题名: | VDT疲劳对作业人员情景意识 的影响研究 |
作者: | |
学号: | 21202230106 |
保密级别: | 机密 |
语种: | chi |
学科代码: | 125603 |
学科: | 管理学 - 工业工程与管理 |
学生类型: | 硕士 |
学位: | 管理学硕士 |
学位年度: | 2024 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 人因工程 |
导师姓名: | |
导师单位: | |
提交日期: | 2024-06-13 |
答辩日期: | 2024-06-05 |
外文题名: | A study of the effect of VDT fatigue on the situational awareness of operators |
关键词: | |
外文关键词: | Control Room ; VDT Fatigue ; Situational Awareness ; EEG ; Assessment Model |
摘要: |
智能控制系统的引入虽然提升了工业系统现场设备的安全性,但同时也增加了控制室中作业人员对于情景意识能力的需求。随着界面的信息量剧增,作业难度增加等因素的产生,加速了控制室作业人员的疲劳产生,个人的情景意识水平也因此受到影响,从而使作业人员面对突发事件的感知、理解等能力逐渐下降,最终造成人因失误。目前VDT疲劳作为控制室中影响情景意识的主要因素,相关的研究较少,尤其对于煤矿,电站等相关行业控制室。基于此,本文使用脑电、眼动等多模态数据探讨控制室中VDT疲劳对作业人员情景意识的影响机制,并根据所获得的主客观数据建立情景意识的评估模型,最后基于研究结果对控制室的VDT作业提出相关建议。 本文采用E-Prime软件呈现情景意识实验材料,选取19名控制室的作业人员作为被试,在作业人员岗位作业前后分别进行情景意识测度实验,结合脑电、眼动等生理仪器采集相关数据。对作业人员的情景意识相关数据进行预处理,随后采用SPSS软件对每一段数据进行统计学分析,基于数据的显著性和相关性选取最优指标作为模型的输入端,输出端选取客观数据,构建多模态数据融合的情景意识评估模型。研究结果表明:主观客观数据出现了显著变化,可以推断被试已经产生VDT疲劳,结合主观数据及脑电数据可以发现控制室中作业人员感受到的疲劳主要是以脑力负荷和视觉负荷累积所导致的主动疲劳,并且这种主动疲劳会通过影响作业人员的感知能力与理解能力,进而导致作业人员的情景意识能力下降。基于这一影响机制选取相应主客观指标所建立的XGBoost模型验证率达到88.90%,表明该模型可以对作业人员的情景意识能力进行评估预测。该模型更适用于控制室持续VDT的作业人员的情景意识评估,为未来控制室的情景意识监测设备提供了算法基础,同时,所揭示的影响机制为情景意识领域的研究提供了理论基础。基于研究结果提出针对性的改善措施,旨在缓解控制室中的VDT疲劳,提高个人的情景意识水平,为相关领域的技术进步和理论深化贡献力量。 |
外文摘要: |
While the introduction of intelligent control systems has improved the safety of industrial system field equipment, it has also increased the demand for situational awareness among control room operators. With the dramatic increase in the amount of information on the interface and the increase in the difficulty of the operation and other factors, the fatigue of the control room operators is accelerated, and the level of personal situational awareness is also affected, which gradually reduces the ability of the operators to perceive and understand the emergencies they are facing, and ultimately results in human factors errors. At present, VDT fatigue, as the main factor affecting situational awareness in control rooms, has been less studied, especially for control rooms in coal mines, power stations and other related industries. Based on this, this paper uses EEG, eye movement and other multimodal data to explore the mechanism of VDT fatigue on situational awareness of operators in control rooms, and establishes an assessment model of situational awareness based on the subjective and objective data obtained, and finally makes recommendations for VDT operations in control rooms based on the results of the study. In this paper, E-Prime software is used to present the experimental materials of situational awareness, 19 control room operators are selected as subjects, and situational awareness measurement experiments are carried out before and after the operators' job operations, and relevant data are collected with physiological instruments such as EEG and eye movement. The data related to situational awareness of the operators were pre-processed, and then SPSS software was used to statistically analyse each segment of the data, select the optimal indicators as the input of the model based on the significance and relevance of the data, and select the objective data as the output, so as to construct a situational awareness assessment model with multimodal data fusion. The results of the study show that there are significant changes in subjective and objective data, and it can be inferred that the subjects have produced VDT fatigue. Combining subjective data and EEG data, it can be found that the fatigue felt by the operators in the control room is mainly active fatigue caused by accumulation of cerebral and visual loads, and that this active fatigue will affect the operators' perceptual and comprehension abilities, which will lead to a decline in the situational awareness ability of the operators. This active fatigue will affect the perception and comprehension ability of the operators, which will lead to the reduction of their situational awareness. The validation rate of the XGBoost model based on the selection of subjective and objective indicators reaches 88.90%, which indicates that the model can assess and predict the situational awareness ability of operators. The model is more suitable for assessing the situational awareness of operators in the control room with continuous VDT, which provides an algorithmic basis for future situational awareness monitoring equipment in the control room, and at the same time, the revealed influencing mechanism provides a theoretical basis for research in the field of situational awareness. Based on the results of the study, targeted improvement measures are proposed with the aim of alleviating VDT fatigue in control rooms, improving the level of situational awareness of individuals, and contributing to the technological progress and theoretical deepening in related fields. |
参考文献: |
[1]张磊.高精度地理信息系统在矿山勘探中的作用[J].中国金属通报,2023(09):73-75. [6]李诚信,赵伟,李千,丁俊竹,赵良辰.疲劳监测技术在智慧矿山安全管理中的应用[J].煤炭科学技术,2021,49(S1):131-137. [11]郝丽萍,陈兆波,曾建潮.煤矿采掘作业人员感知的影响因素分析[J].中北大学学报(自然科学版),2017,38(05):592-598. [20]Kanaya S. Vision and visual environment for VDT work[J]. Ergonomics, 1990, 33(6): 775-785. [21]王晨. PSO-BP模型在VDT作业疲劳评价中的应用研究[D].首都经济贸易大学,2012. [35]Popper K. The logic of scientific discovery[M]. Routledge, 2005. [37]Teplan M. Fundamentals of EEG measurement[J]. Measurement science review, 2002, 2(2): 1-11. [38]秦昊.基于疲劳度监测的飞行情景意识研究[D].东南大学,2024. [44]Popper K, The logic of scientific discovery, routledge, 2005. [45]Endsley M R. Situation awareness[J]. Handbook of human factors and ergonomics, 2021: 434-455. [46]王莉莉,朱敏.基于事故树的空中交通管制员情景意识分析[J].安全与环境学报,2021,21(01):249-256. [47]王莉莉,杨勇.雷达管制员情景意识评价研究[J].安全与环境学报,2019,19(02):554-561. [58]Stern J.M. Atlas of EEG patterns[M]. Lippincott williams & wilkins, 2005. [68]郝丽萍,陈兆波,曾建潮.煤矿采掘作业人员感知的影响因素分析[J].中北大学学报(自然科学版),2017,38(05): 592-598. [76]Teplan M. Fundamentals of EEG measurement[J]. Measurement science review, 2002, 2(2): 1-11. [83]Ślusarczyk B. Industry 4.0—Are we ready? Polish J Manag Stud 17, 232–248[J]. 2018. [87]贾智刚.心理负荷对学习效率的影响研究[J].陕西师范大学学报(哲学社会科学版),2019,48(04):166-176. [91]党晶.制造业中疲劳因素对作业效能影响的测评研究[D.太原:中北大学,2013. [92]崔玉洁.基于脑电技术的密闭空间作业脑力疲劳识别方法[D].天津体育学院,2020. [94]张春翠.体疲劳对脑疲劳影响的脑电信息分析与处理[D].天津:天津大学,2014. [95]王心悦,潘义勇,陆妍琳.非机动车交通流量对交叉口骑行者视觉行为影响[J].重庆理工大学学报(自然科学),2023,37(03):22-29. [96]靳慧斌,于桂花,刘海波.瞳孔直径检测管制疲劳的有效性分析[J].北京航空航天大学学报,2018,44(07):1402-1407. [97]朱兴林,姚亮,刘泓君等.考虑驾驶风格差异的高原公路危险路段识别研究[J].交通运输系统工程与信息,2022,22(06):172-182. [99]张奇勇,陆佳希,卢家楣.高级认知对情绪感染的反向抑制:以教学活动为例[J].心理与行为研究,2019,17(01):75-82. [101]黄亮,张振东,肖鹏飞等.基于深度学习的公路能见度分类及应用[J].大气科学学报,2022,45(02):203-211. [102]田刚领,叶晖,张柳丽,等.基于数据挖掘的电池储能电站运维技术综述[J].太阳能,2022(05):23-32. [103]刘一斌.“六顶思考帽”思维模式在签派员的情景意识训练中的应用[J].民航管理,2023,(01):60-63. [104]陆贤群.凤电监控系统技术改造[J].科技信息,2011(11):397-398. |
中图分类号: | TD79 |
开放日期: | 2027-06-13 |