- 无标题文档
查看论文信息

论文中文题名:

 基于压电电荷系数补偿的便携式动态称重系统设计与精度优化    

姓名:

 吴佳鑫    

学号:

 22205224112    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 智能交通监测    

第一导师姓名:

 赵栓峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-19    

论文答辩日期:

 2025-05-28    

论文外文题名:

 Design and Accuracy Optimization of a Portable Dynamic Weighing System Based on Piezoelectric Charge Coefficient Compensation    

论文中文关键词:

 动态称重系统 ; 压电电荷系数 ; 误差补偿 ; 便携式设计 ; Savitzky-Golay滤波    

论文外文关键词:

 Piezoelectric Charge Coefficient ; Piezoelectric sensor ; Error Compensation ; Portable Design ; Savitzky-Golay filtering    

论文中文摘要:

随着我国道路交通强度的持续上升,车辆超限超载问题日益突出,严重威胁交通安全并加速路面结构的损耗。这对动态称重系统在精度、便携性及环境适应性等方面提出了更高要求。针对传统动态称重系统在复杂工况下存在测量性能波动大、误差控制困难等问题,本文围绕“基于压电电荷系数补偿的便携式动态称重系统设计与精度优化”开展系统性研究,提出并实现了一种基于压电电荷系数补偿方法的具有高精度、轻量化及快速部署能力的便携式动态称重平台。主要研究内容如下:

(1)针对传统便携式动态称重系统在精度、环境适应性和部署灵活性方面的不足,提出了一种集成化综合解决方案,并围绕其系统设计与实现展开研究。系统采用STM32F103C8T6微控制器、ADS1256高精度模数转换器与AD8065电荷放大器构建高精度信号采集链路,结合ESP8266实现远程无线通信,配合基于Python与PyQt5的人机交互界面及阿里云边缘服务器,支持动态称重数据的实时处理与远程传输。该系统具备高精度、轻量化和多场景适应能力,适用于公路与桥梁等应用场景,为智能交通监管提供可扩展的技术支撑。

(2)针对现有研究普遍侧重于系统架构与算法优化,而对传感器选型及误差机理缺乏系统性分析的现状,本章聚焦于复杂动态载荷条件下传感器材料特性、信号转换机制及环境干扰对称重精度的影响。通过对比六类动态称重传感器,最终选定压电石英作为核心组件,并基于压电效应理论解析其电荷输出机制与动态适配性。针对压电系数空间分布不均导致的测量误差问题,提出一套系统化解决方案:构建力-电耦合实验平台,依据Nyquist准则设计15×7网格测试布局,通过3σ准则提升数据质量,实现压电系数空间精准测量;结合优化后的Savitzky-Golay滤波,建立集成信号预处理、空间补偿与多轴合成的动态称重模型,显著提升系统测量精度与稳定性,并为压电材料表征与工程应用提供理论与方法支撑。

(3)在结构设计方面,本文提出采用石英-铝板-绝缘层三层复合结构的传感单元,平台主体选用高强度铝合金材料,结合有限元分析与拓扑优化方法,实现轻量化与高刚性之间的优化平衡。平台内部设计对称燕尾槽与精密榫卯结构,以保障传感单元稳定安装与载荷高效传递,从而提升系统的动态响应一致性与机械结构可靠性。基于压电电荷系数分布的动态称重精度优化方法通过实地测试得到验证。在西安市典型路段开展的多车速、多载重工况实验表明,传统方法下测量误差波动较大,最高超过±5%;引入S-G平滑与电荷系数补偿后,误差控制在±3%以内,显著提升测量精度。系统在多车型、多工况条件下均表现出良好的稳定性与适应性,验证了其高精度测量能力与工程应用可行性。

论文外文摘要:

As the intensity of road traffic in China continues to rise, the problem of vehicle overloading is becoming more and more prominent, posing a serious threat to traffic safety and accelerating the wear and tear of pavement structures. This puts forward higher requirements for dynamic weighing system in terms of accuracy, portability and environmental adaptability. For the traditional dynamic weighing system in complex working conditions, there are problems such as large fluctuation in measurement performance and difficulty in error control, this paper focuses on the “portable dynamic weighing system design and accuracy optimization based on piezoelectric charge coefficient compensation” to carry out systematic research, and proposes and realizes a piezoelectric charge coefficient compensation method based on the system with high accuracy, light weight and rapid deployment capability, We propose and realize a portable dynamic weighing platform with high accuracy, light weight and rapid deployment capability based on the piezoelectric charge coefficient compensation method. The main work is as follows:

(1) Aiming at the shortcomings of traditional portable dynamic weighing system in terms of accuracy, environmental adaptability and deployment flexibility, an integrated solution is proposed, and the research is centered on its system design and implementation. The system integrates STM32F103C8T6 microcontroller, ADS1256 high-precision analog-to-digital converter and AD8065 charge amplifier to build a high-precision signal acquisition link, combines with ESP8266 to realize remote wireless communication, and cooperates with human-computer interaction interface based on Python and PyQt5 and Aliyun Edge Server, to support real-time processing and remote transmission of dynamic weighing data. The system is characterized by high precision, light weight, and high reliability. With high precision, light weight and multi-scene adaptability, the system is suitable for application scenarios such as highways and bridges, and provides scalable technical support for intelligent transportation supervision.

(2) Aiming at the status quo that existing research generally focuses on the optimization of system architecture and algorithms, but lacks systematic analysis of sensor selection and error mechanism, this chapter focuses on the influence of sensor material properties, signal conversion mechanism and environmental interference on weighing accuracy under complex dynamic loading conditions. By comparing six types of dynamic load cells, piezoelectric quartz is finally selected as the core component, and its charge output mechanism and dynamic adaptability are analyzed based on the piezoelectric effect theory. A systematic solution is proposed to address the measurement errors caused by uneven spatial distribution of piezoelectric coefficients: a force-electric coupling experimental platform is constructed, a 15×7 grid test layout is designed based on the Nyquist criterion, and the 3σ criterion is used to improve the data quality and realize the spatially accurate measurement of the piezoelectric coefficients; an integrated signal pre-processing is established by combining with the optimized Savitzky-Golay filtering, Combined with the optimized Savitzky-Golay filter, a dynamic weighing model integrating signal pre-processing, spatial compensation and multi-axis synthesis is established, which significantly improves the measurement accuracy and stability of the system and provides theoretical and methodological support for piezoelectric material characterization and engineering applications.

(3) In terms of structural design, this paper proposes the use of quartz-aluminum plate-insulation layer three-layer composite structure of the sensing unit, the platform main body is made of high-strength aluminum alloy, combined with finite element analysis and topology optimization methods, to achieve an optimal balance between lightweight and high rigidity. Symmetrical dovetail grooves and precision mortise and tenon structures are designed inside the platform to ensure stable installation of the sensing unit and efficient load transfer, thus enhancing the consistency of the system's dynamic response and the reliability of the mechanical structure. The dynamic weighing accuracy optimization method based on piezoelectric charge coefficient distribution is verified by field tests. The experiments carried out on typical road sections in Xi'an city with multiple vehicle speeds and loads show that the measurement error fluctuates greatly under the traditional method, with a maximum of more than ±5%; after the introduction of S-G smoothing and charge coefficient compensation, the error is controlled to be less than ±3%, which significantly improves the measurement accuracy. The system shows good stability and adaptability under multi-model and multi-condition conditions, which verifies its high-precision measurement capability and feasibility of engineering application.

参考文献:

[1] 中华人民共和国交通运输部. 2023年交通运输行业发展统计公报[R]. 北京:人民交通出版社,2023.

[2] 中华人民共和国国家统计局. 中国统计年鉴[EB/OL]. [2023-12-31].

[3] 龙超. 车辆与路面相互作用下路面结构动力分析[D]. 长沙:湖南大学,2013.

[4] 白永亮,张浅,刘志高. 中国公路超载超限治理的制度演化经济学分析[J]. 北方经济,2010(10):19-22.

[5] 马培建,张明,王伟旭,等. 港口道路轴载谱数据的采集与计算分析[J]. 黑龙江交通科技,2018,41(10):186-187+189.

[6] 王媛. 唐津高速公路通行能力研究及路网规划分析[D]. 天津:天津大学,2015.

[7] 路鑫,梁武星. 陕西省高速公路轴载特性区域划分[J]. 交通运输研究,2015,1(02):71-75.

[8] Xia R X, Li J H, He J, et al. Effect Analysis of Vehicle System Parameters on Dynamic Response of Pavement[J]. Mathematical Problems in Engineering, 2015, 2015: 1-10.

[9] 安振源. 基于实桥车辆调查的在役桥梁可靠度研究[D]. 西安:长安大学,2010.

[10] Haugen T, Levy J R, Aakre E, et al. Weigh-in-Motion Equipment Experiences and Challenges[C]// Transportation Research Procedia. 2016, 14: 1423-1432.

[11] 李扬. 国外汽车超载治理技术的发展及应用[J]. 交通标准化,2004(9):80-82.

[12] Jacob B, O’Brien E J. European Specification on Weigh-in-Motion of Road Vehicles (COST323)[C]// Proceedings of Second European Conference on Weigh-in-Motion of Road Vehicles. Lisbon, 1998: 14-16.

[13] 王荣旭. 基于压电传感器的车辆动态称重系统开发[D]. 济南:山东大学,2021.

[14] 张文斌. 公路车辆动态荷载测量及车型分类技术的研究[D]. 哈尔滨:哈尔滨工业大学,2011.

[15] 武奇生,王丹,陈圆媛,等. 基于ETC的车辆动态称重系统设计[J]. 公路交通科技(应用技术版),2009,5(10):187-189+194.

[16] 孙婧. 信念引领“自由”——北京万集科技有限责任公司自由流产品成功应用于武汉路桥收费[J]. 中国交通信息化,2011(10):134-136.

[17] 刘劲松,叶程. 基于窄条传感器的高精度动态称重系统设计和实现[J]. 中国交通信息化,2016(3):99-100+115.

[18] 王平,邓永强,陈忠元,等. 高速公路收费站入口治超系统方案[J]. 中国交通信息化,2019(3):97-100.

[19] 张惠芳,张海宁. 动态车辆称重系统的算法研究[J]. 国外电子测量技术,2017,36(7):52-54+61.

[20] 梁杰. 基于DSP的动态电子称重系统的设计[D]. 哈尔滨:哈尔滨理工大学,2017.

[21] Zhang R, Lv W H, Guo Y J. A Vehicle Weigh-in-Motion System Based on Hopfield Neural Network Adaptive Filter[C]// 2010 International Conference on Communications and Mobile Computing. Shenzhen: IEEE, 2010: 123-127.

[22] 沈小倩. 新型自适应滤波处理方法在动态称重中的应用[J]. 中国计量大学学报,2021,32(2):184-188.

[23] Xu S, Chen X, Fu Y, et al. Research on Weigh-in-Motion Algorithm of Vehicles Based on BSO-BP[J]. Sensors, 2022, 22(6): 2109.

[24] Xiong L, Zhang T, Yuan A, et al. Research on Filtering Algorithm of Vehicle Dynamic Weighing Signal[J]. World Electric Vehicle Journal, 2024, 15(6): 254.

[25] Zhou C, Butala D M, Xu Y, et al. FE-based Bridge Weigh-in-Motion Based on an Adaptive Augmented Kalman Filter[J]. Mechanical Systems and Signal Processing, 2024, 218: 111530.

[26] 陈笑颖. 基于神经网络车辆动态称重技术研究[D]. 西安:西安工业大学,2023.

[27] Qin T, Lin M, Cao M, et al. Effects of Sensor Location on Dynamic Load Estimation in Weigh-in-Motion System[J]. Sensors, 2018, 18(9): 3044.

[28] 赵千. 基于多传感器的路面动态称重系统研究[D]. 北京:北京科技大学,2020.

[29] Klein E, Stanczyk D, Ieng S S. Improvement of Weigh-in-Motion Accuracy by Taking into Account Vehicle Lateral Position[C]// Proc., 6th Int. Conf. on Weigh-in-Motion. Dallas: John Wiley & Sons, 2012: 206-213.

[30] Stanczyk D, Klein E, Ieng S S. High-Speed Weigh-in-Motion Systems with Different Sensor Layouts. Sensors, 2015, 15(5): 10955-10972.

[31] 刘海洋. 动态称重数据处理方法研究[D]. 长春:长春理工大学,2015.

[32] 李一璇. 基于FPGA的动态称重数据采集系统研究与设计[D]. 武汉:武汉纺织大学,2021.

[33] 傅丰. 基于压电传感器的动态称重信号采集系统研究[D]. 兰州:兰州理工大学,2016.

[34] 宋敏. 车辆称重系统电荷信号采集技术研究[D]. 济南:山东大学,2017.

[35] 陈超. 一种基于称重传感器的货车轴载识别方法研究[D]. 长春:长春理工大学,2019.

[36] O’Brien E J, Znidaric A, Rattigan P, et al. Characteristics of an Accidental Dynamic Weigh-in-Motion System. International Journal of Heavy Vehicle Systems, 2003, 10(3): 209-225.

[37] Bai Y L, Lu J Y, Yin D Y, et al. Modeling and Testing of Piezoelectric WIM Sensors. Sensors, 2020, 20(3): 828.

[38] 牛爱青. 动态称重系统中称重传感器的研究与设计[D]. 郑州:郑州大学,2018.

[39] 郝潇. 车载称重系统信号处理研究[D]. 兰州:兰州理工大学,2020.

[40] 刘小林. 基于MEMS传感器的车载称重系统研究[D]. 成都:成都理工大学,2021.

[41] Chang C, Kim T, Lee J, et al. Development of a Novel Weigh-in-Motion System Using 3D Image Sensor and Deep Learning. Sensors, 2020, 20(17): 4830.

[42] 程冬冬. 基于FPGA的压电动态称重系统设计[D]. 兰州:兰州理工大学,2019.

[43] 王浩. 动态称重系统中加速度干扰信号分析与抑制方法研究[D]. 南京:南京理工大学,2020.

[44] 张博. 基于加速度信号处理的动态称重系统优化设计[D]. 北京:北京交通大学,2018.

[45] Sussmann T, McDonough M, Mahoney J, et al. Evaluation of WIM Technology Under Different Site Conditions. Transportation Research Record, 2016, 2554(1): 40-47.

[46] 安冬. 动态称重系统中车辆速度测量方法研究[D]. 武汉:武汉理工大学,2018.

[47] 谢涛. 公路车辆速度检测与称重系统研究[D]. 长沙:中南大学,2016.

[48] 杨玉斌. 一种新型车辆速度检测方法研究[D]. 上海:同济大学,2019.

[49] 赵培杰. 基于压电石英传感器的高速动态称重系统设计[D]. 太原:中北大学,2018.

[50] Balaz I, Katona Z, Kollar L E, et al. A New Method for Axle Detection in Weigh-in-Motion Systems. Measurement, 2022, 200: 111627.

[51] 李泽宇. 公路动态称重系统车辆轴数识别方法研究[D]. 济南:山东大学,2020.

[52] 杨静. 基于机器视觉的车辆轴型识别系统设计[D]. 天津:天津大学,2020.

[53] 陈雪芹. 一种新型多传感器动态称重系统设计及优化[D]. 合肥:合肥工业大学,2021.

[54] Bracic M, Zganec-Gros J, Klobucar M, et al. Axle Identification Method for WIM Systems Using Strain Gauges. Sensors, 2020, 20(3): 664.

[55] 邹雪. 基于视觉检测的车辆轴载识别方法研究[D]. 上海:上海交通大学,2022.

[56] 王洋. 公路交通中基于图像识别的车型分类与轴型检测方法研究[D]. 北京:北京理工大学,2021.

[57] Wang W, Qiu X, Wang F. Improved Vehicle Classification in WIM System Based on Computer Vision and Deep Learning. Sensors, 2021, 21(9): 3121.

[58] 周立峰. 基于图像识别的公路称重系统设计与实现[D]. 广州:华南理工大学,2021.

[59] 吕博. 基于毫米波雷达的动态称重车辆速度识别系统研究[D]. 北京:北京工业大学,2020.

[60] 陈慧. 基于毫米波雷达的车辆识别与速度测量技术研究[D]. 重庆:重庆邮电大学,2019.

[61] Ahmad I, Yoo H. A Real-Time Vehicle Classification System Using Magnetic Sensor and Deep Learning. Sensors, 2021, 21(3): 1027.

[62] 段明月. 动态称重系统中温度补偿方法研究[D]. 西安:西安建筑科技大学,2020.

[63] 郝晓慧. 基于神经网络的温度补偿算法在动态称重系统中的应用[D]. 长春:长春理工大学,2019.

[64] Zhu H, Li X, Zhang X, et al. Temperature Compensation of WIM Sensors Based on Machine Learning. Sensors, 2021, 21(6): 2034.

[65] 朱明. 高速公路WIM系统设计及误差分析[D]. 南京:东南大学,2021.

[66] 张凯. 基于多传感器融合的动态称重系统误差补偿方法研究[D]. 成都:电子科技大学,2020.

[67] Klein E. Accuracy Assessment of WIM Systems Based on OIML R134 and COST323. Sensors, 2022, 22(1): 355.

[68] 杨锐. 基于WIM数据的车辆运行状态识别研究[D]. 北京:北京交通大学,2021.

[69] Jiang Y, Yang Z, Song J, et al. WIM Data Fusion and Vehicle Behavior Identification Using Big Data Analytics. Journal of Advanced Transportation, 2022, 2022: 1-13.

[70] 孙立. 基于边缘计算的高速公路动态称重数据处理系统设计[D]. 长沙:中南大学,2022.

[71] 胡静. 高速公路动态称重数据智能分析系统研究[D]. 武汉:武汉理工大学,2021.

[72] Tang Y, Zhang Y, Wu Y, et al. Cloud-Based Architecture for WIM Data Processing and Real-Time Monitoring. Sensors, 2023, 23(2): 432.

[73] 贾凯. 公路动态称重系统中的数据异常检测研究[D]. 郑州:郑州大学,2020.

[74] 陈洁. 基于孤立森林算法的动态称重数据异常识别研究[D]. 北京:北京邮电大学,2021.

[75] Li S, Zhang X, Yu M, et al. Anomaly Detection in WIM Data Based on Machine Learning. IEEE Access, 2022, 10: 60567-60575.

[76] 吴梦. 高速公路动态称重系统的标准化设计与建设研究[D]. 南京:南京理工大学,2021.

[77] 刘洋. 高速公路动态称重系统发展现状与趋势分析. 中国交通信息化, 2022(6): 96-

中图分类号:

 U495    

开放日期:

 2025-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式