- 无标题文档
查看论文信息

题名:

 煤矿巷道特定受限空间内电磁波传输特性研究    

作者:

 赵新杰    

学号:

 22207040016    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 0810    

学科:

 工学 - 信息与通信工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 信息与通信工程    

研究方向:

 矿井无线通信    

导师姓名:

 张涛    

导师单位:

 西安科技大学    

提交日期:

 2025-06-16    

答辩日期:

 2025-06-04    

外文题名:

 Research on electromagnetic wave propagation characteristics in specific confined environments of underground coal mine roadways    

关键词:

 煤矿巷道 ; 电磁波传播 ; 入射及反弹射线法 ; 工作频率 ; 天线位置    

外文关键词:

 Coal mine roadway ; Electromagnetic wave propagation ; SBR ; Operating frequency ; Antenna placement    

摘要:

煤矿巷道是无线信号传输受限的特殊空间,当前井下无线通信系统设计面临着天线布局难以优化的挑战,巷道信号覆盖特性与天线工作频率及位置密切相关。现有井下电磁波传输特性研究存在以下关键问题:第一,当前多数研究将发射天线置于巷道断面中心位置进行建模和测试,这一假设不符合巷道实际情况。第二,针对弯曲巷道的研究场景过于单一,缺乏对T型岔道等关键区域电磁波传播特性的系统分析。因此,本文针对矩形直巷道、T型岔道场景分析工作频率、天线位置等因素对无线传输及电波覆盖特性的影响。

首先,针对煤矿井下典型的喷射混凝土运输大巷,采用入射及反弹射线法(Shooting and Bouncing Ray tracing, SBR)构建符合实际的三维煤矿巷道模型,从传输距离(一维)、纵向切面(二维)和空间分布(三维)多尺度系统分析0.9 GHz、2.4 GHz和3.5 GHz频段在宽5 m高3.4 m巷道中的功率衰减规律,并研究天线水平位置及高度对传输的影响。结果显示:0.9 GHz传输特性优于其他两个频段,不同传输距离的纵向切面功率均值较2.4 GHz和3.5 GHz分别高出6.60至9.17 dBm和10.49至12.63 dBm;天线最佳水平位置为距巷壁0.01至0.1 m,紧贴侧壁(0.01 m)部署时,功率空间分布呈非对称特性,发射天线同侧邻壁区的接收功率比对侧高1至4 dBm;收发天线高度差小于0.5 m时可获得稳定且较强的接收信号,收发端高度差0.5至1.2 m时,接收功率有所衰减,但差异不大,在实际应用中可作为备选高度方案。

其次,针对现有弯曲巷道仿真场景单一的研究局限,构建三维混凝土T型岔道模型,运用“线-面-体”多层次研究思路分析T型岔道电磁场分布规律,在直行与右转巷道区域,通过5个纵向特征切面和6条动态接收路线,系统分析收发天线距离、工作频段、发射天线水平位置、收发端高度差、移动波源等关键因素对岔道内接收功率的影响情况。结果表明:0.9 GHz频段在T型岔道中仍旧展现出显著传输优势,其功率分布在五个典型切面较2.4 GHz和3.5 GHz分别高出7.881至13.478 dBm和12.124至21.835 dBm;当天线水平位置距左侧巷壁0.1 m时,可实现直行与右转巷道的最佳信号均衡,此时右转巷道平均接收功率较中心或右侧布置方案提高3至4 dBm;收发天线高度一致时的接收功率均值均比存在高度差时的均值高出0.5至1 dBm;发射天线距岔道口中线2.5 m时,右转巷道区域完全进入视距传输范围,电磁波以直射方式覆盖整个岔道区域。

研究成果可用于指导矿井应急通信系统、矿井移动通信系统、矿井人员定位系统的工作频率选择,为进一步探索和优化矿井巷道通信中基站设置和天线布局提供了参考依据,有助于开发更有效、可靠的井下通信系统。

外文摘要:

Coal mine roadways represent a unique confined space where wireless signal transmission is significantly constrained. The current design of underground wireless communication systems faces challenges in optimizing antenna placement, as signal coverage characteristics are closely related to both operating frequency and antenna positioning. Existing research on electromagnetic wave propagation in underground roadways exhibits two critical limitations: firstly, most studies assume the transmitting antenna is positioned at the center of the roadway cross-section, which deviates from practical deployment scenarios; secondly, research on curved roadways remains overly simplistic, lacking systematic analysis of electromagnetic wave propagation in critical areas like T-junctions.

The research investigates the impact of operating frequency and antenna positioning on wireless transmission and coverage characteristics in both straight rectangular roadways and T-junction scenarios. First, adopting the Shooting and Bouncing Ray (SBR) method, a realistic 3D model of a typical shotcrete transportation roadway is established. Through multi-scale analysis encompassing transmission distance (1D), longitudinal cross-sections (2D), and spatial distribution (3D), power attenuation patterns for 0.9 GHz, 2.4 GHz, and 3.5 GHz frequencies in a 5m×3.4m roadway are examined, while evaluating the effects of antenna horizontal position and height. Key findings include: 0.9 GHz demonstrates superior performance, with mean power levels exceeding 2.4 GHz and 3.5 GHz by 6.60-9.17 dBm and 10.49-12.63 dBm respectively across different distances; optimal horizontal positioning is 0.01-0.1m from the wall, with wall-proximal (0.01m) deployment creating asymmetric power distribution (1-4 dBm stronger on the antenna side); height differences below 0.5m yield optimal signal stability, while 0.5-1.2m differences remain viable alternatives with moderate attenuation.

Second, addressing the simplification in curved roadway research, a 3D concrete T-junction model employing a "line-plane-volume" analytical framework is developed. Through five characteristic cross-sections and six dynamic reception paths in both straight and turning segments, systematic evaluation is conducted on how transmission distance, frequency band, antenna position, height difference, and mobile sources affect received power. Results indicate: 0.9 GHz maintains significant advantages in T-junctions, outperforming 2.4 GHz and 3.5 GHz by 7.881-13.478 dBm and 12.124-21.835 dBm respectively; positioning antennas 0.1m from the left wall optimizes coverage balance, improving turning-segment reception by 3-4 dBm versus central placement; uniform antenna heights enhance received power by 0.5-1 dBm versus height differences; positioning transmitters 2.5m from the junction centerline ensures line-of-sight coverage throughout the turning segment.

These findings provide practical guidance for frequency selection in mine emergency communication systems, mobile networks, and personnel positioning systems, while offering valuable references for base station deployment and antenna configuration optimization to develop more robust underground communication solutions.

参考文献:

[1] 王国法, 刘峰, 庞义辉, 等. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报, 2019, 44(02): 349-357.

[2] 刘峰, 张建明, 曹文君. 我国煤矿智能化建设现状与发展建议[J]. 煤炭经济研究, 2024, 44(04): 6-10.

[3] 国务院新闻办公室, 国家能源局. 《中国的能源转型》白皮书 [Z]. 2024.

[4] 王国法, 李世军, 张金虎, 等. 筑牢煤炭产业安全奠定能源安全基石[J]. 中国煤炭, 2022, 48(07): 9.

[5] 葛世荣, 郝尚清, 张世洪, 等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术, 2020, 48(07): 28-46.

[6] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术, 2022, 50(01): 1-27.

[7] 袁惊柱. 煤炭能源“十四五”发展成就与“十五五”展望[J/OL]. 中国国土资源经济, 2025, 07(02): 1-10.

[8] 应急管理部, 国家矿山安全监察局.关于印发《“十四五”矿山安全生产规划》的通知[Z]. 2022.

[9] 王国法, 庞义辉, 任怀伟, 等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报, 2024, 49(01): 181-202.

[10] 王国法, 赵国瑞, 胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报, 2020, 45(01): 16-23.

[11] 李伟宏. 矿用4G与5G融合系统解决方案研究[J]. 工矿自动化, 2021, 47(增刊2): 78-80.

[12] 白雪峰, 舒晓军. 煤矿井下无线通信技术演进[J]. 工矿自动化, 2023, 49(07): 14-18.

[13] 张帆. 矿井移动通信理论与技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2021.

[14] Li D, Wang J. Effect of antenna parameters on the field coverage in tunnel environments[J]. International Journal of antennas and propagation, 2016, 2016(1): 8180124.

[15] 孙继平, 彭铭. 室内电磁波传播衰减统计模型用于矿井的适用性研究[J]. 工矿自动化, 2025, 51(02): 1-8.

[16] 孙继平, 梁伟锋, 彭铭, 等. 煤矿井下无线传输衰减分析测试与最佳工作频段研究[J]. 工矿自动化, 2023, 49(04): 1-8.

[17] Samad M A, Choi S W, Kim C S, et al. Wave propagation modeling techniques in tunnel envi-ronments: A survey[J]. IEEE Access, 2023, 11: 2199-2225.

[18] 张跃平, 张文梅, 盛剑桓, 等. 900 MHz无线电波在地下长壁煤矿的传播[J]. 煤炭学报, 2002, (01): 83-87.

[19] 梁宏. 电导率σ对矩形巷道中电磁波传播特性的影响[J]. 中国煤炭, 2009, 35(08): 69-72.

[20] 张妍玮, 张记龙. 巷道内粉尘对特高频电磁波传播特性的影响[J]. 煤炭学报, 2009, 34(11): 1554-1557.

[21] 霍羽, 徐钊, 郑红党. 矩形隧道中的多波模传播特性[J]. 电波科学学报, 2010, 25(06): 1225-1230.

[22] Zhou C, Plass T, Jacksha R, et al. RF propagation in mines and tunnels: extensive measure-ments for vertically, horizontally, and cross-polarized signals in mines and tunnels[J]. IEEE An-tennas and Propagation Magazine, 2015, 57(4): 88-102.

[23] Zhou C. Ray tracing and modal methods for modeling radio propagation in tunnels with rough walls[J]. IEEE transactions on antennas and propagation, 2017, 65(5): 2624-2634.

[24] Ranjan A, Misra P, Dwivedi B, et al. Studies on propagation characteristics of radio waves for wireless networks in underground coal mines[J]. Wireless Personal Communications, 2017, 97: 2819-2832.

[25] Zhao J, Xiong L, He D, et al. Channel characteristics of rail traffic tunnel scenarios based on ray‐tracing simulator[J]. Wireless Communications and Mobile Computing, 2018, 2018(1): 9284-639.

[26] 米广双, 杨维. 基于镜像原理的半圆拱形矿井巷道电磁波传播场强预测[J]. 煤炭学报, 2020, 45(S2): 1089-1099.

[27] Ji X, Wang C X, Chang H. Characteristic analysis and modeling of underground space wireless communication channels[C]//2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). IEEE, 2022: 1-5.

[28] Zhao Z, Wang J, Hou W. Effect of beam angle of the transmitting antenna on radio wave cov-erage in the region containing tunnel entrance[J]. IEEE Access, 2022, 10: 97248-97258.

[29] 张高敏, 刘毅, 彭铭. FDTD矿井无线传输特性分析方法研究[J]. 煤炭科学技术, 2022, 50(11): 202-212.

[30] 孙继平, 梁伟锋, 彭铭, 等. 煤矿井下无线传输衰减分析测试与最佳工作频段研究[J]. 工矿自动化, 2023, 49(4): 1-8.

[31] Li B, Ding T, Wu Y, et al. Modeling and optimization of wireless signal transmission character-istics of mine roadway based on 3D ray-tracing method[J]. Applied Sciences, 2024, 14(4): 1534.

[32] 成凌飞, 李飞腾, 李俊, 等. 弯曲隧道不同极化电磁波传播特性[J]. 传感器与微系统, 2018, 37(11): 14-17.

[33] Ranjan A, Sahu H, Misra P. Modeling and measurements for wireless communication networks in underground mine environments[J]. Measurement, 2020, 149: 106980.

[34] Li S, Liu Y, Yao L, et al. Improved channel model and analysis of the effect of bodies in curved tunnel using ray tracing[J]. IEEE Antennas and wireless propagation letters, 2020, 19(7): 1162-1166.

[35] Kalyankar S K, Lee Y H, Meng Y S. Two-slope path loss model for curved-tunnel environment with concept of break point[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(12): 7850-7859.

[36] 于洋, 杨维. 基于镜像法的L型矿井巷道电磁波反射场强预测[J]. 高原科学研究, 2021, 5(03): 101-114.

[37] Zhai M, Zhai K, Cui H, et al. Multifrequency channel characterization for curved tunnels[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2457-2460.

[38] Wang C, Ji W, Zheng G, et al. Analysis of propagation characteristics for various subway tunnel scenarios at 28 GHz[J]. International Journal of Antennas and Propagation, 2021, 2021(1): 7666624.

[39] Qian J, Wu Y, Saleem A, et al. Path loss model for 3.5 GHz and 5.6 GHz bands in cascaded tunnel environments[J]. Sensors, 2022, 22(12): 4524.

[40] You Y, Jing L, Yang Q, et al. Analysis and modeling of radio propagation fading characteristics in tunnel construction[J]. Heliyon, 2024, 10(4).

[41] 张申. 帐篷定律与隧道无线数字通信信道建模 [J]. 通信学报, 2002, (11): 41-50.

[42] 法玉晓. 电磁场与电磁波[M]. 人民邮电出版社: 2013.

[43] 郭嘉琦. 面向下一代无线通信的高效射线跟踪算法研究[D]. 北京交通大学, 2021.

[44] 霍羽, 张毅, 徐钊, 等. 煤矿井巷自适应多天线理论与关键技术研究[J]. 工矿自动化, 2017, 43(10): 48-53.

[45] 于洋. 基于镜像法的矩形弯曲矿井巷道电磁波反射场强预测[D]. 北京交通大学, 2021.

[46] 李远龙, 张云华, 魏学李, 等. 基于一致性几何绕射理论的曲面目标谐振散射机理研究[J]. 电波科学学报, 2025, 40(01): 72-79.

[47] 姜威. 光纤通信中的散射效应[J]. 信息通信, 2012, (01): 157-158.

[48] 焦晓龙, 成凌飞, 张薇静, 等. 矩形巷道载波频率对近场区分界点的影响[J]. 煤炭科学技术, 2021, 49(09): 124-128.

[49] 姚善化, 吴先良, 张量. 矿井巷道壁粗糙度对电磁波传播损耗的影响[J]. 合肥工业大学学报(自然科学版), 2010, 33(11): 1725-1727.

[50] 霍羽, 房咪咪, 刘逢雪, 等. 煤矿巷道壁粗糙度对电磁波传播的影响[J]. 工矿自动化, 2013, 39(03): 43-45.

[51] 霍羽, 徐钊, 郑红党. 矩形隧道中的多波模传播特性[J]. 电波科学学报, 2010, 25(06): 1225-1230.

[52] 张妍玮, 张记龙. 巷道内粉尘对特高频电磁波传播特性的影响[J]. 煤炭学报, 2009, 34(11): 1554-1557.

[53] 鹿德智, 宋志方, 杨海兵, 等. 煤矿粉尘监测与矿尘成分分析[J]. 中国安全生产科学技术, 2008, (01): 34-37.

[54] 姚善化. 复杂矿井巷道中电磁波传播特性及相关技术研究[D]. 安徽大学, 2010.

[55] 颜胜美, 苏伟, 陈樟. Ka波段方同轴线中TM波的全波算法[J]. 微波学报, 2013, 29(01): 33-37.

[56] Abdulwahid M M, Kurnaz S. Implementation of 2D Ray SBR Modeling for different MIMO Antenna Array placement in Outdoor communication using Wireless InSite software[J]. Re-search Square, 2023.

[57] 赵珍玉. 铁路沿线开阔-受限混合空间电波覆盖特性研究[D]. 北京交通大学, 2022.

[58] 张高敏, 刘毅, 彭铭. UWR-FDTD矿井电磁波数值分析方法[J]. 煤炭学报, 2022, 47(11): 4157-4166.

[59] 王建春, 杨冬玲, 曹卫平. 有限元法工程应用初探[J]. 建设科技, 2025(5): 65-68.

[60] 邵水才, 郭旭东, 彭铭, 等. 煤矿井下无线传输分析方法[J]. 工矿自动化, 2022, 48(10): 123-128.

[61] Meng W, Li J, Xi Y J, et al. An improved shooting and bouncing ray method based on Blend-Tree for EM scattering of multiple moving targets and echo analysis[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(3): 2723-2737.

[62] Kasdorf S, Troksa B, Key C, et al. Advancing accuracy of shooting and bouncing rays method for ray-tracing propagation modeling based on novel approaches to ray cone angle calculation[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 4808-4815.

[63] 张勇, 孟积渐, 陈湘源, 等. 煤矿井下5G电磁波瓦斯引燃机理及功率安全阈值[J]. 煤炭学报, 2025, 50(3): 1804-1826.

[64] 孙继平, 张高敏. 矿用5G频段选择及天线优化设置研究[J]. 工矿自动化, 2020, 46(05): 1-7.

中图分类号:

 TP929.4    

开放日期:

 2029-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式