论文中文题名: | 县域地质灾害风险性评价——以甘肃省景泰县为例 |
姓名: | |
学号: | 19210210085 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085215 |
学科名称: | 工学 - 工程 - 测绘工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | GIS应用与灾害研究 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-21 |
论文答辩日期: | 2022-06-02 |
论文外文题名: | Risk assessment of county-level geological disasters—taking Jingtai County, Gansu Province as an example |
论文中文关键词: | |
论文外文关键词: | Geological disaster ; Entropy weight-TOPSIS ; Fuzzy analytic hierarchy process ; Risk assessment ; Jingtai County |
论文中文摘要: |
中国是世界上遭受地质灾害最严重的国家之一,地质灾害破坏性强,严重扰乱了人们的生产生活秩序,阻碍了区域经济发展。对地质灾害的形成原因以及分布情况进行调查,掌握一个地区地质灾害风险分布情况就显得十分必要。对地质灾害进行风险性评价,可以为地区防灾减灾工作提供理论依据。 本文以景泰县为研究区域,对县域范围内地质灾害风险进行评价。广泛收集数据,选取评价因子,利用熵权-TOPSIS法对评价因子重要性排序,为层次分析法、模糊层次分析法确定权重做准备,再以信息量法作为对比,对三种评价结果进行验证。基于ArcGIS平台,对景泰县地质灾害进行易发性及易损性评价,进而作出风险性评价。本文主要研究内容及结论如下: (1)选取坡度、地形起伏度、距断裂带距离、地层岩性、距河流距离、年均降水量、植被覆盖度、距道路距离、距工矿距离这九个因素作为评价因子,与层次分析法、模糊层次分析法、信息量法共同构成地质灾害易发性评价体系。利用统计分析方法验证评价结果,结果表明,模糊层次分析法和信息量法的评价效果相似度高度一致,且明显优于层次分析法。通过差异对比,说明模糊层次分析法得到的权重比层次分析法更加合理。综合考虑,以模糊层次分析法的结果作为最终的地质灾害易发性评价结果。 (2)地质灾害易发性评价结果表明,景泰县地质灾害分布表现出“南多北少”的特点。轻微易发区面积占比27.15%,大部分集中在景泰县中北部地区,小部分分散在景泰县南部,该易发区呈连续面状分布。低易发区面积占比28.84%,主要分布在景泰县中北部,少量分布在南部区域,该易发区呈带状分布,分布轨迹大多与路网重合。中易发区面积占比32.93%,大部分集中在景泰县北部,呈连续面状分布,南部有零星分布。高易发区面积占比11.08%,主要分布在西北、西南及中部地区,东南部有少量分布。 (3)选取人口密度、建筑物密度、路网密度、国内生产总值、夜间灯光共五个指标作为评价因子,与模糊层次分析法共同构成地质灾害易损性评价体系进行易损性评价。选用“平均每个灾害点受威胁人数、平均每个灾害点受威胁财产”两个指标对结果验证。结果表明,这两个指标与易损区呈现正相关的关系,即易损区等级越高,指标对应的值越大。说明评价结果与实际情况吻合度高,可靠性强。 (4)易损性评价结果表明,易损区基本呈现“沿道路—乡镇”分布的特点。评价结果中,轻微易损区面积占比为81.14%,分布范围最广,各乡镇均有分布,普遍存在于山区及远离村落的区域。低易损区面积占比16.18%,在各个乡镇也均有分布,大多呈带状分布,与路网分布吻合度较高,在一条山镇、芦阳镇、草窝滩镇等局部位置呈块状分布。中易损区面积占比2.42%,在各个乡镇也均有分布,除一条山镇及芦阳镇呈大面积块状分布外,其他乡镇均呈零星点状分布。高易损区面积占比0.26%,主要分布在一条山镇,一条山镇承灾体分布密度最大。 (5)以“R=H×V”作为地质灾害风险性评价模型。结果表明,风险区划分基本遵循“易发性程度越高、易损性程度越高,则风险性越高。反之,该地风险性越低”这一原则。评价结果中,低风险区面积占比89.60%,主要集中在除一条山镇之外的其他乡镇。中风险区占比9.74%,在各个乡镇均有分布,在红水镇、漫水滩乡、上沙沃镇呈零星点状分布;在草窝滩镇、一条山镇、芦阳镇呈块状分布,在寺滩乡、喜泉镇、正路镇、中泉镇、五佛乡呈带状分布。高风险区占比0.66%,主要分布于景泰县中部及南部的一条山镇、草窝滩镇、五佛乡、芦阳镇、正路镇、喜泉镇、中泉镇。除在一条山镇呈大面积块状分布外,其他几个乡镇均呈零星点状分布。空间自相关分析结果表明,地质灾害风险性评价结果在空间上呈显著的空间正相关关系,风险区分布在空间上呈现集聚分布的特征。局部空间自相关分析中,高低值分布区与风险性评价中风险区的分布吻合度高,表明风险评价效果较好。 |
论文外文摘要: |
China is one of the countries that suffers the most from geological disasters in the world. Geological disasters are highly destructive, seriously disrupting people's production and living order and hindering regional economic development. It is very necessary to investigate the causes and distribution of geological disasters and to grasp the distribution of geological disasters in a region. Risk assessment of geological disasters can provide theoretical basis for regional disaster prevention and mitigation. This paper takes Jingtai County as the research area to evaluate the geological disaster risk within the county. Collect data extensively, select evaluation factors, use entropy weight-TOPSIS method to rank the importance of evaluation factors, prepare for AHP and Fuzzy AHP to determine weights, and then use the information method as a comparison to verify the three evaluation results . Based on the ArcGIS platform, the susceptibility and vulnerability assessment of geological disasters in Jingtai County was carried out, and then the risk assessment was made. The main research contents and conclusions of this paper are as follows: (1) Nine factors, namely slope, topographic relief, distance from fault zone, stratum lithology, distance from river, average annual precipitation, vegetation coverage, distance from road, and distance from industrial and mining industry were selected as evaluation factors, and the analysis of hierarchy process was carried out. method, fuzzy analytic hierarchy process, and information quantity method together constitute a geological disaster susceptibility evaluation system. Statistical analysis method is used to verify the evaluation results. The results show that the evaluation results of the fuzzy analytic hierarchy process and the information quantity method are highly consistent, and are obviously better than the analytic hierarchy process. The difference comparison shows that the weights obtained by fuzzy AHP are more reasonable than those obtained by AHP. Taking into account comprehensively, the result of fuzzy analytic hierarchy process is used as the final evaluation result of geological hazard susceptibility. (2) The evaluation results of the susceptibility of geological disasters show that the distribution of geological disasters in Jingtai County shows the characteristics of "more in the south and less in the north". The area of mildly prone areas accounted for 27.15%, most of which were concentrated in the central and northern parts of Jingtai County, and a small part was scattered in the southern part of Jingtai County. The prone areas were distributed in a continuous plane. The area of low-risk areas accounted for 28.84%, mainly distributed in the central and northern parts of Jingtai County, and a small amount in the southern area. The area of the middle-prone area accounts for 32.93%, most of which are concentrated in the northern part of Jingtai County, distributed in a continuous plane, and scattered in the southern part. The area of high-risk areas accounted for 11.08%, mainly distributed in the northwest, southwest and central regions, with a small amount in the southeast. (3) Five indicators including population density, building density, road network density, gross domestic product, and night lights are selected as evaluation factors, and together with the fuzzy analytic hierarchy process, a geological disaster vulnerability evaluation system is formed to evaluate the vulnerability. The results were verified by using two indicators of "the average number of people threatened per disaster site and the average threatened property per disaster site". The results show that the two indicators have a positive correlation with the vulnerable area, that is, the higher the level of the vulnerable area, the greater the corresponding value of the indicators. It shows that the evaluation results are highly consistent with the actual situation and have strong reliability. (4) Vulnerability evaluation results show that the vulnerable area basically presents the characteristics of "along the road-township" distribution. In the evaluation results, the area of slightly vulnerable areas accounts for 81.14%, and the distribution range is the widest. It is distributed in all towns and towns, and generally exists in mountainous areas and areas far away from villages. The area of low vulnerability area accounts for 16.18%, and it is also distributed in various towns and towns. Most of them are distributed in a band shape, which is in good agreement with the distribution of the road network. block distribution. The area of medium vulnerable area accounts for 2.42%, and it is also distributed in all towns. Except for Yishan Town and Luyang Town, which are distributed in large areas, other towns are distributed in sporadic distribution. The area of high vulnerability area accounted for 0.26%, mainly distributed in a mountain town, and the distribution density of disaster-bearing bodies in a mountain town was the highest. (5) Take “R=H×V” as the geological hazard risk assessment model. The results show that the division of risk areas basically follows the principle of "the higher the degree of susceptibility and the higher the degree of vulnerability, the higher the risk. On the contrary, the lower the risk is". In the evaluation results, the area of low-risk areas accounted for 89.60%, mainly concentrated in other towns and towns except a mountain town. The medium-risk area accounts for 9.74%, and it is distributed in all towns. It is scattered in Hongshui Town, Manshuitan Township, and Shangshawo Town; It is distributed in a band shape in Sitan Township, Xiquan Town, Zhenglu Town, Zhongquan Town and Wufo Township. High-risk areas accounted for 0.66%, mainly located in Yishan Town, Caowotan Town, Wufo Township, Luyang Town, Zhenglu Town, Xiquan Town, and Zhongquan Town in the central and southern parts of Jingtai County. Except for one mountain town, which is distributed in a large area, several other towns are distributed in sporadic points. The results of spatial autocorrelation analysis show that the geological disaster risk assessment results show a significant positive spatial correlation in space, and the distribution of risk areas presents the characteristics of agglomeration distribution in space. In the local spatial autocorrelation analysis, the distribution of high and low values has a high degree of agreement with the distribution of the risk area in the risk assessment, indicating that the risk assessment effect is good. |
参考文献: |
[1] 何树红, 姜毅, 计晓林. 泥石流灾害经济损失研究综述[J]. 灾害学, 2019, 34(4): 153-158. [2] 刘哲. 基于GIS的雅砻江流域麦地龙-卡拉段地质灾害危险性评价[D]. 成都: 成都理工大学, 2015. [3] 田春阳. 辽宁省西丰县地质灾害易发性评价[D]. 大连: 辽宁师范大学, 2020. [4] 杨淞月, 翁茂芝, 田华, 等. 湖北省鹤峰县城区滑坡地质灾害风险评价[J]. 安全与环境工程, 2021, 28(01): 144-155. [5] 张永兴, 胡居义, 文海家. 滑坡预测预报研究现状述评[J]. 地下空间, 2003(2): 200-202+222-227. [6] 孟庆华. 秦岭山区地质灾害风险评估方法研究[D]. 北京: 中国地质科学院, 2011. [7] 卫霞. 舟曲泥石流灾后重建与文化适应研究[J]. 甘肃理论学刊, 2016, (2): 83-89. [11] 卢全中, 彭建兵, 赵法锁. 地质灾害风险评估(价)研究综述[J]. 灾害学, 2003, (4): 60-64. [16] 郝国栋. 基于随机森林模型的商南县滑坡易发性评价[D]. 西安: 西安科技大学, 2019. [17] 李莉. 基于随机森林模型的重庆市滑坡灾害的研究[D]. 重庆: 重庆师范大学, 2015. [19] 张云波, 曾磊, 付弘流, 等. 基于信息量模型法的石阡县地质灾害易发性评价[J]. 地质灾害与环境保护, 2022, 33(1): 44-49. [20] 刘希林, 莫多闻, 王小丹. 区域泥石流易损性评价[J]. 中国地质灾害与防治学报, 2001(2): 10-15. [21] 许遐祯, 潘文卓, 缪启龙. 江苏省龙卷风灾害易损性分析[J]. 气象科学, 2010, 30(2): 208-213. [22] 赵卫权. 自然灾害社会易损性评价指标体系研究[D]. 重庆: 重庆师范大学, 2008. [23] 史培军. 区域自然灾害系统研究[C]. 北京: 北京师范大学, 2003. [24] 姜彤, 许朋柱. 自然灾害研究中的社会易损性评价[J]. 中国科学院院刊, 1996(3): 186-191. [25] 吴润霖, 党星海, 周兆叶, 等. 岷县地质灾害易损性模糊综合评价[J]. 地理空间信息, 2021, 19(3): 86-89+108+7. [26] 刘旋. 壶关太行山青龙峡景区地质灾害风险评价[D]. 西安: 长安大学, 2021. [30] 赵良军, 李虎, 刘玉峰, 等. 新疆伊犁果子沟地质灾害风险评价及致灾因子[J]. 干旱区研究, 2017, 34(3): 693-700. [35] 阮沈勇, 黄润秋. 基于GIS的信息量法模型在地质灾害危险性区划中的应用[J]. 成都理工学院学报, 2001, 28(1): 89-92. [36] 邢秋菊, 赵纯勇, 高克昌, 等. 基于GIS的滑坡危险性逻辑回归评价研究[J]. 地理与地理信息科学, 2004, (3): 49-51. [39] 杨栓成, 魏学利, 陈宝成, 等. 中巴公路奥-布段水毁灾害及风险性评价研究[J]. 人民长江, 2019, 50(9): 35-41+64. [42] 邱海军, 区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究——以宁强县为例[D]. 西安: 西北大学, 2012. [43] 陈朝亮, 彭树宏, 钱静, 等. 基于AHP-Logistic熵权模型的西南浅丘区地质灾害分布特征研究——以内江市为例[J]. 长江科学院院报, 2020, 37(2): 55-61. [44] 罗路广, 裴向军, 谷虎, 等. 基于GIS的“8.8”九寨沟地震景区地质灾害风险评价[J]. 自然灾害学报, 2020, 29(3): 193-202. [45] 吉晓玲. 滑坡与泥石流灾害经济损失的粗BP神经网络分析[D]. 成都: 西南财经大学, 2012. [46] 河海大学《水利大辞典》编辑修订委员会编. 水利大辞典. 上海辞书出版社. 2014. [48] 邹子熹, 朱莹, 李群, 等. 基于层次分析法的饮用水健康性评价研究[J]. 给水排水, 2022, 58(2): 6-12. [49] 甘伯惠, 胡国超, 蒋林勇, 等. 基于层次分析法的船体舭部分段划分方案评价及优化[J]. 船海工程, 2022, 51(1): 51-55. [50] 李潇, 张毅, 汪涛, 等. 基于粒子群优化层次分析法的LNG槽车风险评价[J]. 安全与环境工程, 2022, 29(2): 9-15. [54] 李勤, 李文龙, 崔凯. 基于改进TOPSIS法的民用建筑再生利用方案决策[J]. 武汉大学学报(工学版), 2022, 55(2): 160-167. [55] 杜雪芳, 李彦彬, 张修宇. 基于TOPSIS模型的郑州市水资源承载力研究[J]. 人民黄河, 2022, 44(2): 84-88. [56] 杜建丽. 面向空间碎片编目的天基监测系统研究[D]. 武汉: 武汉大学, 2018. [57] 逄海博. 基于模糊层次分析法的交通拥堵检测[D]. 大连: 大连理工大学, 2021. [58] 李锦清. 基于模糊层次分析法的知识产权质押融资风险评价研究[D]. 成都: 电子科技大学, 2021. [59] 刘祖林. 基于近似一致性模糊数判断矩阵的决策模型研究[D]. 南宁: 广西大学, 2018. [60] 陈骏骏, 秦胜伍, 李广杰, 等. 基于RS-IVM的吉林省泥石流灾害易发性评价研究[J]. 应用基础与工程科学学报, 2021, 29(6): 1359-1371. [61] 王珺颖. 基于POI的农家乐空间分布特征及其驱动因子研究[D]. 重庆: 西南大学, 2020. [62] 贺鹏, 童立强, 郭兆成, 等. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264. [63] 毕鸿基, 聂磊, 曾超, 等. 基于三种多变量不安定指数分析模型的汶川县地质灾害易发性评价[J]. 中国地质灾害与防治学报, 2022, 33(1): 123-131. [64] 黄润秋, 李为乐. “5.12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. [66] 霍文杰, 王宏睿, 刘如珍, 等. 景泰县矿山地质环境生态修复建议[J]. 世界有色金属, 2021(9): 187-188. [67] 邓必荣, 罗华来, 欧阳克贵. 江西赣南于都县银坑地区地质灾害易发性评价分析[J].世界有色金属, 2021, (24): 94-96. [68] 葛维琦. 中国煤矿采空区塌陷灾害治理对策[J]. 中国能源, 2004(10): 33-36. [69] 李宇亮, 王豪伟, 邓红兵, 等.城市规划区地质灾害易损性评价[J]. 环境科学与技术, 2014, 37(S2): 526-529. [70] 颜建东, 李玥, 吴环环, 等. 地质灾害易损性评价模型在城市地质中的应用[J]. 工程建设与设计, 2020, (22): 36-37. [71] 蔡玫, 王秋寒. Natech风险管理中的承灾体脆弱性评估方法综述[J]. 中国安全科学学报, 2021, 31(11): 9-17. [72] 闫成林, 郑德凤, 年廷凯, 等. 基于ANP的模糊贝叶斯网络模型及其在海岸带地质灾害风险评价中的应用[J]. 工程地质学报, 2021, 29(6): 1862-1868. [73] 齐信, 唐川, 陈州丰, 等. 地质灾害风险评价研究[J]. 自然灾害学报, 2012, 21(5): 33-40. [74] 孟庆华. 秦岭山区地质灾害风险评估方法研究[D]. 北京: 中国地质科学院, 2011. [76] 刘昭玥, 费杨, 师华定, 等. 基于UNMIX模型和莫兰指数的湖南省汝城县土壤重金属源解析[J]. 环境科学研究, 2021, 34 (10): 2446-2458. |
中图分类号: | P208.2 |
开放日期: | 2022-06-21 |