- 无标题文档
查看论文信息

论文中文题名:

 伊利石提硅及合成MOR分子筛的实验研究    

姓名:

 王苗苗    

学号:

 19213211046    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085216    

学科名称:

 工学 - 工程 - 化学工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 化学工程    

研究方向:

 矿物材料的加工与应用    

第一导师姓名:

 陈治平    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-28    

论文答辩日期:

 2022-06-05    

论文外文题名:

 Experimental study on extraction of silicon from illite and synthesis of MOR molecular sieves    

论文中文关键词:

 伊利石 ; 白炭黑 ; MOR分子筛 ; 异构化    

论文外文关键词:

 illite ; Silica ; MOR molecular sieve ; Isomerization    

论文中文摘要:

伊利石富含硅、铝元素,在我国分布广、储量大,是极富开发前景的新型廉价黏土硅铝酸盐矿物,目前针对我国伊利石提取有价组分及高附加值利用的研究报道较少。白炭黑是一种无定形硅酸和硅酸盐产品,广泛应用于橡胶、纺织、造纸、农药、食品添加剂等领域,如何以一种经济高效的方式生产白炭黑依然是现今一个非常重要的问题。分子筛是一种具有丰富孔道结构的固体酸/碱多孔材料,广泛应用于催化、吸附、干燥及净化领域。目前合成分子筛的原料大多是无机化学品,其制备过程复杂、周期较长,而天然硅铝矿物由于其成本较低,来源广泛,经过简单的预处理就能生成低聚态的硅铝酸盐物质,其化学活性较高,可以作为理想的分子筛合成原料。丝光沸石(MOR)分子筛具有一维的直孔道结构、二维的空间体系、热稳定性高、耐酸性强的特点,在吸附、催化领域得到广泛应用。本文以伊利石为原料提硅制白炭黑及MOR分子筛产品,拓展白炭黑和MOR分子筛原料来源,为伊利石的高值资源化利用提供理论数据和借鉴,主要研究内容如下:

首先采用热活化、碱熔活化两种方法活化天然伊利石矿物,从活化伊利石中提硅制白炭黑,考察了白炭黑的最优制备条件,以脱硅渣为原料合成MOR沸石分子筛,采用等体积浸渍法制备Ni/MOR分子筛催化剂并评价其临氢异构化性能。结果表明,碱熔活化伊利石提硅溶出率较高,可用于制备白炭黑,最优提硅工艺条件为NaOH浓度20 wt.%,固液比1:4,温度80 ℃,时间2.0 h,此时SiO2溶出率高达87.4 wt.%,制备的白炭黑是由微小颗粒团聚而成的无定形的非晶物质,热稳定性好,表面粗糙,具有较大的BET表面积,质量指标满足沉淀水合二氧化硅化工行业标准(HG/T3061-2020)C类要求;以脱硅渣为原料成功合成了MOR分子筛,其形貌为规整的棱柱形,具有较大的比表面积和较高的中强B酸,通过浸渍Ni(NO3)2制备了Ni/MOR分子筛催化剂,在反应压力1.5 Mpa,反应温度360 ℃,重时空速(WHSV)=3.6 h-1,V(H2)/V(正辛烷)=400的条件下评价其异构化性能,结果表明,Ni/MOR催化剂对正辛烷的转化率为47.7 %,异构体收率为42.9 %,单支链异构体的选择性为80.3 %,多支链异构体的选择性为9.6 %。

近年来亚熔盐活化由于其节能环保的优势,在天然硅铝矿物的利用中表现出较好的应用前景,本文采用亚熔盐活化伊利石直接制备MOR分子筛,考察活化条件对活化效果的影响,制备条件对分子筛合成的影响,介孔模板剂用量对多级孔MOR分子筛的影响,采用等体积浸渍法制备Ni/MOR分子筛催化剂并评价其临氢异构化性能。结果表明,亚熔盐活化最优活化条件为活化温度250 ℃、活化时间4.0 h、NaOH浓度20 wt.%、碱矿比2.0;MOR分子筛的最佳合成条件为晶化温度170 ℃、晶化时间36.0 h、晶种加入量9.0 wt.%、HCl加入量0.22 mol;添加CTAB后成功地将介孔引入到MOR沸石分子筛中,所合成的MOR分子筛的介孔孔容随CTAB用量的增多先增大后减小,CTAB用量为0.15时介孔孔容最大,为0.0288 cm³/g;MOR样品的总B酸位和中强B酸位随CTAB用量的增多先增加后降低,当CTAB用量为0.15时样品的总B酸位和中强B酸位最大,分别为144.92 µmol/g和100.59 µmol/g。相较于不加介孔模板剂合成的MOR分子筛,加CTAB合成的多级孔MOR分子筛制备的Ni/MOR催化剂在正辛烷临氢异构化反应中表现出更优异的临氢异构化性能。

论文外文摘要:

Illite is rich in silicon and aluminum elements, which is widely distributed and has large reserves in China. It is a new type of cheap clay silicate aluminate mineral with great development prospects. At present, there are few reports on the extraction of valuable components and high value- added utilization of illite in China. Silica is an amorphous silicon acid and silicate product, which is widely used in rubber, textile, papermaking, pesticides, food additives and other fields. How to produce silica in an economic and efficient way is still a very important issue today. Molecular sieve is a solid acid/alkali porous material with rich pore structure, which is widely used in the fields of catalysis, adsorption, drying and purification. At present, the raw materials for the synthesis of molecular sieves are mostly inorganic chemicals, and the preparation process is complex and the cycle is long. However, due to the low cost and wide source of natural silicoaluminate minerals, oligomeric silicoaluminate materials can be generated after simple pretreatment, and the chemical activity is high, which can be used as an ideal raw material for molecular sieve synthesis. The mordenite(MOR) molecular sieve has the characteristics of one-dimensional straight channel structure, two-dimensional space system, high thermal stability and strong acid resistance, which is widely used in the field of adsorption and catalysis. In this paper, silica and MOR molecular sieve products were prepared from illite, and the raw material sources of silica and MOR molecular sieve were expanded to provide theoretical data and reference for high value resource utilization of illite. The main research contents are as follows:
    Firstly, natural illite minerals were activated by thermal activation and alkali fusion activation. Then, silicon was extracted from activated illite to prepare silica, and the optimal preparation conditions of silica were investigated. MOR zeolite molecular sieve was synthesized desilication residue as raw material, and Ni/MOR catalyst was prepared by equal volume impregnation method and its hydroisomerization performance was evaluated. The results show that the dissolution of alkali fusion activated illite is high, which can be used to prepare silica. The optimal conditions for alkali fusion activation were NaOH concentration of 20 wt.%, solid-liquid ratio of 1:4, temperature of 80 ℃, and time of 2.0 h. Under these conditions, the dissolution of SiO2 was as high as 87.4 wt.%. The prepared silica is amorphous material which is composed of tiny particles. It has good thermal stability, rough surface and large BET surface area. The quality index meets the C class requirements of the precipitated hydrated silica chemical industry standard (HG/T3061-2020). MOR was successfully synthesized from desilication residue. The morphology of MOR was regular prism, with large specific surface area and high medium-strong B acid. Ni/MOR catalyst was prepared by impregnating Ni(NO3)2. The isomerization performance of Ni/MOR catalyst was evaluated under the conditions of reaction pressure=1.5 Mpa, reaction temperature=360 ℃, WHSV=3.6 h-1 and V(H2)/V(octane)=400. The results showed that the conversion of n-octane and the yield of isomers were 47.7 % and 42.9 %, respectively. The selectivity of single-branched isomers was 80.3 %, and that of multi-branched isomers was 9.6 %.
    In recent years, due to the advantages of energy saving and environmental protection, the activation of molten salt has shown a good application prospect in the utilization of natural silicon aluminum minerals. In this paper, MOR was prepared directly from illite activated by molten salt. The effects of activation conditions on the activation effect, preparation conditions on the synthesis of MOR, and the amount of mesoporous template on MOR were investigated. Ni/MOR catalysts were prepared by incipient wetness impregnation method and their hydroisomerization performance was evaluated. The results showed that the optimal activation conditions for sub-molten salt activation were as follows: temperature=250 °C, time=4.0 h, NaOH concentration=20 wt.%, and alkali-mineral ratio=2.0. The optimum synthesis conditions of MOR was as follows: crystallization temperature=170 °C, crystallization time=36.0 h, seed addition=9.0 wt.%, HCl addition=0.22 mol. After the addition of CTAB, the mesopores were successfully introduced into the MOR. The mesoporous pore volume of the synthesized MOR first increased and then decreased with the increase of CTAB content. When the CTAB dosage was 0.15, the mesoporous pore volume was the largest, which was 0.0288 cm3/g. The total B acid sites and medium-strong B acid sites of MOR increased first and then decreased with the increase of CTAB dosage. When the CTAB dosage was 0.15, the total B acid sites and medium-strong B acid sites of MOR were the largest, which were 144.92 μmol/g and 100.59 μmol/g, respectively. Compared with the Ni/MOR catalyst prepared by MOR synthesized without mesoporous template, the Ni/MOR catalyst prepared by hierarchical MOR synthesized with CTAB showed better hydroisomerization performance in n-octane.

参考文献:

[1] Sedmale G, Randers M, Rundans M, et al. Application of differently treated illite and illite clay samples for the development of ceramics[J]. Applied Clay Science, 2017; 146: 397-403.

[2] Ishikawa N K, Kuwata M, Ito A, et al. Effect of pH and chemical composition of solution on sorption and retention of cesium by feldspar, illite, and zeolite as cesium sorbent from landfill leachate[J]. Soil Science, 2017; 182(2):63-68.

[3] 陈治平, 王苗苗, 石发翔, 等. 伊利石合成SAPO-11分子筛及其临氢异构化性能[J]. 石油学报(石油加工), 2021; 37(6): 1329-1337.

[4] Gu B, Hong S, Lee C, et al. The feasibility of using bentonite, illite, and zeolite as capping materials to stabilize nutrients and interrupt their release from contaminated lake sediments[J]. Chemosphere, 2019; 219: 217-226.

[5] 李玉芳, 伍小明. 国内外白炭黑的发展现状及前景[J]. 聚合物与助剂, 2012; (2): 12-15.

[6] 孙达, 周长灵, 陈恒, 等. 二氧化硅气凝胶的研究现状及应用前景[J]. 现代技术陶瓷, 2015; 36(4): 24-31.

[7] Liu Y, Lin C, Wu Y. Characterization of red mud derived from a combined bayer process and bauxite calcination method[J]. Journal of Hazardous Materials, 2007; 146(1): 255-261.

[8] Anderson M W, Holmes S M, Hanif N, et al. Hierarchical Pore Structures through Diatom Zeolitization[J]. Angewandte Chemie International Edition, 2000; 39(15): 2707-2710.

[9] 任鑫, 王秀玲, 孙国华, 等. 利用苏州高岭土尾矿制备纯净白炭黑[J]. 化工新型材料, 2014; 42(1): 43-44+50.

[10] Gao G, Zou H, Gan S, et al. Preparation and properties of silica nanoparticles from oil shale ash[J]. Powder Technology, 2009; 191(1): 47-51.

[11] 郭利娜. 内蒙伊利石型粘土矿制备白炭黑及聚合硫酸铝研究[D]. 西安科技大学, 2018.

[12] Baccouche A, Srasra E, Maaoui M E. Preparation of Na-P1 and sodalite octahydrate zeolites from interstratified illite-smectite[J]. Applied Clay Science, 1998; 13(4): 255-273.

[13] 李晓敏, 寇晓威. 东辽县宴平伊利石制取钾肥及4A沸石试验研究[J]. 非金属矿, 2001; 2(5): 45-46.

[14] 端木合顺, 杨立玲. 以伊利石合成4A分子筛的实验研究[J]. 无机盐工业, 2005; 37(7): 26-27.

[15] Mezni M, Hamzaoui A, Hamdi N, et al. Synthesis of zeolites from the low-grade Tunisian natural illite by two different methods[J].Applied Clay Science, 2001; 52(3): 209-218.

[16] Reyes C A, Fiallo L Y. Application of illite-and kaolinite-rich clays in the synthesis of zeolites for wastewater treatment[M]. Earth and Environmental Sciences. London: InTech, 2011; 363-374.

[17] 马玉南, 严春杰, 仇秀梅, 等. 含伊利石的高岭土制备13X沸石分子筛的方法[P]. CN103073023A, 2013-05-01.

[18] 芦静, 陈治平, 李建伟, 等. 伊利石合成磷酸硅铝分子筛及其表征[J]. 无机盐工业, 2022; 54(5): 1-7.

[19] Liu Y, Han S, Guan D, et al. Rapid green synthesis of ZSM-5 zeolite from leached illite clay[J]. Microporous and Mesoporous Materials, 2019; 280: 324-330.

[20] Occelli M L, Gould S A C. Examination of Coked Surfaces of Pillared Rectorite Catalysts with the Atomic Force Microscope[J]. Journal of Catalysis, 2001; 198(1): 41-46.

[21] Ruiz-García M, Villalobos M, Antelo J, et al. Tl(l) adsorption behavior on K-illite and on humic acids[J]. Applied Geochemistry, 2022; 138: 105220.

[22] 李娜, 王凡, 赵恒, 等. 伊利石矿物的主要应用领域述评[J]. 中国非金属矿工业导刊, 2012; (2): 32-36.

[23] 曹刚. 广西某伊利石粘土矿特征与开发利用研究[D]. 武汉理工大学, 2013.

[24] Janowska G, Kucharska-Jastrząbek A, Rybiński P. Thermal stability, flammability and fire hazard of butadiene-acrylonitrile rubber nanocomposites[J]. Journal of Thermal Analysis and Calorimetry, 2011; 103(3): 1039-1046.

[25] Tang L, Li X, Feng H, et al. Infiltration of salt solutions through illite particles: Effect of nanochannel size and cation type[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022; 641: 128581.

[26] Ferrari S, Gualtieri A F. The use of illitic clays in the production of stoneware tile ceramics[J]. Applied Clay Science, 2006; 32(1): 73-81.

[27] Choy J, Choi S, Oh J, et al. Clay minerals and layered double hydroxides for novel biological applications[J]. Applied Clay Science, 2007; 36(1): 122-132.

[28] Romero A, Ares I, Ramos E, et al. Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay[J]. Toxicology, 2016; 353-354: 21-33.

[29] Pineda-Piñón J, Vega-Durán J T, Manzano-Ramírez A, et al. Enhancement of mechanical and hydrophobic properties of Adobes for Building Industry by the addition of polymeric agents[J]. Building and Environment, 2007; 42(2): 877-883.

[30] 邱峰. 某伊利石矿合成丝光沸石分子筛的实验研究[D]. 江西理工大学, 2017.

[31] Liu Y, Han S, Guan D, et al. Rapid green synthesis of ZSM-5 zeolite from leached illite clay[J]. Microporous and Mesoporous Materials, 2019; 280: 324-330.

[32] Chen S, Guan D, Zhang Y, et al. Composition and kinetic study on template- and solvent-free synthesis of ZSM-5 using leached illite clay[J]. Microporous and Mesoporous Materials, 2019; 285: 170-177.

[33] Han S, Liu Y, Yin C, et al. Fast synthesis of submicron ZSM-5 zeolite from leached illite clay using a seed-assisted method[J]. Microporous and Mesoporous Materials, 2019; 275: 223-228.

[34] Mezni M, Hamzaoui A, Hamdi N, et al. Synthesis of zeolites from the low-grade Tunisian natural illite by two different methods[J]. Applied Clay Science, 2011; 52(3): 209-218.

[35] Jiang Y, Wang L, Zhang Z. Development and prospect for domestic and overseas white carbon black[J]. Advanced Materials Research, 2013; 826: 171-174.

[36] 刘朋程, 张旭东, 何文, 等. 白炭黑制备、改性及应用研究[J]. 山东陶瓷, 2009; 32(6): 19-21.

[37] Gao G, Zou H, Gan S, et al. Preparation and properties of silica nanoparticles from oil shale ash[J]. Powder Technology, 2009; 191(1): 47-51.

[38] Cheng Q, Xu C, Huang W, et al. Preparing high purity white carbon black from rice husk[J]. Food Science & Nutrition, 2020; 8(1): 575-583.

[39] Liou T. Preparation and characterization of nano-structured silica from rice husk[J]. Materials Science and Engineering: A, 2004; 364(1): 313-323.

[40] Kayali O, Zhu B. Corrosion performance of medium-strength and silica fume high-strength reinforced concrete in a chloride solution[J]. Cement and Concrete Composites, 2005; 27(1): 117-124.

[41] Cui G, Wang S, Yin P, et al. Study of viscoelastic properties of white carbon black reinforced synthetic polyisoprene[J]. Chinese Journal of Polymer Science, 2016; 34(4): 457-465.

[42] 柯加良. 气相白炭黑在塑料工业中的应用[J]. 有机硅氟资讯, 2006; 12: 25-28.

[43] Li T, Liu H, Fan Y, et al. Synthesis of zeolite Y from natural aluminosilicate minerals for fluid catalytic cracking application[J]. Green Chemistry, 2012; 14(12): 3255-3259.

[44] Yue Y, Liu H, Yuan P, et al. From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: A nanoscale depolymerization-reorganization approach[J]. Journal of Catalysis, 2014; 319: 200-210.

[45] Ding J, Liu H, Yuan P, et al. Catalytic properties of a hierarchical zeolite synthesized from a natural aluminosilicate mineral without the use of a secondary mesoscale template[J]. ChemCatChem, 2013; 5(8): 2258-2269.

[46] Reyes C A R, Williams C D, Alarcon C O M. Synthesis of zeolite LTA from thermally treated kaolinite[J]. Rev Fac Ing Univ Antioquia, 2010; 53: 30-41.

[47] Cho K, Na K, Kim J, et al. Zeolite synthesis using hierarchical structure-directing surfactants: retaining porous structure of initial synthesis gel and precursors[J]. Chemistry of Materials, 2012; 24(14): 2733-2738.

[48] Ayele L, Pérez-Pariente J, Chebude Y, et al. Conventional versus alkali fusion synthesis of zeolite A from low grade kaolin[J]. Applied Clay Science, 2016; 132-133: 485-490.

[49] Wei B, Liu H, Li T, et al. Natural rectorite mineral: A promising substitute of kaolin for in-situ synthesis of fluid catalytic cracking catalysts[J]. AIChE Journal, 2010; 56(11): 2913-2922.

[50] 鲍晓军, 岳源源, 李铁森. 一种ZSM-5型分子筛的合成方法[P]. CN103848439A, 2014.

[51] Liu H, Shen T, Li T, et al. Green synthesis of zeolites from a natural aluminosilicate mineral rectorite: Effects of thermal treatment temperature[J]. Applied Clay Science, 2014; 90: 53-60.

[52] Liu H, Shen T, Wang W, et al. From natural aluminosilicate minerals to zeolites: synthesis of ZSM-5 from rectorites activated via different methods[J]. Applied Clay Science, 2015; 115: 201-211.

[53] 姜男哲, 金星华, 历新宇, 等. 一种伊利石无模板合成多级孔ZSM-5沸石分子筛的方法[P]. CN109336129A, 2019.

[54] Liu Y, Han S, Guan D, et al. Rapid green synthesis of ZSM-5 zeolite from leached illite clay[J]. Microporous and Mesoporous Materials, 2019; 280: 324-340.

[55] Meng Y, Zhao B, Zhang H, et al. Synthesis of zeolite W from potassic rocks activated by KOH sub-molten salt method[J]. Crystal Research and Technology, 2018; 53(6): 1700216.

[56] Feng H, Li C, Shan H. In-situ synthesis and catalytic activity of ZSM-5 zeolite[J]. Applied Clay Science, 2009; 42(3): 439-445.

[57] Wang Y, Tang Y, Wang X, et al. Fabrication of hierarchical structured zeolitic materials through vapor-phase transforming of the seeded diatomite[J]. Chemistry Letters, 2002; 31(8): 862-863.

[58] Li X, Prins R, Bokhoven J A V. Synthesis and characterization of mesoporous mordenite[J]. Journal of Catalysis, 2009; 262(2): 257-265.

[59] Pastvova J, Kaucky D, Moravkova J, et al. Effect of enhanced accessibility of acid sites in micromesoporous mordenite zeolites on hydroisomerization of n-Hexane[J]. ACS Catalysis, 2017; 7(9): 5781-5795.

[60] Chen C, Ouyang X, Zones S I, et al. Characterization of shape selective properties of zeolites via hydroisomerization of n-hexane[J]. Microporous and Mesoporous Materials, 2012; 164: 71-81.

[61] 毕云飞, 夏国富, 黄卫国, 等. 加氢异构化催化剂的研究——酸性能的影响[J]. 石油学报(石油加工), 2017; 33(5): 873-879.

[62] Reule A A C, Sawada J A, Semagina N. Effect of selective 4-membered ring dealumination on mordenite-catalyzed dimethyl ether carbonylation[J]. Journal of Catalysis, 2017; 349: 98-109.

[63] 田勇, 钱欣瑞, 余利民, 等. 基于MATLAB的球形催化剂颗粒中各组分浓度分布的解析计算[J]. 化工高等教育, 2013; 30(4): 85-88.

[64] Triantafillidis C, Vlessidis A G, Evmiridis N P. Dealuminated H-Y Zeolites: Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites[J]. Industrial & Engineering Chemistry Research, 2000; 39(2): 307-319.

[65] Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies[J]. Advanced Functional Materials, 2012; 22(5): 916-928.

[66] Stefanidis S, Kalogiannis K, Iliopoulou E F, et al. Mesopore-modified mordenites as catalysts for catalytic pyrolysis of biomass and cracking of vacuum gasoil processes[J]. Green Chemistry, 2013; 15(6): 1647-1658.

[67] Schmidt I, Madsen C, Jacobsen C J H. Confined space synthesis. a novel route to nanosized zeolites[J]. Inorganic Chemistry, 2000; 39(11): 2279-2283.

[68] Schwanke A, Villarroel-Rocha J, Sapag K, et al. Dandelion-like microspherical MCM-22 zeolite using BP 2000 as a hard template[J]. ACS Omega, 2018; 3(6): 6217-6223.

[69] Serrano D P, Escola J M, Pizarro P. Synthesis strategies in the search for hierarchical zeolites[J]. Chemical Society Reviews, 2013; 42(9): 4004-4035.

[70] Xiao F, Wang L, Yin C, et al. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angewandte Chemie International Edition, 2006; 45(19): 3090-3093.

[71] Serrano D P, Aguado J, Escola J M, et al. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds[J]. Chemistry of Materials, 2006; 18(10): 2462-2464.

[72] Petushkov A, Yoon S, Larsen S C. Synthesis of hierarchical nanocrystalline ZSM-5 with controlled particle size and mesoporosity[J]. Microporous and Mesoporous Materials, 2011; 137(1): 92-100.

[73] Zhao J, Yin Y, Li Y, et al. Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates[J]. Chemical Engineering Journal, 2016; 284: 405-411.

[74] Groen J C, Zhu W, Brouwer S, et al. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. Journal of the American Chemical Society, 2007; 129(2): 355-360.

[75] 张萍. 烃类异构化催化剂的制备、表征及催化性能[D]. 中国石油大学(北京), 2018.

[76] Van laak A N C, Gosselink R W, Sagala S L, et al. Alkaline treatment on commercially available aluminum rich mordenite[J]. Applied Catalysis A: General, 2010; 382(1): 65-72.

[77] Jacobsen C, Madsen C, Houzvicka J, et al. Mesoporous zeolite single crystals[J]. Journal of the American Chemical Society, 2000; 122(29): 7116-7117.

[78] Chen H, Wydra J, Zhang X, et al. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure[J]. Journal of the American Chemical Society, 2011; 133(32): 12390-12393.

[79] Schmidt I, Boisen A, Gustavsson E, et al. Carbon nanotube templated growth of mesoporous zeolite single crystals[J]. Chemistry of Materials, 2001; 13(12): 4416-4418.

[80] Jin Y, Li Y, Zhao S, et al. Synthesis of mesoporous MOR materials by varying temperature crystallizations and combining ternary organic templates[J]. Microporous and Mesoporous Materials, 2012; 147(1): 259-266.

[81] Li Y, Sun C, Fan W, et al. One-pot synthesis of hierarchical mordenite and its performance in the benzylation of benzene with benzyl alcohol[J]. Journal of Materials Science, 2015; 50(14): 5059-5067.

[82] Möller K, Yilmaz B, Jacubinas R M, et al. One-Step Synthesis of hierarchical zeolite beta via network formation of uniform nanocrystals[J]. Journal of the American Chemical Society, 2011; 133(14): 5284-5295.

[83] Sheng N, Xu H, Liu X, et al. Self-formation of hierarchical SAPO-11 molecular sieves as an efficient hydroisomerization support[J]. Catalysis Today, 2020; 350: 165-170.

[84] Wang H, Li B, Lu X, et al. Selective catalytic reduction of NO by methane over the Co/MOR catalysts in the presence of oxygen[J]. Journal of Fuel Chemistry and Technology, 2015; 43(9): 1106-1112.

[85] Zhang J, Rao C, Peng H, et al. Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite[J]. Chemical Engineering Journal, 2018; 334: 10-18.

[86] Wang M, Huang S, Lü J, et al. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether[J]. Chinese Journal of Catalysis, 2016; 37(9): 1530-1537.

[87] 崔仙. 多级孔道丝光沸石的合成及其催化性能的研究[D]. 大连理工大学, 2014.

[88] 胡志波, 郑水林, 陈洋, 等. 沉淀白炭黑吸湿特性及动力学、热力学分析[J]. 化工进展, 2017; 36(5): 1818-1824.

[89] Zhang Y, Zhang Z, Feng D, et al. Effect of microbubbles on preparation of precipitated silica by carbonization: physical-chemical structure, kinetic parameters and mass transfer characteristics[J]. Carbon Capture Science & Technology, 2021; 1: 100002.

[90] Supiyani, Agusnar H, Sugita P, et al. Preparation sodium silicate from rice husk to synthesize silica nanoparticles by sol-gel method for adsorption water in analysis of methamphetamine[J]. South African Journal of Chemical Engineering, 2022; 40: 80-86.

[91] Daulay A, Andriayani, Marpongahtun, et al. Extraction silica from rice husk with NaOH leaching agent with temperature variation burning rice husk[J]. Rasayan Journal of Chemistry, 2021; 14: 2125-2128.

[92] Daulay A, Andriayani, Marpongahtun, et al. Effect of variation temperature at burning rice husk to obtain silica[J]. AIP Conference Proceedings, 2021; 2342(1): 040001.

[93] Romero-Hernández N, Moreno N G, Mata J H, et al. Preparation of functional poly (vinyl acetate)-Silica nanocomposites by hybrid sol-gel process[J]. Ceramics International, 2022; 48(5): 6097-6102.

[94] Liu Y, Liu X, Zheng D, et al. Fast synthesis of hierarchical mordenite templated by nanocrystalline cellulose for isomerization of α-Pinene[J]. Industrial Crops and Products, 2021; 160: 113139.

[95] Liu Y, Zheng D, Li B, et al. Isomerization of α-pinene with a hierarchical mordenite molecular sieve prepared by the microwave assisted alkaline treatment[J]. Microporous and Mesoporous Materials, 2020; 299: 110117.

[96] Tamizhdurai P, Ramesh A, Krishnan P S, et al. Effect of acidity and porosity changes of dealuminated mordenite on n-pentane, n-hexane and light naphtha isomerization[J]. Microporous and Mesoporous Materials, 2019; 287: 192-202.

[97] Ren L, Wang B, Lu K, et al. Selective conversion of methanol to propylene over highly dealuminated mordenite: Al location and crystal morphology effects[J]. Chinese Journal of Catalysis, 2021; 42(7): 1147-1159.

[98] Sheng H, Qian W, Zhang H, et al. Synthesis of hierarchical porous h-mordenite zeolite for carbonylation of dimethyl ether[J]. Microporous and Mesoporous Materials, 2020; 295: 109950.

[99] Wang X, Li R, Yu C, et al. Enhanced activity and stability over hierarchical porous mordenite (MOR) for carbonylation of dimethyl ether: Influence of mesopores[J]. Journal of Fuel Chemistry and Technology, 2020; 48(8): 960-969.

[100] Kurniawan T, Muraza O, Bakare I A, et al. Isomerization of n-Butane over cost-effective mordenite catalysts fabricated via recrystallization of natural zeolites[J]. Industrial & Engineering Chemistry Research, 2018; 57(6): 1894-1902.

[101] 卜佳玉, 王东军, 颜子金, 等. 模板剂和助剂对Pt/MOR催化剂临氢异构性能的影响[J]. 石油炼制与化工, 2018; 49(9): 69-74.

[102] Lu J, Wang Y, Sun C, et al. Novel synthesis and catalytic performance of hierarchical MOR[J]. New Journal of Chemistry, 2021; 45(19): 8629-8638.

[103] Liu M, Jia W, Liu X, et al. Transalkylation properties of hierarchical MFI and MOR zeolites: direct synthesis over modulating the zeolite grow kinetics with controlled morphology[J]. Catalysis Letters, 2018; 148(5): 1396-1406.

[104] 王恩华, 靳丽丽, 高善彬, 等. 正构烷烃临氢异构化催化剂研究进展[J]. 化工进展, 2022; 1-18.

[105] Martens J, Souverijns W, Verrelst W, et al. Selective Isomerization of Hydrocarbon Chains on External Surfaces of Zeolite Crystals[J]. Angewandte Chemie-international Edition, 1995; 34: 2528-2530.

[106] Guo L, Bao X, Fan Y, et al. Impact of cationic surfactant chain length during SAPO-11 molecular sieve synthesis on structure, acidity, and n-octane isomerization to di-methyl hexanes[J]. Journal of Catalysis, 2012; 294: 161-170.

[107] 李政. 正己烷异构化催化剂的研制及性能评价[D]. 中国石油大学(北京), 2017.

[108] 宋紫君, 于中伟, 刘洪全, 等. Pt-SO42-/ZrO2催化正丁烷异构化反应的性能[J]. 石油学报(石油加工), 2022; 38(2): 266-274.

中图分类号:

 TE624    

开放日期:

 2023-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式