203-209. [17] 李顺东, 杨坤伟, 巩林明, 毛庆, 刘新. 标准模型下可公开验证的匿名IBE方案[J]. 电子学报, 2016, 44(03): 673-678. [18] 杨启良, 周彦伟, 杨坤伟, 王涛. 标准模型下可公开验证的匿名IBE方案的安全性分析[J]. 电子学报, 2020, 48(02): 291-295. [45] 汪倩倩, 欧毓毅. 可追踪且可撤销的基于OBDD访问结构的CP-ABE方案[J]. 计算机应用研究, 2021, 38(04): 1185-1189. [47] 王悦, 樊凯. 隐藏访问策略的高效CP-ABE方案[J]. 计算机研究与发展, 2019, 56(10): 2151-2159. [49] 杨贺昆, 冯朝胜, 晋云霞, 王蔺, 罗王平, 邓红辉. 支持可验证加解密外包的CP-ABE方案[J]. 电子学报, 2020, 48(08): 1545-1551. |
中图分类号: | TP309.7 |
开放日期: | 2022-06-21 |