- 无标题文档
查看论文信息

论文中文题名:

 基于润湿和团聚特性的电解质-复合表面活性剂降尘性能研究    

姓名:

 王登飞    

学号:

 19220214064    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 工业粉尘防治    

第一导师姓名:

 罗振敏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-10    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Study on dust suppression performance of electrolyte-composite surfactant based on wetting and agglomeration characteristics    

论文中文关键词:

 煤尘润湿 ; 煤尘团聚 ; 降尘性能 ; 碳氢表面活性剂 ; 电解质 ; 氟碳表面活性剂 ; 煤油共生    

论文外文关键词:

 Coal dust wetting ; Coal dust agglomeration ; Dust suppression performance ; Hydrocarbon surfactant ; Electrolyte ; Fluorocarbon surfactant ; Kerosene symbiosis    

论文中文摘要:

    随着煤矿智能化、机械化、自动化水平的日益提高,作业环境煤尘污染日益严重,严重威胁环境和人体职业卫生健康,而复合抑尘剂能大幅度降低煤尘产生,是解决煤尘问题有效的方法之一。因此本文旨在研究制备出一种适用于实际复杂煤尘环境下的复合抑尘剂,对煤矿工作人员的职业安全健康具有重要意义。研究发现,抑尘剂的降尘性能受不同浓度抑尘剂、不同种类抑尘剂、不同变质程度煤样、不同粒径煤样、不同含油量煤样等多种因素影响,且抑尘剂作用于煤尘表面的降尘性能主要由润湿及团聚性能决定,两者对降尘性能的影响大小并未研究。因此,本论文通过润湿性实验(沉降实验、表面张力实验)、团聚性实验(稳定态实验、扫描电镜实验)以及抗风蚀性实验(风洞模拟实验),研究了多因素影响下抑尘剂的润湿性能、团聚性能、降尘性能,分析了多因素对三大性能影响,并应用Spearman量化分析了润湿、团聚与抗风蚀性之间的相关性,确定润湿性能和团聚性能的主导性。最后通过响应曲面法对抑尘剂配方优化,找出可应用于实际复杂煤尘环境下的抑尘剂最优解,为煤矿现场应用抑尘剂降低煤尘产生,防止煤尘超限引起的一系列问题提供了数据参考,具体工作内容包括以下几个方面:

    (1)首先选取SDBS 、AES、APG-10以及FMEE四种碳氢表面活性剂进行润湿性、团聚性、抗风蚀性实验,开展了不同影响因素下的润湿、团聚、降尘性能研究。基于电解质对碳氢表面活性剂降尘性能的提升效果,选取NaCl、CuSO4、NaAc三种电解质进行碳氢-电解质二元抑尘剂的润湿、团聚、降尘性能研究,并通过Spearman相关性分析判断润湿性能及团聚性能的主导性。研究发现,SDBS和FMEE的三大性能高于AES和APG-10;电解质能大幅度提升碳氢表面活性剂的三大性能,且NaCl和NaAc对表面活性剂的提升效果高于CuSO4;针对不同变质程度煤样,阴离子碳氢表面活性剂、阴离子-电解质对褐煤的敏感程度远远高于烟煤与无烟煤,非离子碳氢表面活性剂、非离子-电解质对烟煤与无烟煤的敏感程度远远高于褐煤;团聚性能在降尘性能方面占主导地位。

    (2)通过上述研究,选取降尘性能较好的SDBS、FMEE碳氢表面活性剂进行后续研究,基于碳氢-短链氟碳表面活性剂较单一碳氢表面活性剂更优异的降尘性能,选取FS-50、FS-3100两种氟碳表面活性剂进行碳氢-短链氟碳表面活性剂的润湿、团聚、降尘性能研究。在此核心基础上,选取三大性能最优的碳氢-短链氟碳表面活性剂并加入电解质形成碳氢-短链氟碳-电解质三元抑尘剂,并对其进行润湿、团聚、降尘性能研究。最后,再次通过Spearman相关性分析判断润湿性能及团聚性能的主导性。研究发现,短链氟碳表面活性剂能在一定程度上提升碳氢表面活性剂的润湿、团聚、降尘性能,且FS-3100的提升效果优于FS-50;电解质对碳氢-短链氟碳表面活性剂的三大性能仍有明显的促进效果,且NaAc的提升效果优于NaCl;针对不同粒径煤样,碳氢-短链氟碳-电解质在团聚性方面呈现出50-74μm>75-154μm>50μm以下,碳氢-短链氟碳-电解质在润湿性方面、碳氢-短链氟碳表面活性剂在润湿及团聚性能方面皆表现为75-154μm>50-74μm>50μm以下;团聚性能在降尘性能方面占主导地位。

    (3)上述两部分仅对抑尘剂作用于非煤油共生环境下煤尘表面的基础物理特性进行了研究,且煤颗粒含油量较低,而对煤油共生环境下抑尘剂的润湿、团聚、降尘性能并未涉及,高性能且可应用于不同煤尘环境下的抑尘剂还未找到。因此,此部分选取对碳氢表面活性剂三大性能提升较好的FS-3100进行后续研究,对SDBS、FMEE、FS-3100、NaCl、NaAc进行煤油共生环境下三元抑尘剂性能研究。在此核心基础上,应用响应曲面法对抑尘剂配方进行优化,得到可应用于煤油共生和不共生环境下的抑尘剂最优解。研究发现,煤尘含油量增加会降低抑尘剂的润湿性能,提高抑尘剂的团聚性能;FMEE+FS-3100+NaAc复合抑尘剂的降尘效果较其他抑尘剂而言更优;0.08% FMEE、0.07%FS-3100、3.00%NaAc时,复配体达到最优解,降尘率为88.13%,该抑尘剂可应用于煤油共生和不共生环境中。

论文外文摘要:

    With the increasing level of coal mine intelligence, mechanization and automation, the coal dust pollution in the working environment is becoming more and more serious, which seriously threatens the environment and human occupational health. The compound dust suppressant can greatly reduce the coal dust, and it is one of the effective methods to solve the coal dust problem. Therefore, the purpose of this paper is to study and prepare a compound dust suppressant suitable for the actual complex coal dust environment, which is of great significance to the occupational safety and health of coal mine workers. It is found that the dust suppression performance of dust suppressants is influenced by many factors, such as different concentrations, different kinds of dust suppressants, coal samples with different metamorphic degrees, coal samples with different particle sizes and coal samples with different oil content, and the dust suppression performance of dust suppressants on coal dust surface is mainly determined by wetting and agglomeration performance. The influence of both on dust suppression performance has not been studied. Therefore, in this paper, through wettability experiment (sedimentation experiment, surface tension experiment), agglomeration experiment (steady state experiment, scanning electron microscope experiment) and wind erosion resistance experiment (wind tunnel simulation experiment), the wetting performance, agglomeration performance and dust suppression performance of dust suppressant under the influence of many factors are studied, and the influences of many factors on the three performances are analyzed. The correlation between wetting, agglomeration and wind erosion resistance is quantitatively analyzed by Spearman, and the wetting performance and dust suppression performance are determined. Finally, the formula of dust suppressant is optimized by response surface methodology, and the optimal solution of dust suppressant that can be applied in the actual complex coal dust environment is found, which provides data reference for the application of dust suppressant in coal mine to reduce coal dust production and prevent a series of problems caused by coal dust overrun. The specific work contents include the following aspects:

     (1) Firstly, four hydrocarbon surfactants, SDBS, AES, APG-10 and FMEE, were selected for experiments on wettability, agglomeration and wind erosion resistance, and the wettability, agglomeration and dust suppression performance under different influencing factors were studied. Based on the improvement effect of electrolytes on the dust suppression performance of hydrocarbon surfactants, three electrolytes, NaCl, CuSO4 and NaAc, were selected to study the wetting, agglomeration and dust suppression performance of hydrocarbon-electrolyte binary dust suppressant, and the dominance of wetting and agglomeration performance was judged by Spearman correlation analysis. It is found that the three performances of SDBS and FMEE are higher than those of AES and APG-10;Electrolyte can greatly improve the three properties of hydrocarbon surfactant, and NaCl and NaAc have higher effect on surfactant than CuSO4;For coal samples with different metamorphic degrees, the sensitivity of anionic hydrocarbon surfactant and anionic electrolyte to lignite is much higher than that of bituminous coal and anthracite, and the sensitivity of nonionic hydrocarbon surfactant and nonionic electrolyte to bituminous coal and anthracite is much higher than that of lignite;Agglomeration performance is dominant in dust suppression performance.

    (2) Through the above research, SDBS and FMEE hydrocarbon surfactants with good dustfall performance were selected for follow-up research. Based on the superior dustfall performance of hydrocarbon-short chain fluorocarbon surfactants compared with single hydrocarbon surfactant, FS-50 and FS-3100 were selected to study the wetting, agglomeration and dustfall performance of hydrocarbon-short chain fluorocarbon surfactants. On the basis of this core, three hydrocarbon-short chain fluorocarbon surfactants with the best performance were selected and electrolyte was added to form a ternary dust suppressant, and its wetting, agglomeration and dust suppression properties were studied. Finally, Spearman correlation analysis is used to judge the dominance of wetting property and agglomeration property. It is found that short-chain fluorocarbon surfactant can improve the wetting, agglomeration and dust suppression performance of hydrocarbon surfactant to a certain extent, and FS-3100 is better than FS-50.Electrolyte hydrocarbon-short chain fluorocarbon surfactant still has obvious promotion effect on three properties, and the promotion effect of NaAc is better than that of NaCl;For coal samples with different particle sizes, the agglomeration of hydrocarbon-short-chain fluorocarbon-electrolyte is 50-74μm>75-154μm>under 50μm, the wettability of hydrocarbon-short-chain fluorocarbon-electrolyte and wettability and agglomeration of hydrocarbon-short-chain fluorocarbon surfactant are all 75-154μm>50-74μm>under 50μm;Agglomeration is dominant in dust suppression.

    (3) The above two parts only studied the basic physical characteristics of dust suppressants acting on the surface of coal dust in non-kerosene symbiotic environment, and the oil content of coal particles was low, but the wetting, agglomeration and dust-settling performance of dust suppressants in kerosene symbiotic environment were not involved, and dust suppressants with high performance that can be applied in different coal dust environments were not found. Therefore, in this part, FS-3100, which has improved the three major properties of hydrocarbon surfactants, is selected for follow-up research, and the performance of SDBS, FMEE,FS-3100,NaCl and NaAc as ternary dust suppressants in kerosene symbiotic environment is studied. On the basis of this core, the formula of dust suppressant was optimized by response surface methodology, and the optimal solution of dust suppressant that can be applied in kerosene symbiotic and non-symbiotic environment was obtained.It is found that increasing the oil content of coal dust will reduce the wetting performance of dust suppressant and improve the agglomeration performance of dust suppressant. The dust suppression effect of FMEE+FS-3100+NaAc compound dust suppressant is better than other dust suppressants. When 0.08% FMEE,0.07%FS-3100 and 3.00%NaAc were used, the compound reached the optimal solution, and the dust suppression rate was 88.13%.This dust suppressant can be used in the symbiotic and non-symbiotic environment of kerosene.

参考文献:

[1]Xu G, Chen Y P, Eksteen J, et al. Surfactant-aided coal dust suppression: a review of evaluation methods and influencing factors[J]. Science of the Total Environment, 2018, 639: 1060-1076.

[2]NiyazI A F, Bilgehan A, Engin T, et al. Descriptive characteristics of coal workers' pneumoconiosis cases in Turkey[J]. Iranian Journal of Public Health, 2014, 43(3): 389-390.

[3]Pollock D E, Potts J D, Joy G J. Investigation into dust exposures and mining practices in mines in the southern appalachian region[J]. Mining Engineering, 2010, 62(2): 44-49.

[4]Ross M H, Murray J. Occupational respiratory disease in mining[J]. Occupational Medicine, 2004, 54(5): 304-310.

[5]Weeks, James L. Occupational health and safety regulation in the coal mining industry: public health at the workplace[J]. Annu Rev Public Health, 1991, 12(1): 195-207.

[6]李涛, 张敏, 李德鸿, 等. 中国职业卫生发展现状[J]. 工业卫生与职业病, 2004, 30(2): 65-68.

[7]Han L, Gao Q, Yang J, et al. Survival analysis of coal workers' pneumoconiosis (CWP) patients in a state-owned mine in the east of China from 1963 to 2014[J]. International Journal of Environmental Research & Public Health, 2017, 14(5): 489-499.

[8]Gibson P G, Brims F J, Silverstone E J. Coal workers' pneumoconiosis: an Australian perspective[J]. Medical Journal of Australia Journal of the Australian Medical Association, 2016.

[9]Zhang D, Liu B. Statistics and prospect of occupational diseases of mine in China[J]. China Energy Environmental Protection, 2017, 39(9): 173-178.

[10]程卫民, 周刚, 陈连军, 等. 我国煤矿粉尘防治理论与技术20年研究进展及展望[J]. 煤炭科学技术, 2020, 48(2): 1-20.

[11]陈学栋. 露天煤矿胶带机运煤过程产尘机理及抑尘技术研究[D]. 辽宁工程技术大学, 2020.

[12]宁业敏, 廖伟英. 柳州电厂输煤系统粉煤尘污染的治理[J]. 广西电力技术, 1999, 22(1): 20-22.

[13]曹丽琼. 生态型煤尘抑制剂的制备与应用研究[D]. 山西大学, 2011.

[14]Rosa L S, Jeb S T, Steve L W. Stabilization of silty sand with nontraditional additives[J]. Transportation Research Record Journal of the Transportation Research Board, 2002, 1787: 61-70.

[15]Marto A, Latifi N, Eisazadeh A. Effect of non-traditional additives on engineering and microstructural characteristics of laterite doil[J]. Arabian Journal for Science and Engineering, 2014, 39(10): 6949-6958.

[16]王姣龙, 胡志光, 张玉玲. 化学抑尘剂的研究现状分析[J]. 化学工程师, 2014, 28(7): 51-3+69.

[17]Fatehi P, Ni Y. Integrated forest biorefinery - prehydrolysis/dissolving pulping process[J]. Acs Symposium, 2011, 2018(3): 475-506.

[18]Giner S G, Suhr M,Klein G. Best available techniques (BAT) reference document for the production of pulp[J]. Paper and Board, 2015.

[19]Hu, Thomas Q. Chemical Modification, Properties, and Usage of lignin[M]. Springer, Boston, MA, 2002.

[20]Stern T, Schwarzbauer P. Wood-based lignosulfonate versus synthetic polycarboxylate in concrete admixture systems: The perspective of a traditional pulping by-product competing with an oil-based substitute in a business-to-business market in central Europe[J]. Forest Products Journal, 2008, 58(1/2): 81-86.

[21]王族友. 高倍吸水树脂抑尘剂在公路施工中的应用研究[D]. 长沙理工大学, 2007.

[22]王萌. 矿用高效抑尘剂的制备及表征[D]. 西安科技大学, 2013.

[23]Drelich J, Laskowski J, Pawlik M, et al. Preparation of a coal surface for contact angle measurements[J]. Journal of Adhesion Science and Technology, 1997, 11(11): 1399-1431.

[24]Arnold B J, Aplan F F. The hydrophobicity of coal macerals[J]. Fuel, 1989, 68(5): 651-658.

[25]Gutierrez-Rodriguez J A, Purcell R J, Aplan F F. Estimating the hydrophobicity of coal[J]. Colloids and Surfaces, 1984, 12: 1-25.

[26]Li J, Zhou F, Liu H. The selection and application of a compound wetting agent to the coal seam water infusion for dust control[J]. International Journal of Coal Preparation and Utilization, 2016, 36: 192-206.

[27]Koch B, Amirfazli A, Elliott J. Modeling and measurement of contact angle hysteresis on textured high-contact-angle surfaces[J]. The Journal of Physical Chemistry C, 2014, 118(32): 18554-18563.

[28]尹东霞, 马沛生, 夏淑倩. 液体表面张力测定方法的研究进展[J]. 科技通报, 2007, 23(3): 424-429.

[29]Chen Y P, Xu G, Huang J, et al. Characterization of coal particles wettability in surfactant solution by using four laboratory static tests[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2019, 567: 304-312.

[30]Cybulski K, Malich B, Wieczorek A. Evaluation of the effectiveness of coal and mine dust wetting[J]. Journal of Sustainable Mining, 2015, 14(2): 83-92.

[31]Draves C Z, Clarkso R. A new method for the evaluation of wetting agents[R]. editor Am Dyest Report, 1931.

[32]Walker P L, Petersen E E, Wright C C. Surface active agent phenomena in dust abatement[J]. Industrial and Engineering Chemistry, 1952, 44(10): 2389-2393.

[33]阎杰, 杨永竹, 段龙, 等. 基于响应面法的煤尘抑尘剂配方的优化研究[J]. 应用化工, 2019, 48(9): 2036-2040.

[34]Wu C, Ou J C, Zhou B. Coupling of anionic wetting agents to dust of sulfide ores by dropping liquid method[J]. Journal of Central South University of Technology(English Edition), 2005, 12(6): 737-741.

[35]Wu C. Wetting agent investigation for controlling dust of lead-zinc ores[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(1): 159-167.

[36]Kilau H W. The wettability of coal and its relevance to the control of dust during coal mining[J]. Journal of Adhesion Science and Technology, 1993, 7(6): 649-667.

[37]Pollock D, Organiscak J. Airborne dust capture and induced airflow of various spray nozzle designs[J]. Aerosol Science Technology, 2007, 41(7): 711-720.

[38]Zhou Q, Qin B, Ma D, et al. Novel technology for synergetic dust suppression using surfactant-magnetized water in underground coal mines[J]. Transactions of The Institution of Chemical Engineers Process Safety and Environmental Protection, 2017, 109: 631-638.

[39]Zhang J, Shao Y, Huang N. Measurements of dust deposition velocity in a wind-tunnel experiment[J]. Atmospheric Chemistry hysics, 2014, 14(17): 8869-8882.

[40]杨树莹, 周磊, 杨林军, 等. 高分子抑尘剂对褐煤矿场细颗粒物的抑制特性[J]. 煤炭学报, 2019, 44(2): 528-535.

[41]Tessum M W, Raynor P C, Keating-Klika L. Factors influencing the airborne capture of respirable charged particles by surfactants in water sprays[J]. Journal of Occupational and Environmental Hygiene, 2014, 11(9): 571-582.

[42]杨静, 刘丹丹, 祝秀林, 等. 化学抑尘剂的研究进展[J]. 化学通报, 2013, 76(4): 346-353.

[43]金龙哲, 黄元平. 粘结抑尘方法的研究与试验[J]. 煤炭学报, 1997, 22(4): 76-80.

[44]Tingle J, Newman J, Larson& Steve, et al. Stabilization mechanisms of nontraditional additives[J]. Transportation Research Record Journal of the Transportation Research Board, 2007, 1989: 59-67.

[45]陈军良. 路面及散体物料场扬尘防治新方法评述[J]. 有色矿冶, 1996, 12(3): 21-25.

[46]高学伟. 微波辅助聚丙烯酸类高吸水性树脂的合成及应用研究[D]. 燕山大学, 2010.

[47]常婷, 程芳琴. 表面活性剂在化学抑尘中的应用[J]. 科技情报开发与经济, 2009, 19(11): 122-124.

[48]王新会. 煤尘抑尘剂的研究[D]. 内蒙古工业大学, 2010.

[49]肖雨晨. 软膜型纤维素抑尘剂的制备及应用研究[D]. 陕西科技大学, 2015.

[50]陈昕. 复合型水溶性的高分子抑尘剂的研究[D]. 南昌大学, 2018.

[51]Aro T, Fatehi P. Production and application of lignosulfonates and sulfonated lignin[J]. Chemsuschem, 2017, 10(9): 1861-1877.

[52]Lyu S, Chen X, Shah S M, et al. Experimental study of influence of natural surfactant soybean phospholipid on wettability of high-rank coal[J]. Fuel, 2019, 239(1): 1-12.

[53]Lai J, Kai Z, Wang W, et al. Research advances and prospect in chemical sand-fixing materials[J]. Journal of Desert Research, 2017, 37(4): 644-658.

[54]Zang Y X, Gong W, Xie H, et al. Chemical sand stabilization: A review of material, mechanism, and problems[J]. Environmental Technology Reviews, 2015, 4(1): 119-132.

[55]Wei X, Zhang Y, Wu G, et al. Study on explosion suppression of coal dust with different particle size by shell powder and NaHCO3[J]. Fuel, 2021, 306(17): 121709.

[56]Zhang H, Nie W, Yan J, et al. Preparation and performance study of a novel polymeric spraying dust suppression agent with enhanced wetting and coagulation properties for coal mine[J]. Powder Technology, 2019, 364: 901-914.

[57]林木松, 马磊, 李宇春, 等. 环保型煤流抑尘剂的研制及工业试验研究[J]. 中国电力, 2017, 50(8): 168-172.

[58]苟尚旭, 刘荣华, 王鹏飞, 等. 表面活性剂对煤的润湿性影响[J]. 矿业工程研究, 2016, 31(4): 24-27.

[59]Chen Y P, Xu G, Albijanic B. Evaluation of SDBS surfactant on coal wetting performance with static methods: Preliminary laboratory tests[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2017, 39(3): 1-11.

[60]Wang X, Yuan S, Jiang B. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples[J]. Advanced Powder Technology, 2019, 30(8): 1696-1708.

[61]阎杰, 谢军, 陈聪, 等. 国内外化学抑尘剂研究进展及应用前景[J]. 河北建筑工程学院学报, 2017, 35(3): 123-125.

[62]Ding X, Xu G, Liu W V, et al. Effect of polymer stabilizers' viscosity on red sand structure strength and dust pollution resistance[J]. Powder Technology, 2019, 352: 117-125.

[63]曹水静, 杨志远, 贺宇, 等. 井下煤尘泡沫抑尘剂制备和性能研究[J]. 煤炭工程, 2017, 49(3): 87-90.

[64]Dou G, Xu C. Comparison of effects of sodium carboxymethylcellulose and superabsorbent polymer on coal dust wettability by surfactants[J]. Journal of Dispersion Science and Technology, 2016: 1-5.

[65]Gqsa B, Cong H A, Ymw A, et al. Experimental study on synergistic wetting of a coal dust with dust suppressant compounded with noncationic surfactants and its mechanism analysis[J]. Powder Technology, 2019, 356: 1077-1086.

[66]Wang X, Yuan S, Li X, et al. Synergistic effect of surfactant compounding on improving dust suppression in a coal mine in Erdos, China[J]. Powder Technology, 2019, 344: 561-569.

[67]韩艳娜. 无机电解质与表面活性剂共同作用对低阶煤表面性质及可浮性的影响[D]. 太原理工大学, 2011.

[68]Chang P, Xu G, Chen Y, et al. Improving coal powder wettability using electrolyte assisted surfactant solution[J]. Colloids and Surfaces A Physicochemical andEngineering Aspects, 2020, 613(5): 126042.

[69]朱顺根. 氟碳表面活性剂[J]. 化工生产与技术, 1997, (3): 1-9.

[70]庄辉, 苏琴, 张剑峰, 等. 含氟表面活性剂的核磁共振研究[J]. 有机氟工业, 2001, (3): 29-36.

[71]王正平, 陈兴娟, 李佳. 氟表面活性剂的制备及应用[J]. 化学工程师, 2004, (1): 57-59.

[72]Szymczyk K, Zdziennicka A, B J. Properties of some nonionic fluorocarbon surfactants and their mixtures with hydrocarbon ones[J]. Advances in colloid and interface science, 2021, 292: 102421.

[73]林超, 潘仁明, 邢萍, 等. 新型支链型氟碳表面活性剂的合成及性能研究[J]. 有机化学, 2018, 38(12): 3260-3269.

[74]刘振营. 氟碳表面活性剂的合成及应用研究[D]. 哈尔滨工程大学, 2007.

[75]陈亚联, 赵勇, 廖乐军. 一种新型复合型超低表面张力助排剂的制备及应用[J]. 石油地质与工程, 2020, 34(4): 90-94.

[76]Standard practice for preparing coal samples for analysis[S]. West Conshohocken, PA: ASTM International, 2012.

[77]Standard test method for performing the sieve analysis of coal and designating coal size[S]. West Conshohocken,PA: ASTM International, 2019.

[78]邓瑾妮, 郑朝晖, 丁小斌. 短氟碳链含氟丙烯酸酯聚合物的制备及其拒水拒油性能研究[J]. 塑料工业, 2015, 43(10): 100-3+18.

[79]Zhou Y, Jin Y, Shen Y, et al. A simple strategy to improve surface activity and wettability of anionic hydrocarbon and tri-block nonionic short-chain fluorocarbon surfactant mixtures[J]. Journal of Molecular Liquids, 2021, 339: 116734.

[80]Yang H, Kang W, Yu Y, et al. A new approach to evaluate the particle growth and sedimentation of dispersed polymer microsphere profile control system based on multiple light scattering[J]. Powder Technology, 2017, 315: 477-485.

[81]罗振敏, 张蔓, 郝强强, 等. 煤油共生矿区含油煤尘云最低着火温度试验研究[J]. 中国安全生产科学技术, 2020, 16(3): 55-60.

[82]何发梅. 响应面分析法优化提取葫芦巴的有效成分[D]. 华中科技大学, 2014.

[83]王刚, 王馨, 宋小三, 等. 响应曲面法中BBD和CCD在优化巯基乙酰化壳聚糖制备条件中的比较[J]. 环境工程学报, 2018, 12(9): 2502-2511.

中图分类号:

 TD714    

开放日期:

 2023-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式