- 无标题文档
查看论文信息

题名:

 VDT疲劳对作业人员情景意识 的影响研究    

作者:

 郭子固    

学号:

 21202230106    

保密级别:

 机密    

语种:

 chi    

学科代码:

 125603    

学科:

 管理学 - 工业工程与管理    

学生类型:

 硕士    

学位:

 管理学硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 管理学院    

专业:

 工业工程与管理    

研究方向:

 人因工程    

导师姓名:

 孙林辉    

导师单位:

 西安科技大学    

提交日期:

 2024-06-13    

答辩日期:

 2024-06-05    

外文题名:

 A study of the effect of VDT fatigue on the situational awareness of operators    

关键词:

 控制室 ; VDT疲劳 ; 情景意识 ; 脑电 ; 评估模型    

外文关键词:

 Control Room ; VDT Fatigue ; Situational Awareness ; EEG ; Assessment Model    

摘要:

智能控制系统的引入虽然提升了工业系统现场设备的安全性,但同时也增加了控制室中作业人员对于情景意识能力的需求。随着界面的信息量剧增,作业难度增加等因素的产生,加速了控制室作业人员的疲劳产生,个人的情景意识水平也因此受到影响,从而使作业人员面对突发事件的感知、理解等能力逐渐下降,最终造成人因失误。目前VDT疲劳作为控制室中影响情景意识的主要因素,相关的研究较少,尤其对于煤矿,电站等相关行业控制室。基于此,本文使用脑电、眼动等多模态数据探讨控制室中VDT疲劳对作业人员情景意识的影响机制,并根据所获得的主客观数据建立情景意识的评估模型,最后基于研究结果对控制室的VDT作业提出相关建议。

本文采用E-Prime软件呈现情景意识实验材料,选取19名控制室的作业人员作为被试,在作业人员岗位作业前后分别进行情景意识测度实验,结合脑电、眼动等生理仪器采集相关数据。对作业人员的情景意识相关数据进行预处理,随后采用SPSS软件对每一段数据进行统计学分析,基于数据的显著性和相关性选取最优指标作为模型的输入端,输出端选取客观数据,构建多模态数据融合的情景意识评估模型。研究结果表明:主观客观数据出现了显著变化,可以推断被试已经产生VDT疲劳,结合主观数据及脑电数据可以发现控制室中作业人员感受到的疲劳主要是以脑力负荷和视觉负荷累积所导致的主动疲劳,并且这种主动疲劳会通过影响作业人员的感知能力与理解能力,进而导致作业人员的情景意识能力下降。基于这一影响机制选取相应主客观指标所建立的XGBoost模型验证率达到88.90%,表明该模型可以对作业人员的情景意识能力进行评估预测。该模型更适用于控制室持续VDT的作业人员的情景意识评估,为未来控制室的情景意识监测设备提供了算法基础,同时,所揭示的影响机制为情景意识领域的研究提供了理论基础。基于研究结果提出针对性的改善措施,旨在缓解控制室中的VDT疲劳,提高个人的情景意识水平,为相关领域的技术进步和理论深化贡献力量。

外文摘要:

While the introduction of intelligent control systems has improved the safety of industrial system field equipment, it has also increased the demand for situational awareness among control room operators. With the dramatic increase in the amount of information on the interface and the increase in the difficulty of the operation and other factors, the fatigue of the control room operators is accelerated, and the level of personal situational awareness is also affected, which gradually reduces the ability of the operators to perceive and understand the emergencies they are facing, and ultimately results in human factors errors. At present, VDT fatigue, as the main factor affecting situational awareness in control rooms, has been less studied, especially for control rooms in coal mines, power stations and other related industries. Based on this, this paper uses EEG, eye movement and other multimodal data to explore the mechanism of VDT fatigue on situational awareness of operators in control rooms, and establishes an assessment model of situational awareness based on the subjective and objective data obtained, and finally makes recommendations for VDT operations in control rooms based on the results of the study.

In this paper, E-Prime software is used to present the experimental materials of situational awareness, 19 control room operators are selected as subjects, and situational awareness measurement experiments are carried out before and after the operators' job operations, and relevant data are collected with physiological instruments such as EEG and eye movement. The data related to situational awareness of the operators were pre-processed, and then SPSS software was used to statistically analyse each segment of the data, select the optimal indicators as the input of the model based on the significance and relevance of the data, and select the objective data as the output, so as to construct a situational awareness assessment model with multimodal data fusion. The results of the study show that there are significant changes in subjective and objective data, and it can be inferred that the subjects have produced VDT fatigue. Combining subjective data and EEG data, it can be found that the fatigue felt by the operators in the control room is mainly active fatigue caused by accumulation of cerebral and visual loads, and that this active fatigue will affect the operators' perceptual and comprehension abilities, which will lead to a decline in the situational awareness ability of the operators. This active fatigue will affect the perception and comprehension ability of the operators, which will lead to the reduction of their situational awareness. The validation rate of the XGBoost model based on the selection of subjective and objective indicators reaches 88.90%, which indicates that the model can assess and predict the situational awareness ability of operators. The model is more suitable for assessing the situational awareness of operators in the control room with continuous VDT, which provides an algorithmic basis for future situational awareness monitoring equipment in the control room, and at the same time, the revealed influencing mechanism provides a theoretical basis for research in the field of situational awareness. Based on the results of the study, targeted improvement measures are proposed with the aim of alleviating VDT fatigue in control rooms, improving the level of situational awareness of individuals, and contributing to the technological progress and theoretical deepening in related fields.

参考文献:

[1]张磊.高精度地理信息系统在矿山勘探中的作用[J].中国金属通报,2023(09):73-75.

[2]Chuang C F, Chou H P, Chen Y B, et al. Regulatory overview of digital I&C system in Taiwan Lungmen Project[J]. Annals of nuclear energy, 2008, 35(05): 877-889.

[3]Zio E. Reliability engineering: Old problems and new challenges[J]. Reliability engineering & system safety, 2009, 94(02): 125-141.

[4]Iqbal M U, Srinivasan B, Srinivasan R. Multi-class classification of control room operators’ cognitive workload using the fusion of eye-tracking and electroencephalography[J]. Computers & Chemical engineering, 2024, 181: 108526.

[5]Yu C, Wang E M, Li W C, et al. Pilots’ visual scan patterns and situation awareness in flight operations[J]. Aviation, space, and environmental medicine,2014,85(7): 708-714.

[6]李诚信,赵伟,李千,丁俊竹,赵良辰.疲劳监测技术在智慧矿山安全管理中的应用[J].煤炭科学技术,2021,49(S1):131-137.

[7]Iqbal M U, Srinivasan B, Srinivasan R. Fusion of pupil and gaze-based features to estimate cognitive workload of control room operators[M]//Computer aided chemical engineering. 2023, 52: 1731-1736.

[8]Mica R, Endsley. Toward a Theory of Situation Awareness in Dynamic Systems[J]. Human Factors: The journal of human factors and ergonomics society,1995,37(1).

[9]Wu X, Wanyan X R, Zhuang D M. Pilots visual attention allocation modeling under fatigue[J]. Technology and health Care,2015,23(S2): S373-S381.

[10]Sun L H, Guo Z G, Yuan X F, et al. An Investigation of the Effects of Brain Fatigue on the Sustained Attention of Intelligent Coal Mine VDT Operators[J]. International journal of environmental research and public health,2022,19(17).

[11]郝丽萍,陈兆波,曾建潮.煤矿采掘作业人员感知的影响因素分析[J].中北大学学报(自然科学版),2017,38(05):592-598.

[12]He X H, Huang X. Human reliability analysis in industrial systems: principles, methods and applications[J]. Beijing: press of tsinghua university, 2007.

[13]Li P C, Wang Y X, Chen J H, et al. An experimental study on the effects of task complexity and knowledge and experience level on SA, TSA and workload[J]. Nuclear engineering and design,2021,376.

[14]Wickens C D, Mccarley J S, Alexander A L, et al. Attention situation awareness (ASA) model of pilot error: AHFD-04-15/NASA-04-5[R]. Washington, D C.: NASA ames research center, 2005.

[15]Bhavsar P, Srinivasan B, Srinivasan R. Quantifying situation awareness of control room operators using eye gaze behavior[J]. Computers & Chemical engineering, 2017,106: 191-201.

[16]Yu C, Wang E M, Li W C, et al. Pilots’ visual scan patterns and situation awareness in flight operations[J]. Aviation, space, and environmental medicine,2014,85(7): 708-714.

[17]Endsley M R. Toward a theory of situation awareness in dynamic systems[J]. Human factors: the journal of the human factors and ergonomics society,1995,37(1): 32-64.

[18]Tian S C. Definition and research significance of high probability near-miss in coal mine. Journal of Xi’ an university of science and technology. 2020,40(04): 566-571.

[19]Endsley M R. Measurement of Situation Awareness in Dynamic Systems[J]. Human factors,1995,37(1): 65-84.

[20]Kanaya S. Vision and visual environment for VDT work[J]. Ergonomics, 1990, 33(6): 775-785.

[21]王晨. PSO-BP模型在VDT作业疲劳评价中的应用研究[D].首都经济贸易大学,2012.

[22]Chi C F, Lin F T A comparison of seven visual fatigue assessment techniques in three data-acquisition VDT tasks[J]. Human factors, 1998, 40(4): 577-590.

[23]Saito S, Taptagaporn S, Salvendy G. Visual comfort in using different VDT screens[J]. International journal of human‐computer interaction, 1993, 5(4): 313-323.

[24]Chi C F, Lin Y H, Lan W S. Measurement of information processing load and visual load on a dynamic information processing task[J]. Behaviour & Information technology, 2003, 22(5): 365-374.

[25]Bergqvist U O, Knave B. Visual display terminals and workers' health[M]. World health organization, 1987.

[26]Hu X, Lodewijks G. Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: The value of differentiation of sleepiness and mental fatigue[J]. Journal of safety research,2020,72:173-187.

[27]Ty L, Taryn C, David B, et al. Electrophysiological brain-cardiac coupling in train drivers during monotonous driving[J]. International journal of environmental research and public health,2021,18(7):3741-3741.

[28]Hui Z, Dingan N, Naikan D, et al. Structural analysis of driver fatigue behavior: A systematic review[J]. Transportation research interdisciplinary perspectives,2023,21.

[29]Endsley R M ,Garland J D .Situation awareness analysis and measurement[M].Taylor and francis;RC press:2000-07-01.

[30]Baker C C, McCafferty D B. “Accident database review of human element concerns: What do the results mean for classification.” Proc. Int conf. human factors in ship design and operation, RINA Feb. citeseer, 2005.

[31]Zhang T. “Physiological measurements of situation awareness: a systematic review.” Human factors, 2023, (65.5): 737-758.

[32]Bedny G, Meister D. Theory of activity and situation awareness[J]. International journal of cognitive ergonomics, 1999, 3(1): 63-72.

[33]Landry J S. A mathematical structure relating situation knowledge to performance[J]. Theoretical issues in ergonomics science,2018,19(4):498-512.

[34]Endsley. Situation awareness global assessment technique (SAGAT), in:proceedings of the IEEE 1988 National Aerospace and Electronics Conference,IEEE, 1988:789-795.

[35]Popper K. The logic of scientific discovery[M]. Routledge, 2005.

[36]Endsley.The divergence of objective and subjective aituation awareness: a meta-analysis[J].Journal of cognitive engineering and decision making,2020,14(1):34-53.

[37]Teplan M. Fundamentals of EEG measurement[J]. Measurement science review, 2002, 2(2): 1-11.

[38]秦昊.基于疲劳度监测的飞行情景意识研究[D].东南大学,2024.

[39]Zadehgholam Z, Kiani F, Khastwo H H, et al. The role of fatigue and work overload in predicting work situation awareness among workers[J]. Int joccup hyg, 2015, 7(1): 38-44.

[40]Hopko S K, Khurana R, Mehta R K, et al. Effect of cognitive fatigue, operator sex, and robot assistance on task performance metrics, workload, and situation awareness in human-robot collaboration[J]. IEEE robotics and automation letters,2021, 6(2): 30493056.

[41]Sneddon A, Mearns K, Flin R. Stress, fatigue, situation awareness and safety in offshore drilling crews[J]. Safety science, 2013, 56: 80-88.

[42]Kiani F, Khodabakhsh M R. Examining the role of fatigue and cognitive failures in predicting work situation awareness among employees of pars khodro company[J]. Journal of ergonomics, 2017, 4(4): 41-47.

[43]Endsley M R. Situation awareness global assessment technique (SAGAT)[C]//Proceedings of the IEEE 1988 national aerospace and electronics conference. IEEE, 1988: 789-795.

[44]Popper K, The logic of scientific discovery, routledge, 2005.

[45]Endsley M R. Situation awareness[J]. Handbook of human factors and ergonomics, 2021: 434-455.

[46]王莉莉,朱敏.基于事故树的空中交通管制员情景意识分析[J].安全与环境学报,2021,21(01):249-256.

[47]王莉莉,杨勇.雷达管制员情景意识评价研究[J].安全与环境学报,2019,19(02):554-561.

[48]Mohler S R. The human element in air traffic control: aeromedical aspects, problems, and prescriptions[J]. Aviation space & environmental medicine, 1983, 54(06):511.

[49]Shahnawaz A, Heng L, Fordjour M A, et al. Evaluation of physiological metrics as real-time measurement of physical fatigue in construction workers: state-of-the-art review[J]. Journal of construction engineering and management,2021,147(5).

[50]Anwer S, Li H, Antwi-Afari M F, et al. Evaluation of physiological metrics as real-time measurement of physical fatigue in construction workers: state-of-the-art review[J]. Journal of construction engineering and management, 2021, 147(5): 03121001.

[51]Anwer S, Li H, Umer W, et al. Identification and classification of physical fatigue in construction workers using linear and nonlinear heart rate variability measurements[J]. Journal of construction engineering and management, 2023, 149(7): 04023057.

[52]Granger D A, Kivlighan K T, El‐Sheikh M, et al. Salivary α‐amylase in biobehavioral research: recent developments and applications[J]. Annals of the New York academy of sciences, 2007, 1098(1): 122-144.

[53]Ott H. The application of the method of limits in psychopharmacology[J]. Flicker techniques in psychopharmacology. Weinheim: Beltz-Verlag GmBH, 1982: 60-64.

[54]Ma J, Ma R M, Liu X W, et al. Workload influence on fatigue related psychological and physiological performance changes of aviators[J]. PloS one, 2014, 9(2): e87121.

[55]Lal S K L, Craig A. Reproducibility of the spectral components of the electroencephalogram during driver fatigue[J]. International journal of psychophysiology, 2005, 55(2): 137-143.

[56]Akerstedt T, Kecklund G, Knutsson. A. Manifest sleepiness and the spectral content of the EEG during shift work[J]. Sleep, 1991, 14(3): 221-225.

[57]Åkerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual[J]. International journal of neuroscience, 1990, 52(1-2): 29-37.

[58]Stern J.M. Atlas of EEG patterns[M]. Lippincott williams & wilkins, 2005.

[59]Torsvall L. Sleepiness on the job: continuously measured EEG changes in train drivers[J]. Electroencephalography and clinical Neurophysiology, 1987, 66(6): 502-511.

[60]Eoh H J, Chung M K, Kim S.H. Electroencephalographic study of drowsiness in simulated driving with sleep deprivation[J]. International journal of industrial ergonomics, 2005, 35(4): 307-320.

[61]Lal S K L, Craig A. Driver fatigue: electroencephalography and psychological assessment[J]. Psychophysiology, 2002, 39(3): 313-321.

[62]Matthews G. Multidimensional profiling of task stress states for human factors: A brief review[J]. Human factors, 2016, 58(6): 801-813.

[63]Hu X, Lodewijks G. Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: The value of differentiation of sleepiness and mental fatigue[J]. Journal of safety research, 2020, 72: 173-187.

[64]Di Stasi L L, Renner R, Catena A, et al. Towards a driver fatigue test based on the saccadic main sequence: A partial validation by subjective report data[J]. Transportation research part C: emerging technologies, 2012, 21(1): 122-133.

[65]Dinges D F, Grace R. PERCLOS: A valid psychophysiological measure of alertness as assessed by psychomotor vigilance[J]. US Department of transportation, federal highway administration, publication number FHWA-MCRT-98-006, 1998.

[66]Lal S K L, Craig A. A critical review of the psychophysiology of driver fatigue[J]. Biological psychology, 2001, 55(3): 173-194.

[67]Horiuchi R, Ogasawara T, Miki N. Fatigue evaluation by detecting blink behaviour using eyeglass‐shaped optical sensor system[J]. Micro & nano letters, 2017, 12(8): 554-559.

[68]郝丽萍,陈兆波,曾建潮.煤矿采掘作业人员感知的影响因素分析[J].中北大学学报(自然科学版),2017,38(05): 592-598.

[69]Mica R E. Toward a Theory of Situation awareness in dynamic systems[J]. Human factors: The journal of human factors and ergonomics society, 1995,37(1).

[70]Endsley M R.Toward a theory of situation awareness in dynamic systems[J].Human factors:the Journal of the human factors and ergonomics society, 1995, 37 (1) :32-64.

[71]Hornbæk K, Hertzum M. The notion of overview in information visualization[J]. International journal of human - computer studies,2011,69(7):509-525.

[72]Niemelä M. Visual search for grouped versus ungrouped icons in a computer interface[J]. Human factors: the journal of human factors and ergonomics society,2000,42(4):630-635.

[73]Woods D, Johannesen L J, Cook R I, Sarter N B. Behind fuman error: cognitive systems, computers and hindsight; crew systems ergonomics: alexandria, VA, USA, 1994.

[74]Gregoriades A, Sutcliffe A. Simulation-based evaluation of an in-vehicle smart situation awareness enhancement system. Ergonomics. 2018:1-28.

[75]Feidakis M. A review of emotion-aware systems for e-learning in virtual environments[J]. Formative assessment, learning data analytics and gamification, 2016: 217-242.

[76]Teplan M. Fundamentals of EEG measurement[J]. Measurement science review, 2002, 2(2): 1-11.

[77]Borghini G, Astolfi L, Vecchiato G, et al. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness[J]. Neuroscience & biobehavioral reviews, 2014, 44: 58-75.

[78]Endsley M R. A systematic review and meta-analysis of direct objective measures of situation awareness: a comparison of SAGAT and SPAM[J]. Human factors, 2021, 63(1): 124-150.

[79]Salmon P M, Stanton N A, Young K L. Situation awareness on the road: review, theoretical and methodological issues, and future directions[J]. Theoretical issues in ergonomics science, 2012, 13(4): 472-492.

[80]Salmon P, Stanton N, Walker G, et al. Situation awareness measurement: A review of applicability for C4i environments[J]. Applied ergonomics, 2006, 37(2): 225-238.

[81]Hasanzadeh S, Esmaeili B, Dodd M D. Examining the relationship between construction workers’ visual attention and situation awareness under fall and tripping hazard conditions: Using mobile eye tracking[J]. Journal of construction engineering and management, 2018, 144(7): 04018060.

[82]Sarker I H. Ai-driven cybersecurity: an overview, security intelligence modeling and research directions. SN Comput Sci. 2021.

[83]Ślusarczyk B. Industry 4.0—Are we ready? Polish J Manag Stud 17, 232–248[J]. 2018.

[84]Mohammed M, Khan M B, Bashier E B M. Machine learning: algorithms and applications[M]. Crc Press, 2016.

[85]BKim T. Human factors and regulatory regime in design and construction of safe and robust ships and maintaining them for their lifetime[C]//Presentation at the RINA Conference. 2005.

[86]Sarker I H, Kayes A S M, Watters P. Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage[J]. Journal of Big Data, 2019, 6(1): 1-28.

[87]贾智刚.心理负荷对学习效率的影响研究[J].陕西师范大学学报(哲学社会科学版),2019,48(04):166-176.

[88]DO K, Tran T, Phung D, et al. Outlier detection on mixed-type data: an energy-based approach[C]//Advanced data mining and applications 2016. Australia: springer, 2016: 10086.

[89]Taylor R M.Situational awareness eating technique (SART): the development of a tool for aircrew systems design[C]// Proceedings of the AGARD AMP symposium on situational awareness in aerospace operations,1990:50-67.

[90]Salmon P M, Stanton N A, Walker G H, et al. Measuring situation awareness in complex systems: comparison of measuresstudy[J]. International Journal of Industrial Ergonomics,2009,39(3) : 490-500.

[91]党晶.制造业中疲劳因素对作业效能影响的测评研究[D.太原:中北大学,2013.

[92]崔玉洁.基于脑电技术的密闭空间作业脑力疲劳识别方法[D].天津体育学院,2020.

[93]Xu R, Zhang C, He F, et al. How physical activities affect mental fatigue based on EEG energy, connectivity, and complexity[J]. IEEE journal of biomedical and health informatics,2018(9):1-13.

[94]张春翠.体疲劳对脑疲劳影响的脑电信息分析与处理[D].天津:天津大学,2014.

[95]王心悦,潘义勇,陆妍琳.非机动车交通流量对交叉口骑行者视觉行为影响[J].重庆理工大学学报(自然科学),2023,37(03):22-29.

[96]靳慧斌,于桂花,刘海波.瞳孔直径检测管制疲劳的有效性分析[J].北京航空航天大学学报,2018,44(07):1402-1407.

[97]朱兴林,姚亮,刘泓君等.考虑驾驶风格差异的高原公路危险路段识别研究[J].交通运输系统工程与信息,2022,22(06):172-182.

[98]Flanagan D P, McGrew K S, Ortiz S O. The Wechsler Intelligence Scales and Gf-Gc theory: A contemporary approach to interpretation[M]. Allyn & Bacon, 2000.

[99]张奇勇,陆佳希,卢家楣.高级认知对情绪感染的反向抑制:以教学活动为例[J].心理与行为研究,2019,17(01):75-82.

[100]Benedek M, Schickel R J, Jauk E, et al. Alpha power increases in right parietal cortex reflects focused internal attention[J]. Neuropsychologia, 2014, 56: 393-400.

[101]黄亮,张振东,肖鹏飞等.基于深度学习的公路能见度分类及应用[J].大气科学学报,2022,45(02):203-211.

[102]田刚领,叶晖,张柳丽,等.基于数据挖掘的电池储能电站运维技术综述[J].太阳能,2022(05):23-32.

[103]刘一斌.“六顶思考帽”思维模式在签派员的情景意识训练中的应用[J].民航管理,2023,(01):60-63.

[104]陆贤群.凤电监控系统技术改造[J].科技信息,2011(11):397-398.

[105]许颖.视觉显示终端(VDT)作业疲劳影响因素研究[D].西南交通大学,2021.

[106]蒋佳利.煤矿VDT作业者脑疲劳对持续注意力的影响研究[D].西安科技大学,2022.

中图分类号:

 TD79    

开放日期:

 2027-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式