- 无标题文档
查看论文信息

论文中文题名:

 纤维素气凝胶微球/聚氨酯多孔吸声材料的制备及性能研究    

姓名:

 陈姝杉    

学号:

 21211225045    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 聚合物基复合材料    

第一导师姓名:

 彭龙贵    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Study on Preparation of Cellulose Aerogel Microspheres/Polyurethane Porous Sound Absorption Materials and its Properties    

论文中文关键词:

 聚氨酯 ; 纤维素气凝胶微球 ; 多孔材料 ; 吸声材料 ; 低频吸声    

论文外文关键词:

 Polyurethane ; cellulose aerogel ; porous materials ; sound-absorbing materials ; sound absorption in low frequency    

论文中文摘要:

  随着工业的飞速发展,噪声污染日益严重,不仅危害人体身心健康,还会影响仪器、建筑物的寿命,是急需解决的难题之一,特别是低频噪声波长长、穿透力强,很难处理,一直是一个科技难题。噪声控制的方法中,应用吸声降噪材料是最简单、有效的手段。聚氨酯(PU)泡沫是一种已经广泛应用的多孔型吸声降噪材料,制备工艺简单、成本低廉,但其低频吸声效果普遍较差。目前,常通过添加空气层、与共振结构复合或加入多孔填料的方法改善PU的低频吸声性能,然而前两种方法会使PU材料的体积增加,不利于在一些限域空间使用,因此添加多孔填料是一种不错的选择。纤维素是一种天然生物质材料,纤维素气凝胶(CA)基于其优越的多孔结构、超高的比表面积和可生物降解性,是一种环境友好的理想吸声材料。基于此,本文探索了一种改善PU泡沫低频吸声性能的方法,将CA微球作为功能填料复合到PU多孔吸声材料中,将二者的吸声机制协同,改善传统PU吸声材料低频吸声差的问题,制备出低频吸声性能优异的纤维素气凝胶微球/聚氨酯(CA/PU)复合多孔吸声材料。取得的研究成果如下:

  (1)研究了PU原料体系中,发泡剂、催化剂、表面活性剂的添加量对PU多孔材料孔结构和吸声性能的影响。以聚醚、异氰酸酯、纯水、三乙烯二胺(DABCO)、二甲基硅油为原料,通过一步发泡法制得PU泡沫吸声材料,研究发现发泡剂、催化剂、表面活性剂的用量能影响体系发泡反应与凝胶反应的平衡,从而影响PU多孔吸声材料的密度、孔尺寸、开孔率。当发泡剂水用量为2.6 wt%、催化剂DABCO用量为0.45 wt%、表面活性剂二甲基硅油用量为3.7 wt%时,制备的PU泡沫在0-5000 Hz的综合吸声性能最好,低、中、高频平均吸声系数分别为0.17、0.70、0.94。

  (2)研究了一种简便、环保的制备微球形CA的工艺,通过控制置换溶剂的种类和浓度实现了对CA微球孔结构的调控。用NaOH/尿素体系溶解纤维素,通过乳化法制备纤维素水凝胶微球、再经叔丁醇溶剂置换和冷冻干燥工艺获得CA多孔微球材料,研究发现,叔丁醇/水溶液作为置换溶剂时,随着叔丁醇浓度的增加,溶剂结晶速率增大,晶粒尺寸下降,制得的CA微球孔径越小,孔隙率越高,密度越低,比表面积越大。50 wt%叔丁醇制备的CA微球比表面积达61.40 m²/g,平均孔径为14.04 nm,堆积密度为0.059 g/cm3,粒径集中分布在200-300 μm,平均粒径为202.0 μm,属于介孔材料。

  (3)将CA微球作为功能填料复合到聚氨酯多孔吸声材料中,研究了微球孔结构对CA/PU复合多孔材料吸声性能和力学性能的影响。通过一步共混发泡制备了CA/PU复合多孔吸声材料,研究发现,CA微球的加入使PU多孔吸声材料的吸声峰值向中、低频方向偏移,压缩强度也得到提升,比表面积越大、孔径越小的CA微球对PU泡沫低频吸声性提升越多。采用50 wt%叔丁醇制备的CA微球填充,并且填充量在1.5 wt%时,CA/PU复合多孔吸声材料在500 Hz以下低频平均吸声系数达到0.30,比单纯的PU多孔吸声材料的低频平均吸声系数提升了76.5%,填充量在2.5 wt%时,CA/PU复合多孔吸声材料的压缩强度比单纯的PU泡沫提升了3.6倍。

论文外文摘要:

  With the rapid development of industry, noise pollution is becoming increasingly serious, which not only endangers human health, but also affects the life span of instruments and buildings. Noise pollution is one of the urgent problems to be solved, especially the low frequency noise has long wavelength and strong penetration, which is difficult to deal with and has always been a science puzzle. The most simple and effective way to control noise is to use sound absorbing materials. Polyurethane (PU) foam is a widely used porous sound absorption material, and its preparation process is easy and low cost, but its sound absorption in low frequency is poor. At present, air layer, resonance structure and functional filler are generally used to improve the sound absorption performance of PU in low frequency. However, the first two materials will increase the volume of PU, which is not conducive to use in some small spaces, so adding porous filler is a good choice. Cellulose is the natural biomass material. Cellulose aerogel (CA) is an ideal environmentally friendly sound absorbing material due to its porous structure, high specific surface area, and biodegradability. Based on this, this paper studies a method to improve the sound absorption performance of PU foam in low frequency , that is, adding CA microspheres into PU porous sound absorption materials as functional fillers.The combination of their sound absorption mechanism improves the sound absorption performance of PU materials in low frequency, and prepares CA/PU materials with excellent sound absorption performance in low frequency. The main research achievements are as follows:

  (1) This study examines the effects of varying amounts of blowing agents, catalysts, and surfactants within a PU raw material system on the pore structure and acoustic absorption performance of PU porous materials. Utilizing polyether, isocyanate, pure water, triethylene diamine (DABCO), and dimethyl silicone oil as raw materials, PU foam sound-absorbing materials were fabricated through a one-step foaming process. It was found that the quantities of blowing agents, catalysts, and surfactants can influence the balance between the foaming reaction and the gelation reaction, subsequently affecting the density, pore size, and open-cell content of the PU porous sound-absorbing materials. The optimal sound absorption performance across 0-5000 Hz was achieved when the formulations included 2.6 wt% water as the blowing agent, 0.45 wt% DABCO as the catalyst, and 3.7 wt% dimethyl silicone oil as the surfactant, with average sound absorption coefficients of 0.17, 0.70, and 0.94 at low, medium, and high frequencies, respectively.

  (2) The study also explored an environmentally friendly, simple method for fabricating spherical CA microspheres by controlling the type and concentration of displacement solvents to tune the pore structures of CA microspheres. Cellulose was dissolved in a NaOH/urea system, and cellulose hydrogel microspheres were prepared via an emulsification method, followed by solvent exchange with tert-butanol and freeze-drying processes. It was found that using a tert-butanol/water solution as the displacement solvent, increasing concentrations of tert-butanol accelerated the solvent crystallization rate, decreased crystal sizes, and produced CA microspheres with smaller pore sizes, higher porosity, lower density, and larger specific surface areas. Microspheres prepared with 50 wt% tert-butanol exhibited a specific surface area of 61.40 m²/g, average pore diameter of 14.04 nm, bulk density of 0.059 g/cm³, and an average particle size of 202.0 µm, predominantly in the mesoporous range.

  (3) Incorporating these CA microspheres as functional fillers into the polyurethane porous sound-absorbing material, the impact of the microspheres’ pore structures on the acoustic and mechanical properties of the CA/PU composite porous materials was studied. A one-step co-blending foaming process was used to fabricate the CA/PU composite porous sound-absorbing materials. The inclusion of CA microspheres shifted the acoustic absorption peak towards the mid and low frequency ranges and also enhanced the compressive strength. The larger the specific surface area and the smaller the pore size of the CA microspheres, the greater the improvement in low-frequency sound absorption of the PU foam. With 50 wt% tert-butanol-produced CA microspheres at a 1.5 wt% filling level, the low-frequency average sound absorption coefficient of the CA/PU composite material reached 0.30 below 500 Hz, which is a 76.5% improvement over the base PU porous sound-absorbing material. At a 2.5 wt% filling level, the compressive strength of the CA/PU composite material was 3.6 times that of the pure PU foam.

参考文献:

[1]郭爽. 噪声污染的危害与控制[J]. 中国科技信息, 2014, (12): 31-32.

[2]张治婷. 城市噪声污染的成因与防治措施分析[J]. 皮革制作与环保科技, 2023, 4(09): 52-54.

[3]曹慧. 多孔陶瓷的制备及多孔陶瓷/高分子复合材料吸声性能的研究[D]. 北京: 中国石油大学, 2009.

[4]Alagoz S. An analysis of the spatio-spectral acoustic filtering effect of sonic crystals[J]. Chinese Journal of Physics. 2016, 54(5): 788-794.

[5]Alfonso T, Giulia M, Patrizia M, et al. New determinants of mental health: the role of noise pollution. A narrative review.[J]. International Review of Psychiatry, 2022, 34(7-8): 783-796.

[6]敖庆波, 王建忠, 李烨, 等. 低频吸声材料的研究进展[J]. 功能材料, 2020, 51(12): 12045-12050.

[7]傅剑锋, 张帆, 孙曼莉, 等. 10kV变电所选址的低频噪声问题探讨[J]. 建筑电气, 2021, 40(10): 37-42.

[8]张程, 孟飞, 郭添亨, 等. 变电站低频噪声吸声材料研究[J]. 高电压技术, 2023, 49(S1): 196-198.

[9]曹书豪. 聚氨酯泡沫及聚丙烯纤维复合材料的吸声性能研究[D]. 成都: 西南交通大学, 2013.

[10]王磊超. 助剂用量及料浆温度对异氰酸酯基聚酰亚胺泡沫泡孔结构和吸声性能影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

[11]任小逆, 洪玲, 高琛琪, 等. 船用阻尼材料研究进展[J]. 舰船科学技术, 2017, 39(21): 1-4.

[12]梁李斯, 郭文龙, 张宇, 等. 新型吸声材料及吸声模型研究进展[J]. 功能材料, 2020, 51(05): 5013-5019.

[13]高红武. 噪声控制工程[M]. 武汉: 武汉理工大学出版社, 2003.

[14]王知杰. 基于低频降噪的聚合物软硬交替层状吸声材料结构设计及性能研究[D]. 武汉: 武汉工程大学, 2021.

[15]张鹏, 杨自春, 张震, 等. 二氧化硅气凝胶及其复合材料吸声性能的研究进展[J]. 稀有金属材料与工程, 2022, 51(11): 4306-4322.

[16]潘玮, 刘娟, 余文斌, 等.多孔吸声材料的研究进展及应用[C] //中国民族建筑研究会设计专业委员会. 2016年全国声学设计与演艺建筑工程学术会议论文集. 北京: 空军航空医学研究所, 2016: 4.

[17]黄真, 杜喆, 段挹杰, 等. 多孔吸声材料研究现状与发展趋势[J]. 中国城乡企业卫生, 2016, 31(11): 43-45.

[18]Zhang S, Li Y, Zheng Z. Effect of physiochemical structure on energy absorption properties of plant fibers reinforced composites: dielectric, thermal insulation, and sound absorption properties[J]. Composites Communications, 2018, 10: 163-167.

[19]周文璐, 林萍, 徐晓美, 等. 黄麻纤维毡吸声特性及其在汽车上的应用[J]. 林业工程学报, 2021, 6(03): 113-119.

[20]董凯辉, 王习文. 硅溶胶/植物纤维吸声材料的制备及其性能研究[J]. 中国造纸, 2020, 39(08): 57-61.

[21]彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019, 33(21): 3669-3677.

[22]祝日新, 李晶, 毕万利, 等.无机多孔吸声材料的研究与发展[J]. 辽宁科技大学学报, 2017, 40(03): 194-199.

[23]虞秀勇. 水泥基中低频段吸声材料合成与性能研究[D]. 长沙: 湖南大学, 2021.

[24]张慧洁, 刘超, 李翔, 等. 低频吸声复合结构的研制与性能研究[J]. 噪声与振动控制, 2021, 41(05): 236-240.

[25]敖庆波, 王建忠, 马军, 等. 超薄金属纤维复合膜材料的低频吸声性能[J]. 稀有金属材料与工程, 2020, 49(11): 3861-3864.

[26]唐波, 苏忠, 幸向玲, 等. 聚氨酯泡沬材料的吸声性能研究进展[C] //中国汽车工程学会. 2019中国汽车工程学会年会论文集(5). 重庆: 重庆长安新能源汽车科技有限公司, 2019: 5.

[27]殷锦捷, 许明, 韩海杰. 聚氨酯泡沫材料发泡剂研究进展[J]. 山东化工, 2018, 47(19): 60-61+63.

[28]孙宇.聚氨酯泡沫稳定剂发展现状及建议[J]. 聚氨酯工业, 2016, 31(01): 1-5.

[29]Cao L, Fu Q, Si Y, et al. Porous materals for sound absorption[J]. Composites Communications, 2018, 10: 25-35.

[30]Zhang C, Li J, Hu Z, et al. Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity[J]. Materials and Design, 2012, 41: 319-325.

[31]张德江. 聚氨酯及其复合材料微相结构与阻尼性能关系研究[D]. 北京: 中国石油大学, 2019.

[32]张胜强, 芮晓丽, 朱盼, 等. 有机硅改性聚氨酯海绵的吸声性能分析[J]. 科学技术与工程, 2018, 18(31): 142-146.

[33]王盛蕊. 聚氨酯多孔材料配方设计及其吸声性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

[34]陈明轩, 江学良, 李菁瑞, 等. 发泡聚氨酯的制备及吸声性能[J]. 武汉工程大学学报, 2019, 41(06): 541-545.

[35]张晓谦, 田达, 鲁琳琳, 等. 聚氨酯高效吸声材料的制备[J]. 山东化工, 2021, 50(03): 1-2+6.

[36]Cops J M, Mcdaniel J G, Magliula A E, et al. Measurement and analysis of sound absorption by a composite foam[J]. Applied Acoustics, 2020, 160: 107138-107138.

[37]赵长银. 泡沫铝-聚氨酯复合材料减振降噪性能试验研究[D]. 南京: 东南大学, 2017.

[38]陈亮, 沈敏, 何为, 等. 微穿孔板-聚氨酯微孔薄膜复合结构吸声特性[J]. 噪声与振动控制, 2022, 42(03): 36-41.

[39]姚海超, 杨啟梁, 胡溧, 等. 粟米壳-聚氨酯复合吸声材料吸声性能研究[J]. 农业装备与车辆工程, 2022, 60(12): 92-96.

[40]Gananasekaran K, Balachandar M, Vinoth K M, et al. Synthesis and evaluation of polyurethane foam composites for enhanced sound absorption at low frequency[J]. International Journal of Recent Technology and Engineering, 2019, 8(3): 6815-6818.

[41]Statharas C E, Yao K, Rahimabady M, et al. Polyurethane/poly(vinylidene fluoride)/MWCNT composite foam for broadband airborne sound absorption[J]. Journal of Applied Polymer Science, 2019, 136(33): 47868-47868.

[42]姚金金. 硅藻土/聚氨酯多孔复合材料的吸声特性与阻燃特性[D]. 长春: 长春工业大学, 2016.

[43]Wang X, Liu L, Wang X, et al. Preparation and performances of carbon aerogel microspheres for the application of supercapacitor[J]. Journal of Solid State Electrochemistry, 2011, 15(4): 643-648.

[44]朱浩彤, 刘玲伟, 闫铭, 等. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.

[45]李萌. 功能化纤维素基气凝胶微球的制备及其对Cr(Ⅵ)吸附行为研究[D]. 无锡: 江南大学, 2022.

[46]王叙春, 李金泽, 李广勇, 等. 气凝胶微球的制备及应用[J]. 物理化学学报, 2017, 33(11): 2141-2152.

[47]Wu X, Shao G, Cui S, et al. Synthesis of a novel Al2O3- SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum[J]. Ceramics International, 2016, 42: 874-882.

[48]Oh H J, Kim J, Lee H, et al. Directionally antagonistic graphene oxide-Polyurethane hybrid aerogel as a sound absorber[J]. ACS Applied Materials and Interfaces, 2018, 10: 22650-22660.

[49]阮居祺. 轻质高强吸声材料的设计、制备与降噪性能研究[D]. 南京: 南京大学, 2019.

[50]刘晓丽, 刘崇锐, 吴九汇. 吸声超材料研究进展[J]. 哈尔滨工程大学学报, 2022, 43(09): 1241-1251.

[51]丁雷. 声频工程中多孔吸声材料特性及应用[J]. 电声技术, 2019, 43(04): 18-27.

[52]魏徵, 王源升, 王方超, 等. 催化剂和匀泡剂对聚氨酯软质泡沫泡孔结构的影响[J]. 高分子材料科学与工程, 2016, 32(04): 86-89.

[53]周宁琳. 有机硅聚合物导论[M]. 北京: 科学出版社, 2000.

[54]段玉洁, 梁程耀, 朱浩彤, 等. 纤维素气凝胶的制备及应用[J]. 塑料科技, 2021, 49(05): 93-98.

[55]Kawagishi K, Saito H, Furukawa H, et al. Superior Nanoporous Polyimides via Supercritical CO2 Drying of Jungle-Gym-Type Polyimide Gels[J]. Macromolecular Rapid Communications, 2007, 28(1): 96-100.

[56]Wu S, Du A, Huang S, et al. Effects of monomer rigidity on the microstructures and properties of polyimide aerogels cross-linked with low cost aminosilane[J]. RSC Advances, 2016, 6(27): 22868-22877.

[57]颜廷辉, 张竞. 冷冻干燥制备聚甲基丙烯酰亚胺气凝胶及其微观形态的调控[J]. 塑料工业, 2023, 51(05): 47-53.

[58]唐美珍, 贾婼兰, 阚洪媛, 等. 一种利用表面活性剂改性的纤维素气凝胶及其制备方法[P]. 中国专利: CN202010016015.2, 2021-08-06.

[59]宋宇轩. 制备球形纳米纤维素气凝胶的成型和干燥工艺研究[D]. 南京: 南京林业大学, 2016.

[60]王晓宇, 张洋, 江华, 等. 叔丁醇冷冻干燥法制备纳米纤维素气凝胶[J]. 林业工程学报, 2017, 2(01): 103-107.

[61]彭黎莹, 王怡星, 吉剑奇, 等. 冷冻干燥制备聚酰亚胺气凝胶微观形态的调控[J]. 高分子材料科学与工程, 2018, 34(09): 115-119.

[62]Junji N, Tsuguyuki S, Akira I. Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters[J]. ACS Applied Materials Interfaces, 2015, 7(35): 19809-19815.

[63]Zhang Q, Li W, Liu S. Controlled fabrication of nanosized TiO2 hollow sphere particles via acid catalytic hydrolysis/hydrothermal treatment[J]. Powder Technology, 2011, 212(1): 145-150.

[64]杨少丽. 再生纤维素球形复合气凝胶的制备及光催化性能研究[D]. 哈尔滨: 东北林业大学, 2015.

[65]王洪亮, 董武军, 陈蕾, 等. 叔丁醇在生物医药领域的主要应用及研究进展[J]. 药学学报, 2021, 56(09): 2513-2521.

[66]Wang W, Zhang P, Zhang S, et al. Structure and properties of novel regenerated cellulose fibers prepared in NaOH complex solution[J]. Carbohydrate Polymers, 2013, 98(1): 1031-1038.

[67]张力平, 唐焕威, 曲萍, 等. 一维棒状纳米纤维素及光谱性质[J]. 光谱学与光谱分析, 2011, 31(4): 1097-1100.

[68]罗晓刚. 再生纤维素微球的制备、结构和功能[D]. 武汉: 武汉大学, 2010.

[69]Zhu G, Han D, Yuan Y, et al. Improving damping properties and thermal stability of epoxy/polyurethane grafted copolymer by adding glycidyl POSS[J]. Chinese Journal of Polymer Science, 2018, 36(11): 1297-1302.

[70]李明俊, 王云英, 徐泳文, 等. 聚氨酯材料阻尼改性方法与影响因素[J]. 实验技术与管理, 2010, 27(7): 29-32.

[71]He C, Du B, Qian J, et al. Synthesis of macroporous ceramic with enhanced sound absorption capability in low and medium frequency[J]. Ceramics International, 2020, 100(4): 202-208.

[72]汪东, 张欢, 刘文星, 等. 聚合物基阻尼材料的结构设计及功能化研究进展[J]. 中国科学: 化学, 2016, 46(10): 945-960.

[73]Park J, Yang H S, Minn S K, et al. Design and numerical analysis of syntactic hybrid foam for superior sound absorption[J]. Materials Design, 2018, 142: 212-220.

[74]刘杨, 霍又嘉, 杜元开, 等. 吸声材料制备、性能研究进展[J]. 功能材料, 2022, 53(02): 2073-2079.

[75]张伟程, 胡祥, 罗鸿兴, 等. 中空玻璃微珠填充聚氨酯发泡材料的吸声性能与动态力学性能研究[J]. 中国塑料, 2023, 37(01): 38-45.

中图分类号:

 TQ328.3    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式