- 无标题文档
查看论文信息

论文中文题名:

 增材制造高温合金内流道机械-电解复合抛光工艺研究    

姓名:

 韩扬    

学号:

 22205230164    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 125600    

学科名称:

 管理学 - 工程管理    

学生类型:

 硕士    

学位级别:

 工程管理硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 工业工程与管理    

研究方向:

 增材制造    

第一导师姓名:

 闫向彤    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-19    

论文答辩日期:

 2025-05-29    

论文外文题名:

 Study on the Mechanical-Electrochemical Composite Polishing Process for Internal Flow Channels of Additively Manufactured High-Temperature Alloys    

论文中文关键词:

 高温合金 ; 磨料水射流抛光 ; 电解质等离子抛光 ; 粗糙度    

论文外文关键词:

 High-temperature alloys ; Abrasive water jet polishing ; Electrolyte plasma polishing ; Roughness    

论文中文摘要:

镍基高温合金因其优异的耐高温和耐腐蚀性能,在航空航天等高端制造领域得到了广泛应用。然而,传统加工方式存在工艺复杂、效率低下及加工成本高等问题,制约了其大规模应用。相比之下,增材制造技术具备较高的设计自由度和缩短加工周期的优势,在提升制造效率方面展现出巨大潜力。但由于增材制造过程中的打印缺陷,其内流道表面质量普遍较差,难以满足实际工程应用需求。因此,实现高温合金增材构件内流道的高质量精整加工成为当前研究的重点。本文分别对磨料水射流抛光与电解质等离子抛光工艺进行了深入分析,探讨了两种抛光方法的材料去除机制,在此基础上,提出将磨料水射流抛光作为预处理、电解质等离子抛光作为精加工工序的复合抛光工艺方案,从而显著提升增材制造高温合金内流道的表面质量。

在磨料水射流抛光工艺研究中,分析了单颗磨粒的冲蚀机理及材料微观去除机理,并通过实验研究不同入口压力和抛光时间对抛光效果的影响规律,确定了兼顾表面质量和尺寸精度的抛光参数。

在电解质等离子抛光工艺研究中,采用内置电极式抛光方法,基于放电理论与阳极溶解理论,阐明其材料去除机理。通过伏安特性分析,明确了适用于内流道抛光的电压范围。在此基础上,开展了单因素实验,研究了抛光电压、电解液温度、阴极丝移动速度和蠕动泵转速对表面粗糙度的影响规律,并通过正交试验优化工艺参数,最终获得最优参数组合为:电压40 V、抛光液温度80℃、阴极丝移动速度3 mm/min、蠕动泵转速100 rpm。实验结果表明,该方法可显著改善增材制造高温合金内流道工件的表面质量,粗糙度由初始的11.125 μm降低至3.249 μm,尽管如此,仍未满足Ra ≤ 1 μm的应用要求。

针对增材制造内流道工件初始表面粗糙度较高的问题,单一抛光工艺难以满足精密加工的表面质量要求,本文提出磨料水射流-电解质等离子复合抛光方法以降低高温合金内流道的表面粗糙度。实验结果显示,抛光后最终表面粗糙度为0.875 μm,优于单一抛光工艺的处理效果,充分验证了该复合抛光方法在提升内流道表面质量方面的可行性与有效性。此外,构建了基于BP神经网络的粗糙度预测模型,并与多元线性回归模型进行了对比分析。结果显示,BP神经网络模型具有更高的预测精度和更小的相对误差,在高温合金内流道表面粗糙度预测中表现出更强的适应性与可靠性。

论文外文摘要:

Nickel-based superalloys are widely used in high-end manufacturing fields such as aerospace due to their excellent high-temperature resistance and corrosion resistance. However, traditional machining methods suffer from complex processes, low efficiency, and high costs, limiting their large-scale application. In contrast, additive manufacturing (AM) offers greater design flexibility and shorter production cycles, showing great potential in improving manufacturing efficiency. Nevertheless, due to printing defects during the AM process, the surface quality of internal flow channels is generally poor, failing to meet the requirements of practical engineering applications. Therefore, achieving high-quality finishing of internal channels in AM-fabricated superalloy components has become a key research focus.

An in-depth analysis of abrasive water jet polishing (AWJP) and electrolyte plasma polishing (EPP) is conducted, with a focus on exploring the material removal mechanisms of both processes. On this basis, a composite polishing process is proposed, where AWJP is used as a pretreatment and EPP as the final finishing step, aiming to significantly enhance the surface quality of internal flow channels in additively manufactured nickel-based superalloys.

In the AWJP process study, the erosion mechanism of single abrasive particles and the microscopic material removal mechanism are analyzed. Experimental studies are conducted to investigate the effects of inlet pressure and polishing time on polishing performance, determining optimal parameters that balance surface quality and dimensional accuracy.

For the EPP process, an internal electrode polishing method is adopted. Based on discharge and anodic dissolution theories, the material removal mechanism is clarified. Through voltammetric analysis, the appropriate voltage range for polishing internal channels is determined. Subsequently, single-factor experiments are conducted to study the influence of polishing voltage, electrolyte temperature, cathode wire feed speed, and peristaltic pump speed on surface roughness. An orthogonal experiment is carried out to optimize the process parameters, resulting in the optimal combination: voltage of 40 V, electrolyte temperature of 80 °C, cathode feed speed of 3 mm/min, and peristaltic pump speed of 100 rpm. Experimental results show that the proposed method significantly improves surface quality, reducing roughness from 11.125 μm to 3.249 μm. However, the result still does not meet the application requirement of Ra ≤ 1 μm.

To address the high initial roughness of internal channels in AM components and the limitations of single polishing methods, a composite AWJP-EPP polishing approach is proposed to further reduce surface roughness. Experimental results show that the final surface roughness reaches 0.875 μm, outperforming either single method, thereby validating the feasibility and effectiveness of the proposed composite process in improving surface quality. Furthermore, a surface roughness prediction model based on a BP neural network is established and compared with a multiple linear regression model. The results demonstrate that the BP neural network model offers higher prediction accuracy and lower relative error, showing greater adaptability and reliability in predicting the surface roughness of internal flow channels in nickel-based superalloys.

参考文献:

[1] 卢秉恒.增材制造技术——现状与未来[J].中国机械工程,2020,31(01):19-23.

[2] 姚聪, 李瑞迪, 袁铁锤, 等. 激光送粉增材制造 Fe-Mn-Si 基形状记忆合金组织与性能[J]. 中南大学学报: 自然科学版, 2020, 51(11): 3081-3087.

[3] 曾光, 韩志宇, 梁书锦, 等. 金属零件 3D 打印技术的应用研究[J]. 中国材料进展, 2014, 33(6): 376-382

[4] 余前帆. 增材制造——3D 打印的正称[J]. 中国科技术语, 2013, 15(4): 46-48.

[5] 李轩, 莫红, 李双双, 等. 3D 打印技术过程控制问题研究进展[J]. 自动化学报, 2016, 42(7): 983-1003.

[6] 王超, 陈继飞, 冯韬, 等. 3D 打印技术发展及其耗材应用进展[J]. 中国铸造装备与技术, 2021, 56(6): 38-44.

[7] 蒲以松, 王宝奇, 张连贵. 金属 3D 打印技术的研究[J]. 表面技术, 2018, 47(3): 78-84..

[8] 杨雄文,杨永强,刘洋等.激光选区熔化成型典型几何特征尺寸精度研究[J].中国激光,2015,42(03):70-79.

[9] Eda H. In-process detection of grinding burn by means of utilizing acoustic emission[J]. Bull. Jpn. Soc. Precis. Eng., 1984, 18(4): 299-304.

[10] 史玉升, 鲁中良, 章文献, 等. 选择性激光熔化快速成形技术与装备[J]. 中国表面工程, 2006 (z1): 150-153.

[11] 李晓丹, 李建中, 倪家强, 等. 激光增材制造钛合金构件的化学抛光工艺研究[J]. 航空制造技术, 2020, 63(10): 66-71.

[12] 宋振兴, 张理操, 李岱原, 等. 3D 打印高温合金异形内通道化学抛光液性能研究[J]. 电镀与精饰, 2020, 42(4): 23-27.

[13] 李紫杨, 吴松全, 杨义, 等. 激光选区熔化 TC4 合金在 HF–H2O2 体系的化学抛光研究[J]. 航空制造技术, 66(11): 84-89.

[14] Wu J, Afzal B, Huang Z, et al. Study on new magnetorheological chemical polishing process for GaN crystals: polishing solution composition, process parameters, and roughness prediction model[J]. Smart Materials and Structures, 2023, 32(3): 035031.

[15] 王嘉琦.选区激光熔化成形316L不锈钢零件电化学抛光研究[D].吉林大学,2022.

[16] 常帅. 不锈钢阵列结构选区激光熔化制备与电化学抛光技术研究[D]. 哈尔滨工业大学, 2019.

[17] Pyka G, Burakowski A, Kerckhofs G, et al. Surface modification of Ti6Al4V open porous structures produced by additive manufacturing[J]. Advanced Engineering Materials, 2012, 14(6): 363-370.

[18] Peng C, Fu Y, Wei H, et al. Study on improvement of surface roughness and induced residual stress for additively manufactured metal parts by abrasive flow machining[J]. Procedia Cirp, 2018, 71: 386-389.

[19] Francois M, Han S, Segonds F, et al. Electromagnetic performance of Ti6Al4V and AlSi7Mg0. 6 waveguides with laser beam melting (LBM) produced and abrasive flow machining (AFM) finished internal surfaces[J]. Journal of Electromagnetic Waves and Applications, 2021, 35(18): 2510-2526.

[20] Dixit N, Sharma V, Kumar P. Experimental investigations into abrasive flow machining (AFM) of 3D printed ABS and PLA parts[J]. Rapid Prototyping Journal, 2022, 28(1): 161-174.

[21] Mohammadian N, Turenne S, Brailovski V. Surface finish control of additively-manufactured Inconel 625 components using combined chemical-abrasive flow polishing[J]. Journal of Materials Processing Technology, 2018, 252: 728-738.

[22] 邓超, 韩冰, 陈燕. 磁研磨法对钛合金弯管内表面的抛光研究[J]. 航空制造技术, 2015, 58(3): 61-63.

[23] 杨海吉, 张晓君, 陈燕, 等. 磁力研磨精密抛光 φ4× 150 mm TC4 管内表面的实验研究[J]. 表面技术, 2017, 46(12): 259-264.

[24] Venkatesh G, Sharma A K, Kumar P. On ultrasonic assisted abrasive flow finishing of bevel gears[J]. International Journal of Machine Tools and Manufacture, 2015, 89: 29-38.

[25] 刘文浩, 陈燕, 王杰, 等. SLM 成型零件型腔内表面电解辅助磁粒研磨加工研究 [J]. 中国表面工程, 2021, 34(3): 100-109.

[26] 林琳, 何周伟, 胡涛, 等. 磨料水射流抛光技术进展综述[J]. 液压与气动, 2022, 46(1): 74-91.

[27] Gorana V K, Jain V K, Lal G K. Forces prediction during material deformation in abrasive flow machining[J]. Wear, 2006, 260(1-2): 128-139.

[28] Wensink H, Elwenspoek M C. A closer look at the ductile–brittle transition in solid particle erosion[J]. Wear, 2002, 253(9-10): 1035-1043.

[29] 周正. 基于磨料水射流的钛合金表面处理研究[D]. 成都: 西华大学, 2020.

[30] 崔子含, 韩冰, 吴鹏程, 等. 微孔的磨料水射流抛光 CFD 模拟及试验[J]. 金刚石与磨料磨具工程, 2024, 44(4): 534-543.

[31] Karpuschewski B, Emmer T, Schmidt K, et al. Cryogenic wet-ice blasting—process conditions and possibilities[J]. CIRP Annals, 2013, 62(1): 319-322.

[32] 李全来. 微磨料气射流成形加工表面粗糙度的研究[J]. 机械工程师, 2014 (12): 7-10.

[33] 李全来. 微磨料气射流成形加工硅片表面粗糙度模型[J]. 制造业自动化, 2015 (21): 22-26.

[34] Chen F, Wang H, Tang Y, et al. Novel cavitation fluid jet polishing process based on negative pressure effects[J]. Ultrasonics sonochemistry, 2018, 42: 339-346.

[35] Kim W B, Nam E, Min B K, et al. Material removal of glass by magnetorheological fluid jet[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16: 629-637.

[36] 江恩勇. 三相旋流抛光的数值模拟与工艺参数研究[D]. 浙江工业大学, 2020.

[37] Zhou D F, Liu D Y. Study on impinging stream flow channel in abrasive flow polishing complex cavity of precision mold[J]. Advanced Materials Research, 2013, 797: 469-474.

[38] 陈长. 机器人磨料水射流抛光3D打印铝合金曲面研究[D].苏州大学,2023.

[39] Li Z, Ge J, Li X, et al. Numerical and experimental study on cavitation enhancement of ultrasonic coupled abrasive jet polishing[J]. The International Journal of Advanced Manufacturing Technology, 2024, 131(12): 5769-5786.

[40] Zhang H, Tao B, Deng Q, et al. Research on abrasive water jet polishing of silicon carbide based on fluid self-excited oscillation pulse characteristics[J]. Micromachines, 2023, 14(4): 852.

[41] Nevyantseva R R, Gorbatkov S A, Parfenov E V, et al. The influence of vapor–gaseous envelope behavior on plasma electrolytic coating removal[J]. Surface and Coatings Technology, 2001, 148(1): 30-37.

[42] Gupta P, Tenhundfeld G, Daigle E O, et al. Electrolytic plasma technology: Science and engineering—An overview[J]. Surface and Coatings Technology, 2007, 201(21): 8746-8760.

[43] Wang J, Suo L C, Guan L L, et al. Analytical study on mechanism of electrolysis and plasma polishing[J]. Advanced Materials Research, 2012, 472: 350-353.

[44] 张超人. 铝与钛合金及紫铜表面等离子体电解抛光机理与工艺优化[D]. 哈尔滨工业大学 , 2021.

[45] 姚庆. 异型零件电解质—等离子抛光工艺的研究与应用[D]. 秦皇岛: 燕山大学, 2018.

[46] Wang J, Suo L C, Guan L L, et al. Optimization of processing parameters for electrolysis and plasma polishing[J]. Applied Mechanics and Materials, 2012, 217: 1368-1371.

[47] Zou Y, Wang S, Chen G, et al. Optimization and mechanism of precise finishing of TC4 alloy by plasma electrolytic polishing[J]. Surface and Coatings Technology, 2023, 467: 129696.

[48] 邹永纯, 王树棋, 陈国梁, 等. 304 钢等离子体电解抛光工艺与其表面结构性能研究[J]. 表面技术, 2023, 52(6): 51-60.

[49] 刘梦杰. 航空发动机叶片气膜孔PLNP倒圆工艺与装置的研究设计[D]. 河北科技师范学院,2022.

[50] 武华荣.激光选区熔化成形CuCrZr合金多孔结构工艺参数优化及后处理技术研究[D].中北大学,2023.

[51] Ji G, Sun H, Duan H, et al. Effect of electrolytic plasma polishing on microstructural evolution and tensile properties of 316L stainless steel[J]. Surface and Coatings Technology, 2021, 420: 127330.

[52] Terent’ev V F, Slizov A K, Smyslov A M, et al. Effect of Electrolytic-Plasma Polishing on the Mechanical Properties of Austenitic–Martensitic VNS9-Sh TRIP Steel[J]. Russian Metallurgy (Metally), 2020, 2020: 1199-1206.

[53] Alekseev Y G, Korolyov A Y, Niss V S, et al. Electrolytic-plasma treatment of inner surface of tubular products[J]. Science & Technique, 2016, 15(1): 61-68.

[54] Cornelsen M, Deutsch C, Seitz H. Influence of the velocity and the number of polishing passages on the roughness of electrolytic plasma polished pipe inner surfaces[J]. Metals, 2018, 8(5): 330.

[55] Cornelsen M, Deutsch C, Seitz H. Electrolytic plasma polishing of pipe inner surfaces. Metals 8 (1): 12[J]. 2017.

[56] Radkevich M M, Kuzmichev I S. Technological Schemes for Elongated Foramen Internal Surface Finishing by Forced Electrolytic-Plasma Polishing[C]//Advances in Mechanical Engineering: Selected Contributions from the Conference “Modern Engineering: Science and Education”, Saint Petersburg, Russia, June 2020. Springer International Publishing, 2021: 102-111.

[57] 邵勇, 孙树峰, 王萍萍, 等. 医用 TC4 钛合金激光-化学复合抛光及表面形貌演化[J]. 中国表面工程, 2024, 37(2): 227-237.

[58] Liu J, Li C, Yang H, et al. Study on Laser-Electrochemical Hybrid Polishing of Selective Laser Melted 316L Stainless Steel[J]. Micromachines, 2024, 15(3): 374.

[59] Wu G, Fu G, Wang M, et al. Process and corrosion property of laser-chemical hybrid polishing of TC4 alloy[J]. Journal of Manufacturing Processes, 2023, 101: 1374-1382.

[60] 梁志强, 苏志朋, 胡雨童,等. 钛合金结构件磁流变电解复合抛光试验研究[J]. 表面技术, 2023,52(12):102-111.

[61] 马远航. TC4 合金复合抛光工艺及表面形貌演化规律[D]. 哈尔滨工业大学, 2019.

[62] 谢烯炼. 三维曲面数控电解机械复合抛光研究[D]. 南京农业大学, 2010.

[63] Gu Y, Xu X, Lin J, et al. Investigation on Enhanced Machinability of SiC Ceramics through Photocatalytic Vibration Composite Polishing[J]. Langmuir, 2024, 40(6): 3035-3052.

[64] 胡征. 等离子体化学基础[J]. 化工时刊, 2000, 14(3): 44-48.

[65] Wang B, Chen B, Wang G, et al. Back propagation (BP) neural network prediction and chaotic characteristics analysis of free falling liquid film fluctuation on corrugated plate wall[J]. Annals of Nuclear Energy, 2020, 148: 107711.

[66] 李迎雪,郑禄林,杨爱莲,等.基于QPSO-BP神经网络的矿井突水水源判识模型研究[J].贵州大学学报(自然科学版),2025,42(01):114-124.

中图分类号:

 TG175.3    

开放日期:

 2025-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式